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Abstract7

The synchronization of different γ-rhythms arising in different brain areas has been impli-8

cated in various cognitive functions. Here, we focus on the effect of the ubiquitous neuronal9

heterogeneity on the synchronization of PING (pyramidal-interneuronal network gamma) and10

ING (interneuronal network gamma) rhythms. The synchronization properties of rhythms de-11

pends on the response of their collective phase to external input. We therefore determined the12

macroscopic phase-response curve for finite-amplitude perturbations (fmPRC), using numerical13

simulation of all-to-all coupled networks of integrate-and-fire (IF) neurons exhibiting either PING14

or ING rhythms. We show that the intrinsic neuronal heterogeneity can qualitatively modify the15

fmPRC. While the phase-response curve for the individual IF-neurons is strictly positive (type I),16

the fmPRC can be biphasic and exhibit both signs (type II). Thus, for PING rhythms, an external17

excitation to the excitatory cells can, in fact, delay the collective oscillation of the network, even18

though the same excitation would lead to an advance when applied to uncoupled neurons. This19

paradoxical delay arises when the external excitation modifies the internal dynamics of the net-20

work by causing additional spikes of inhibitory neurons, whose delaying within-network inhibition21

outweighs the immediate advance caused by the external excitation. These results explain how22

intrinsic heterogeneity allows the PING rhythm to become synchronized with a periodic forcing23

or another PING rhythm for a wider range in the mismatch of their frequencies. We demonstrate24

a similar mechanism for the synchronization of ING rhythms. Our results identify a potential25

function of neuronal heterogeneity in the synchronization of coupled γ-rhythms, which may play26

a role in neural information transfer via communication through coherence.27

Author Summary28

The interaction of a large number of oscillating units can lead to the emergence of a collective, macro-29

scopic oscillation in which many units oscillate in near-unison or near-synchrony. This has been30

exploited technologically, e.g., to combine many coherently interacting, individual lasers to form a31

single powerful laser. Collective oscillations are also important in biology. For instance, the circadian32

rhythm of animals is controlled by the near-synchronous dynamics of a large number of individually33

oscillating cells. In animals and humans brain rhythms reflect the coherent dynamics of a large number34

of neurons and are surmised to play an important role in the communication between different brain35

areas. To be functionally relevant, these rhythms have to respond to external inputs and have to be36

able to synchronize with each other. We show that the ubiquitous heterogeneity in the properties of37

the individual neurons in a network can contribute to that ability. It can allow the external inputs38

to modify the internal network dynamics such that the network can follow these inputs over a wider39
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range of frequencies. Paradoxically, while an external perturbation may delay individual neurons, their40

ensuing within-network interaction can overcompensate this delay, leading to an overall advance of the41

rhythm.42

1 Introduction43

Collective oscillations or rhythms representing the coherent dynamics of a large number of coupled44

oscillators play a significant role in many systems. In the technological realm they range from laser45

arrays and Josephson junctions to micromechanical oscillators [1, 2]. Among the important biological46

examples are the heart rhythm, the circadian rhythm generated by the suprachiasmatic nucleus [3],47

the segmentation clock controlling the somite formation during development [4], and brain waves [5].48

One prominent brain rhythm is the widely observed γ-rhythm with frequencies in the range 30-100Hz.49

The coherent spiking of the neurons underlying this rhythm likely enhances the downstream impact50

of the neurons participating in the rhythm. The rhythmic alternation of low and high activity has51

been suggested to play a significant role in the communication between different brain areas [6, 7].52

That communication has also been proposed to be controled by the coherence of the rhythms in the53

participating brain areas [8–13].54

For collective oscillations or rhythms to play a constructive role in a system they need to respond55

adequately to external perturbations and stimuli. For instance, for the circadian rhythm it is essential56

that it can be reliably entrained by light and phase-lock to its daily variation. Similarly, if rhythms are57

to play a significant role in the communication between different brain areas, their response to input58

from other areas represents a significant determinant of their function. Moreover, the stimulation and59

entrainment of γ-rhythms by periodic sensory input is being considered as a therapeutic approach for60

some neurodegenerative diseases [14].61

Even small perturbations can affect oscillations significantly in that they can advance or delay the62

oscillations, i.e. they can change the phase of the oscillators. This change typically depends not63

only on the strength of the perturbation but, importantly, also on the timing of the perturbations64

and is expressed in terms of the phase response curve (PRC), which has been studied extensively for65

individual oscillators [15]. For infinitesimal perturbations the PRC can be determined elegantly using66

the adjoint method [16].67

If the collective oscillation of a network of interacting oscillators is sufficiently coherent, that system68
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can be thought of as a single effective oscillator. Consequently, the response of the macroscopic69

phase of the collective oscillation to external perturbations and the mutual interaction of multiple70

collective oscillations is of interest. The macroscopic phase-response curve (mPRC) has been obtained71

in various configurations, including noise-less heterogeneous phase oscillators [17, 18], noisy identical72

phase oscillators [19, 20], noisy excitable elements [21], and noisy oscillators described by the theta-73

model [22], which is equivalent to the quadratic integrate-fire model for spiking neurons. Recent74

work has used the reduction of networks of quadratic integrate-fire neurons to two coupled differential75

equations for the firing rate and the mean voltage [23], which is related to the Ott-Antonsen theory76

[24, 25], to develop a method to obtain the infinitesimal macroscopic PRC (imPRC) for excitatory-77

inhibitory spiking networks [26,27].78

A key difference between the response of an individual oscillator to a perturbation and that of a79

collective oscillation is the fact that the degree of synchrony of the collective oscillation can change80

as a result of the perturbation, reflecting a change in the relations between the individual oscillators.81

Thus, the phase response of a collective oscillation to a brief perturbation consists not only of the82

immediate change in the phases of the individual oscillators caused by the perturbation, but includes83

also a change in the collective phase that can result from the subsequent convergence back to the84

phase relationship between the oscillators corresponding to the synchronized state, which is likely to85

have been changed by the perturbation [18]. Interestingly, it has been observed that the infinitesimal86

macroscopic phase response can be qualitatively different from the phase response of the individual87

elements. Thus, even if the individual oscillators have a type-I PRC, i.e. a PRC that is strictly positive88

or negative, the mPRC of the collective oscillation can be of type II, i.e. it can exhibit a sign change89

as a function of the phase [21,22,28].90

Here we investigate the interplay between external perturbations and the internal interactions among91

neurons in inhibitory and in excitatory-inhibitory networks exhibiting γ-rhythms of the ING- and92

of the PING-type. We focus on networks comprised of neurons that are not identical, leading to a93

spread in their individual phases and a reduction in the degree of their synchrony. How does this94

phase dispersion affect the response of the macroscopic phase of the rhythm to perturbations? Does95

it modify the ability of the network to follow a periodic perturbation ?96

We show that the dispersion in the phase together with the within-network interactions among the97

neurons can be the cause of a paradoxical phase response: an external perturbation that delays each98

individual neuron can advance the macroscopic rhythm. We identify the following mechanism under-99
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lying this paradoxical response: external perturbations that delay individual neurons sufficiently allow100

the within-network inhibition generated by early-spiking neurons to suppress the spiking of less excited101

neurons. This results in a reduced within-network inhibition, which reduces the time to the next spike102

volley, speeding up the rhythm. This paradoxical phase response increases with the neuronal hetero-103

geneity and allows the network to phase-lock to periodic external perturbations over a wider range of104

detuning. Thus, the desynchronization within the network enhances its synchronizabilty with other105

networks. The mechanism is closely related to that underlying the enhancement of synchronization of106

collective oscillations by uncorrelated noise [29] and the enhanced entrainment of the rhythm of a ho-107

mogeneous network to periodic input if that input exhibits phase dispersion across the network [30,31].108

We demonstrate and analyze these behaviors for networks of inhibitory neurons (ING-rhythm) and for109

networks comprised of excitatory and inhibitory neurons (PING-rhythm).110

2 Results111

We investigated the impact of neuronal heterogeneity on the response of the phase of γ-rhythms to112

brief external perturbations and the resulting ability of rhythms to synchronize to periodic input.113

As described in the Methods, we used networks comprised of minimal integrate-fire neurons that in-114

teract with each other through synaptic pulses modeled via delayed double-exponentials. To study115

ING-rhythms all neurons were inhibitory, while for the PING-rhythms we used excitatory-inhibitory116

networks. In both cases, the coupling within each population was all-to-all. Throughout, we imple-117

mented the neuronal heterogeneity by injecting a different steady bias current Ibias into each neuron.118

Our analysis suggests that the origin of the neuronal heterogeneity plays only a minor role as long as119

it leads to a dispersion of their spike times [29].120

Paradoxical Phase Response of Heterogeneous Networks: ING-Rhythm121

In the absence of external perturbations the all-to-all inhibition among the neurons lead to rhythmic122

firing of the neurons. Due to their heterogeneity they did not spike synchronously but sequentially, as123

shown in Fig.1A, where the neurons are ordered by the strength of their bias current. The dependence124

of the phase dispersion on the coefficient of variation of the heterogeneity in the bias current (CV)125

is shown in Suppl. Figure S1. For sufficiently large heterogeneity some neurons never spiked: while126

the weak bias current they received would have been sufficient to induce a spike eventually, the strong127
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Figure 1: ING-rhythm can be advanced by inhibition while individual neurons are delayed.
(A) Top: spike raster of neurons spiking sequentially in the order of their input strength (increasing with
neuron index). Bottom: mean voltage across the network (LFP). (B) External inhibition advanced the
rhythm. Top: raster plot of spikes without (black) and with (red) external inhibitory pulse. Bottom:
Average of the total inhibitory current each neuron received from the other neurons within the network.

I(I) = 20.4 pA, C
(I)
V = 0.15, fnetwork = 47 Hz. In (B), perturbations were made with a square-wave

inhibitory current pulse with duration 0.1 ms and amplitude 3200 pA to each neuron, resulting in a 4
mV rapid hyperpolarization.

inhibition that was generated by the neurons spiking earlier in the cycle suppressed those late spikes.128

Neurons with strong bias current could spike multiple times.129

A brief, inhibitory external input delivered to all neurons (green dashed line in Fig.1B) delayed each130

neuron. The degree of this individual delay depended on the timing of the input, as is reflected131

in the PRC of the individual neurons. If the perturbation was applied during the time between the132

spike volleys, the delay of each neuron had no further consequence and the overall rhythm was delayed.133

However, if the same inhibitory perturbation arrived during a spike volley (dashed green line in Fig.1B),134

it could advance the overall rhythm. As illustrated in Fig.1B, only the spiking of the late neurons was135

delayed by the perturbation. Importantly, with this delay some neurons did not spike before the136

within-network inhibition triggered by the early-spiking neurons (dashed blue line in Fig.1B) became137

strong enough to suppress the spiking of the late neurons altogether. With fewer neurons spiking, the138

all-to-all inhibition within the network was reduced, allowing all neurons to recover earlier, which lead139

to a shorter time to the next spike volley. If the speed-up was larger than the immediate delay induced140

by the external inhibition, the overall phase of the rhythm was advanced by the delaying inhibition.141

As the example in Fig.1B shows, the paradoxical phase response requires proper timing of the per-142

turbation. We therefore determined quantitatively the macroscopic phase-response curve (PRC) of143

the rhythm. To do so we measured computationally the amount a brief current injection shifted the144

phase of the rhythm (Fig.2A). We defined the phase as the normalized time since the first spike in145
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Figure 2: fmPRC of heterogeneous ING network. (A) Phase shift in response to inhibition for different
neuronal heterogeneity but fixed natural frequency (fnetwork = 40Hz). The paradoxical phase advance
increased with neuronal heterogeneity. (B) fmPRC changed qualitatively with the amplitude of the
perturbation. Left: fmPRC for three different perturbation amplitudes. Right: raster plot of spikes
without (black) and with (red) external inhibition. Top: strong perturbation advanced the network.
Bottom: weak perturbation applied at the same time as in the top figure. The network was delayed.
(C) Maximal phase advance as a function of neuronal heterogeneity and external inhibition strength.
The threshold of the inhibition amplitude to obtain an advance decreased with heterogeneity (white
line). fnetwork was kept constant (fnetwork = 40Hz). In (A)-(C), perturbations were made with a
square-wave inhibitory current pulse with duration 0.1 ms to each interneuron. In (A), the amplitude
of the current was 1600 pA, resulting in a 2 mV rapid hyperpolarization.
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the most recent volley of spikes. Reflecting the strictly positive PRC of the individual integrate-fire146

neurons, without heterogeneity (CV = 0) external inhibition always delayed the rhythm, independent147

of the timing of the pulse. In contrast, in heterogeneous networks the rhythm could be advanced if the148

same inhibitory perturbation was applied shortly after the first spikes in the spike volley (φinh > 0).149

Increasing the neuronal heterogeneity enhanced this phase advance, since it shifted the within-network150

inhibition driven by the leading neurons to earlier times, while it delayed the lagging neurons. As a151

result, for the same external perturbation, a larger fraction of neurons that would spike in the absence152

of the external inhibition was sufficiently delayed to have their spikes be suppressed by the within-153

network inhibition (cf. Fig.1B), reducing the within-network inhibition and with it the time to the154

next spike volley. To keep the frequency of the unperturbed network fixed in Fig.2A, we reduced the155

tonic input with increasing heterogeneity, which enhanced the phase advance. However, even if the156

tonic input was kept fixed, the phase advance increased with heterogeneity (Suppl. Fig.S2).157

For weak heterogeneity the paradoxical phase response occurred only for sufficiently strong perturba-158

tions, i.e. it did not arise in the infinitesimal macroscopic PRC (imPRC). Thus, the phase response159

changed qualitatively as the amplitude of the perturbation was strong enough to delay the spikes of160

sufficiently many slow neurons until the self-inhibition of the network set in and suppressed their spikes161

(Fig.2B). As the CV of the neurons was increased, the dispersion was large enough that the spikes162

of the lagging neurons were suppressed by the self-inhibition of the network even in the absence of163

an external perturbation. Above that threshold value of CV the paradoxical phase response occurred164

even for infinitesimal perturbations (Fig.2C).165

The paradoxical phase response was robust with respect to changes in the natural frequency of the166

network, the coupling strength, and the effective synaptic delay, as long as the rhythm persisted.167

The paradoxical phase advance increased with decreasing natural frequency of the network, since168

the inhibition had a stronger effect for lower mean input strength (Fig.3A). Changing the within-169

network coupling strength by a factor of 2 up or down did not substantially affect the paradoxical170

phase response (Fig.3B) nor the strength of the rhythm (Fig.3C). Even without explicit synaptic delay171

(τd = 0), the effective delay given by the double-exponential synaptic interaction was sufficient to render172

a paradoxical response (Fig.3D). However, when this effective delay was reduced by decreasing the173

rise time τ I1 of the synaptic current, the rhythm itself developed a strong subharmonic component and174

eventually disintegrated (Fig.3E). In the subharmonic regime the paradoxical phase advance alternated175

in consecutive cycles of the rhythm.176
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Figure 3: The paradoxical phase response of a heterogeneous ING network is robust. (A) The phase
advance of the fmPRC decreased with the natural frequency (CV (I) = 0.15). (B) The fmPRC did not
depend sensitively on the within-network coupling strength W (CV (I) = 0.15, I(I) =15.8 pA). (C)
The Fourier spectrum of the LFP as a function of the coupling strength W . Parameters as in (B). (D)
Paradoxical phase response in the absence of an explicit delay, τd = 0, for different effective synaptic
delays due to different synaptic rise times τ I1 (CV (I) = 0.05, I(I) =15.8 pA). For low τ I1 (blue curve),
the shift alternated in subsequent cycles reflecting the subhamornic nature of the rhythm. (E) The
Fourier spectrum of the LFP as a function of the effective synaptic delay (synaptic time constant of
rise τ I1 ). With decreasing τ I1 , a subharmonic peak emerged and eventually the rhythm disintegrated.
Parameters as in D. In (A), (B) and (D), perturbations were made with a square-wave inhibitory
current pulse with duration 0.1 ms to each interneuron. In (A) and (B), the amplitude of the current
was 1600 pA, resulting in a 2 mV rapid hyperpolarization. In (D), the amplitude of the current was
400 pA, resulting in a 0.5 mV rapid hyperpolarization.
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Figure 4: Sketch of computational models. (A) ING rhythm receives periodic inhibitory input gen-
erated from another ‘clock’ ING rhythm. (B) PING rhythm receives periodic excitatory input by its
E-population generated from another ‘clock’ PING rhythm.

In [13, 27] the exact reduction of all-to-all coupled heterogeneous networks of quadratic integrate-fire177

neurons to 2 coupled ordinary differential equations for each network [23] has been used to obtain the178

infinitesimal macroscopic phase-response curve (imPRC) for ING and PING networks. They obtained179

biphasic response only if the excitatory perturbation was applied to the population of inhibitory180

neurons; for perturbations to the excitatory neurons they found only monophasic response (type-I).181

This is presumably due to the lack of a delay in the single-exponential synaptic interactions used182

in [13,27].183

Enhancing entrainment of ING-rhythms through network heterogeneity184

In order to allow communication by coherence [11, 32], the rhythms in different brain areas need to185

be sufficiently phase-locked with each other. As a simplification of two interacting γ-rhythms, we186

therefore investigated the ability of the rhythm in a network to be entrained by a periodic external187

input, particularly focusing on the possibly facilitating role of neuronal heterogeneity. Motivated by188

the paradoxical phase response induced by the heterogeneity, we addressed, in particular, the question189

whether an ING network can be sped up by inhibition to entrain it with a faster network.190

The network considered here was the same as that used to analyze the fmPRC. The within-network191

interaction was an all-to-all inhibition with synaptic delay τd, resulting in a rhythm with natural192

frequency fnatural, Each neuron received heterogeneous input Ibias and inhibitory periodic pulses with193

frequency fclock . The latter can be considered as the output of another ING-network and were,194

in fact, generated that way (Fig.4). We refer to this external input as the ‘clock’. The detuning195

∆f = fclock − fnatural was a key control parameter.196

For periodic input the fmPRC allows the definition of an iterated map describing the response of the197

network. For periodic δ-pulses that map is shown in Fig.5A. For positive detuning, i.e. when the clock198
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Figure 5: Connection between fmPRC and the synchronization of γ-rhythms. (A) Iterated map of Φinh.
The network can be synchronized by faster periodic inhibiton under sufficiently large advancing phase
response. (B) Top: The bifurcation diagram of the iterated map of Φinh with varying detuning ∆f .
To the right of the magenta dashed line (∆f = 7.28 Hz) the attractors involve points on both sides of
the discountinuity of the map. Bottom from left to right: iterated maps of Φinh for ∆f = 0, 2.44, 8.8
Hz. The distance between the diagonal and subdiagonal line represents the detuning between the
network and periodic input. In (A), the fmPRC was determined for a δ-pulse perturbation, in (B) for
a double-exponential inhibitory current (cf. (2,3)) was used as in Fig.6.

is faster than the network, entrainment requires that the phase response is paradoxical in order for199

the rhythm to be sped up by the inhibition. If the heterogeneity and the resulting phase response are200

sufficiently large, the maximum of the iterated map crosses the diagonal, generating a stable and an201

unstable fixed point. The former is the desired entrained state.202

As the detuning is increased the iterated map is shifted downward. This can decrease the slope of the203

iterated map at the fixed point below -1, destabilizing the fixed point in a period-doubling bifurcation.204

For periodic pulses comprised of double-exponential inhibitory currents (cf. (2,3)) a rich bifurcation205

scenario emerged (Fig.5B). Note that the full map is not continuous and not unimodal (cf. first bottom206

panel of Fig.5B). Nevertheless, for ∆f < 7.17 Hz the attractor remains near the unstable fixed point207

and displays a period-doubling cascade to chaos and multiple periodic windows. For ∆f > 7.28 Hz,208

however, the attractor includes points on both sides of the discontinuity (cf. third bottom panel in209

Fig.5B).210

Having clarified the role of the fmPRC in the network’s synchronizability and ability to phase-lock,211
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Figure 6: Network heterogeneity enhances synchronization and phase-locking of periodically driven
ING rhythm. (A) Synchronization quantified using fdom : fclock with fdom and fclock being the
dominant frequencies of the Fourier spectrum of the LFP of the network and the clock, respectively.
The neuronal heterogeneity enhanced the synchronization by shifting fdom to fclock. Example 1:
Synchronized with 1:1 phase-locking. Example 2: Synchronized with subharmonic response (period
4). Example 3: synchronized with subharmonic response (chaotic). Example 4: Not synchronized.
Squares and dashed lines in the map of Φinh indicate clock cycles in which the network did not spike
(Φinh was arbitrarily set to 2). (B) Subharmonic response. Color hue and saturation indicate the
frequency ratio fsub : fclock and the ratio of the Fourier power at these two frequencies. fsub is the
frequency of the dominant peak of the network power spectrum that satisfies fsub < fclock. The power
ratio is capped at 1. Dashed line marks the value of input heterogeneity used in Fig.5B. (C) Spiking
variability and var(Φinh) as a function of neuronal heterogeneity and detuning. Color hue indicates
the fraction of clock cycles without spikes in the network. In particular, red indicates that the network
spikes in every cycle. Color saturation indicates var(Φinh). The neuronal heterogeneity enhances the
tightness of the phase-locking.
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we investigated the role of neuronal heterogeneity in more detail (Fig.6). To do that, we adjusted for212

each value of the input heterogeneity the mean input strength I(I) so as to keep the natural frequency213

fnetwork constant (fnetwork = 44 Hz). Then we determined the extent of synchronization and phase-214

locking of the network under the influence of periodic inhibitory input as a function of the detuning215

∆f and network heterogeneity CV . As shown above, the fmPRC of a heterogeneous network could216

be biphasic with the amplitude of the paradoxical phase response increasing with neuronal hetero-217

geneity. Expecting that for sufficiently large heterogeneity an ING-rhythm could be accelerated by a218

faster periodic inhibition, we tested phase-locking predominantly for positive detuning, corresponding219

to fclock > fnetwork. We first investigated how neuronal heterogeneity affected the synchronization by220

comparing the dominant frequency fdom in the Fourier spectrum of the network’s LFP with fclock. In221

Fig.6A, the color hue indicates the ratio fdom : fclock. For small heterogeneity, fdom was a rational222

multiple of fclock that depended on the detuning, while for sufficiently large CV the network became223

synchronized in the sense that fdom = fclock (yellow). The range of ∆f allowing synchronization be-224

came wider with increasing neuronal heterogeneity, implying that the neuronal heterogeneity enhanced225

the synchronization of the ING-rhythm. However, note that fdom = fclock did not imply a perfectly226

synchronized or a 1:1 phase-locked state. In fact, various different subharmonic responses arose: ex-227

ample 2 shows a period-4 state, while in example 3 the dynamics were actually chaotic (Fig.6A) even228

though fdom = fclock. Motivated by these observations, we divided the states into three types:229

� Type 1: fdom 6= fclock, not synchronized, not phase-locked (Fig.6 example 4).230

� Type 2: fdom = fclock with subharmonic response, might be poorly phase-locked (Fig.6 example231

3) or displaying rational ratio phase-locking (Fig.6 example 2).232

� Type 3: fdom = fclock, no subharmonic response, 1-to-1 phase-locking (Fig.6 example 1).233

The phase diagram Fig.6A does not differentiate between types 2 and 3. It only shows that neuronal234

heterogeneity enhanced the synchronization of the network by shifting fdom to fclock. Therefore, we235

studied whether neuronal heterogeneity also enhanced the synchronization by weakening the subhar-236

monic response and changing the synchronized state from type 2 to type 3, as well as whether the237

dynamics of the fmPRC shown in the bifurcation diagram Fig.5B could predict the phase relationship238

between the network and the clock. Using the same simulation setup as in Fig.6A, the subharmonic239

response is shown in Fig.6B. The color hue indicates the ratio fsub : fclock, where fsub is the frequency240

of the dominant peak of the LFP power spectrum that satisfies fsub < fclock. The color saturation241
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gives the ratio of the powers at fsub and fclock (capped at 1). Thus, over most of the range of positive242

detuning and neuronal heterogeneity tested, the fading-away of the color with increasing heterogeneity243

reveals that the neuronal heterogeneity weakened the subharmonic response. Over a small range of244

positive detuning, increasing neuronal heterogeneity from small values induced perfect synchronization245

(type 3) by weakening the subharmonic response with frequency ratio fsub : fclock = 1 : 2; the system246

traversed a continuous period-doubling bifurcation in reverse, with type 2 (red) giving way to type 3247

(white). Together with Fig.6A, this showed that neuronal heterogeneity could enhance the synchro-248

nization both by making fdom = fclock (from type 1 to type 2) and by weakening the subharmonic249

response (from type 2 to type 3). The range of detuning where increasing heterogeneity induced a250

type 3 synchronization became wider for larger synaptic delay within the network (Suppl. Figure S3).251

Note that the bifurcation diagram (Fig.5B) based on the fmPRC agrees well with the subharmonic252

response marked along the dashed line at CV = 0.1 in Fig.6B, suggesting that the fmPRC can well253

predict the subharmonic response and persistent phase response of the network.254

In addition to enhancing the frequency synchonization, neuronal heterogeneity was also able to increase255

the tightness of the phase-locking. Over most of the parameter regime investigated, the variance of the256

phase of the network relative to the periodic input (var(Φinh)) decreased with increasing heterogeneity,257

as indicated by the decrease in the color saturation in Fig.6C. In fact, for detuning between 0 Hz and258

2 Hz the heterogeneity reduced var(Φinh) to 0 (white), corresponding to the 1:1 phase-locked state.259

Even for the 1:2 phase-locked state (cf. the red area in Fig.6B) var(Φinh) was very small for a range260

of heterogeneity and detuning (2 Hz to 4 Hz), indicating tight phase locking. Except for type-3261

synchronized states the size of the spike volleys varied between clock cycles. In fact, over wide ranges262

of the parameters the network did not spike in each of the clock cycles, as indicated by the color hue263

in Fig.6C, which gives the fraction of cycles with no network spikes (e.g. Fig.6 example 4).264

Paradoxical phase response and entrainment of PING rhythms265

Many γ-rhythms involve not only inhibitory neurons, but arise from the mutual interaction of excitatory266

(E) and inhibitory (I) neurons (PING rhythm) [33]. The key elements to obtain a paradoxical phase267

response and the ensuing enhanced synchronization are self-inhibition within the network, neuronal268

heterogeneity and effective synaptic delay. Since in PING rhythms the connections from E-cells to269

I-cells and back to the E-cells form an effective self-inhibiting loop, we asked whether PING-rhythms270

can exhibit behavior similar to the behavior we identified for ING-rhythms.271
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Figure 7: Network heterogeneity enhances the synchronization and the tightness of phase-locking of
the PING rhythm. (A) fmPRC of PING networks with constant natural frequency (fnetwork = 41
Hz) but different neuronal heterogeneity. Only with neuronal heterogeneity the phase was delayed
by the excitation. (B) Non-monotonicity of the paradoxical delay with constant natural frequency
(fnetwork = 41 Hz). B2-4: Top: raster plot of spikes in E-population (input strength increased
with cell index). Bottom: mean inhibitory synaptic conductance within the PING network. The
titles show the absolute and relative increase in spike number (B2: CV = 0.05, B3: CV = 0.1, B4:
CV = 0.2). (C) Subharmonic response of the PING rhythm with periodic excitation as function of
neuronal heterogeneity and detuning. fnetwork was fixed at 41 Hz. Color hue and saturation indicate
the frequency ratio and power ratio at the frequencies fsuper and fclock of the E-population’s LFP. fsuper
was the frequency of the dominant peak of the LFP power spectrum that satisfies fsuper > fclock. The
power ratio was capped at 1. Generally, the neuronal heterogeneity enhanced the synchronization of the
PING rhythm by weakening subharmonic response. (D) The tightness of the phase-locking (var(Φexc))
as a function of neuronal heterogeneity and detuning. The neuronal heterogeneity enhanced the
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Considering a PING-rhythm generated by an E-I network comprised of integrate-fire neurons, we first272

studied its fmPRC. To avoid that all I-cells receive identical input and therefore spike as a single unit,273

the I-cells received, in addition to the excitation from the E-cells, heterogeneous, tonic, Gaussian-274

distributed subthreshold input with mean I(I) = 36 pA and CV (I)= 0.167. The phase response of275

the network was probed by applying an identical external excitatory perturbation to all E-cells and276

recording the resulting phase shift of the LFP (cf. eqs.(7,8)) of the E-population, averaged across277

500 realizations of the subthreshold input to the I-cells (Fig.7A). More specifically, the perturbations278

consisted of a square-wave excitatory current pulse with amplitude 76 pA and duration 0.1 ms to each279

E-cell, resulting in a 2 mV rapid depolarization. Without neuronal heterogeneity the external excitation280

always advanced the phase of the rhythm resulting in an fmPRC that was strictly positive. In the281

heterogeneous case, however, the PING rhythm exhibited a paradoxical phase response, whereby the282

collective rhythm was delayed while the individual neurons were advanced by the excitation. The delay283

was caused by the increase of self-inhibition within the network that was generated by the additional284

spikes in the E-population, which in turn drove additional spikes in the I-population. In contrast to the285

fmPRC of the ING-rhythm, this paradoxical phase response was not monotonic in the heterogeneity.286

While weak heterogeneity resulted in strong delay, the delay decreased with increasing intermediate287

CV-values and only increased again for larger CV (Fig.7B left top). This non-monotonicity arose288

because we kept the frequency of the network constant as we increased its heterogeneity. This required289

a decrease in the tonic input to the E-cells with increasing heterogeneity. For the stronger tonic input290

used for weak heterogeneity the same external perturbation elicited more additional spikes than it did291

for strong heterogeneity where the tonic input was weaker (cf. titles of subpanels of Fig.7B). The total292

number of spikes occurring in each cycle of the unperturbed network also decreased with increasing293

heterogeneity. Consequently, the relative change in the number of spikes induced by the perturbation294

was non-monotonic in the heterogeneity. As a result, the relative change in the inhibitory synaptic295

conductance resulting from the perturbation and with it the phase delay was also non-monotonic.296

As for the ING rhythm, we investigated the role of neuronal heterogeneity in the synchonizability and297

the ability of phase-locking of coupled PING rhythms. In analogy to the ING-case, we considered298

the case of the E-population of a PING network receiving periodic excitation generated by a clock299

PING network (Fig.4B). As before, we adjusted the tonic input strength to the E-population to keep300

the natural frequency of the network constant as we changed its heterogeneity (fnetwork = 41Hz).301

To probe the impact of the paradoxical phase response on the synchronization we focused on nega-302
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tive detuning for which the periodic external excitation needed to slow down the network in order to303

achieve phase-locking. Indeed, with increasing heterogeneity the network could become synchronized304

with the slower clock over a larger ranger of the detuning as indicated by the fading saturation of the305

color in Fig.7C. Here the color hue indicates the ratio fsuper : fclock, where fsuper was determined as306

the frequency with the most power among the frequencies higher than fclock in the Fourier spectrum307

of the E-population’s LFP. The color saturation indicates the ratio of the power at the frequencies308

fsuper and fclock. Thus, a color hue closer to green (fsuper : fclock = 1 : 1) or with a lower satura-309

tion implies better synchronization. By observing how the width of the range of detuning allowing310

synchronization varied with neuronal heterogeneity, we concluded that generally, the synchronizability311

of PING rhythm was enhanced by the neuronal heterogeneity by weakening subharmonic response.312

Note that for CV ∈ [0, 0.1] the synchonizability of the PING rhythm decreased slightly with neu-313

ronal heterogeneity. This was consistent with the nonmonotonicity exhibited by the fmPRC seen in314

Fig.7B. The neuronal heterogeneity played a similar role in the tightness of the phase-locking as in the315

synchronizability (Fig.7D).316

3 Discussion317

In this paper we have analyzed the response of collective oscillations of inhibitory and of excitatory-318

inhibitory networks of integrate-fire neurons to external perturbations. For ING- and PING-rhythms319

we have shown that the combination of neuronal heterogeneity and effective synaptic delay can qualita-320

tively change the phase response compared to the phase response of the individual neurons generating321

the rhythm. Thus, perturbations that delay the I-cells can paradoxically advance the ING-rhythm322

and perturbations that advance the E-cells can delay the PING-rhythm. As a result, the macroscopic323

phase-response curve for finite-amplitude perturbations (fmPRC) of the rhythm can change sign as the324

phase of the perturbation is changed (type-II), even though the PRC of all individual cells is strictly325

positive (type-I). This change of the fmPRC enhances the ability of the γ-rhythm to synchronize with326

other rhythms.327

The key element of the mechanism driving the paradoxical phase response and the enhanced synchro-328

nization is the cooperation of the external perturbation and the effectively delayed within-network329

inhibition. In the ING-network a suitably timed external perturbation delays the lagging - but not330

the early - neurons sufficiently to allow the within-network inhibition triggered by the early neurons331
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to keep the lagging neurons from spiking. This reduces the overall within-network inhibition and with332

it the duration of the cycle. Thus, the perturbation modifies the internal dynamics of the rhythm,333

which leads to changes in the phase of the rhythm that can dominate the immediate phase change the334

perturbation induces. The situation is somewhat similar to that investigated in [18]. There it had been335

pointed out that an external perturbation of a collective oscillation can lead to changes in its phase in336

two stages: i) an immediate change of the phases of all oscillators as a direct result of the perturbation337

and ii) a subsequent slower change in the collective phase resulting from the convergence of the dis-338

turbed phases back to the synchronized state. That analysis was based on a network of phase oscillators339

and could therefore not include a key element of our results, which is the perturbation-induced change340

in the number of neurons that actually spike and the resulting change in the within-network inhibition341

that results in a change of the period of the rhythm. As discussed in [31,34], for ING-rhythms such a342

change in the number of spiking neurons underlies also the enhanced phase-locking found in [30].343

Going beyond ING-rhythms, we showed that PING-rhythms can also exibit a paradoxical phase re-344

sponse via a mechanism that is analogous to that of ING-rhythms. For that analysis we have focused345

on excitatory-inhibitory networks with only connections between but not within the excitatory and346

inhibitory populations. For excitatory inputs to the excitatory cells to generate a paradoxical phase347

response it is necessary that the additional spikes of the excitatory neurons that are caused by the348

external perturbation induce additional spikes of the inhibitory neurons. This behavior arises if the349

inibitory population is also allowed to be heterogeneous. Moreover, the within-network inhibition has350

to be strong enough to be able to suppress the spiking of lagging excitatory neurons. This is, e.g., found351

in mice piriform cortex, where principal neurons driven by sensory input from the olfactory bulb arriv-352

ing early during a sniff recruit inhibitory interneurons via long-range recurrent connections, resulting353

in the global, transient suppression of subsequent cortical activity [35]. A characteristic feature of the354

paradoxical phase response of the PING rhythm is the extended cycle time following enhanced acti-355

vation of the excitatory cells. A strong such correlation between the cycle time and the previous LFP356

amplitude has been observed for the γ-rhythm in hippocampus [36]. To assess whether this rhythm357

exhibits paradoxical phase response would require comparing the macroscopic phase response [37] with358

that of indvidual participating neurons.359

In order for the global perturbation to affect the various neurons differently, they have to be at different360

phases in their cycle. Our analysis suggests that the specific cause for this heterogeneity in the spike361

times does not play an important role. Indeed, as shown in [29], even fluctuating heterogeneities that362
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are generated by noise rather than static heterogeneities reflecting intrinsic properties of neurons can363

enhance the synchronization of multiple γ-rhythms in interconnected networks of identical neurons.364

Note that the noise driving this synchronization is uncorrelated across neurons. The analysis of that365

system revealed the same mechanism at work as the one identified here.366

In various previous analytical and computational analyses it has been found that the dynamics of the367

macroscopic phase of a collective oscillation can qualitatively differ from that of the microscopic phase.368

Thus, for interacting groups of noisy identical phase oscillators the macroscopic phases of the groups369

can tend to lign up with each other, even if all pair-wise interactions between individual oscillators370

prefer the antiphase state, and vice versa [20]. An analogous result has been obtained for heterogeneous371

populations of noiseless oscillators [17].372

Qualitative changes have also been found in the macroscopic phase response of rhythms in noisy373

homogeneous networks when the noise level was changed [21,22,28]. Using a Fokker-Planck approach374

for globally coupled excitable neurons, a type-I mPRC was obtained for weak noise, where the rhythm375

emerges through a SNIC bifurcation, while a type-II mPRC arose for strong noise that led to a376

Hopf bifurcation [21]. A similar approach was used to obtain the mPRC via the adjoint method for377

an extension of the theta-model that implements conductance-based synaptic interactions. Again,378

although individual theta-neurons have a type-I PRC, a type-II mPRC was obtained for the rhythm,379

which arose in a Hopf bifurcation [22]. This was also the case in an extension to networks of excitable380

and inhibitory neurons [28].381

Thus, results reminiscent of those presented here have been obtained previously. However, the mech-382

anism underlying them was not addressed in detail and remained poorly understood. We expect that383

our analysis will provide insight into those systems. The key element of the mechanism discussed here384

is that due to the dispersion of the spike times, which either results from neuronal heterogeneity or385

noise, the external perturbation enables the within-network inhibition to suppress the spiking of a386

larger number of neurons than without it. In our system this was facilitated by the delay with which387

spikes triggered the within-network inhibition, which allowed some neurons to escape its impact in388

the absence of the external perturbation, but not in its presence. Our analysis showed, however, that389

the explicit delay is not necessary; the effective delay resulting from a double-exponential synaptic390

interaction is sufficient. In fact, when reducing that effective delay the paradoxical phase response391

did not disappear until the delay was so short that the rhythm itself developed a strong subharmonic392

component and disintegrated.393
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In this paper we have focused on a specific, very simple neuronal model, the leaky integrate-fire model394

with conductance-based pulsatile coupling. In previous work on the enhanced synchronization among395

γ-rhythms via noise-induced spiking heterogeneity it was demonstrated that this result does not depend396

sensitively on the neuron type. Comparable results were obtained also with Morris-Lecar neurons for397

parameters in which the periodic spiking arises from a SNIC-bifurcation, resulting in a type-I PRC as398

is the case for integrate-fire neurons, but also for parameters for which the spiking is due to a Hopf399

bifurcation, resulting in a type-II PRC [29]. For networks comprised of heterogeneous neurons with400

type-II PRC the fmPRC of the collective oscillation is likely to be more complex, since the heterogeneity401

allows the same input to induce phase shifts with opposite signs for different neurons. However,402

we expect that the interplay between the within-network inhibition and the external perturbation403

can again substantially and qualitatively modify the fmPRC by changing the number of neurons404

participating in the rhythm.405

In [29] the results were also found to be robust with respect to significant changes in the network406

connectivity (random instead of all-to-all) as well as the reversal potential of the inhibitory synapses,407

as long as the rhythm itself persisted robustly (cf. [38]). In fact, the coupling did not even have to408

be synaptic; collective oscillations of relaxation-type chemical oscillators that were coupled diffusively409

were also shown to exhibit noise-induced synchronization. These results suggest that the paradoxical410

phase response found here arises in a much wider class of macroscopic collective oscillations.411

The strong paradoxical phase response that we demonstrated for heterogeneous networks allows their412

rhythm to synchronize with a periodic external input over a range of detuning that increases sub-413

stantially with the neuronal heterogeneity. This is reminiscent of computational results for anterior414

cingulate cortex that investigated networks of excitatory neurons coupled via a common population415

of inhibitory neurons. There heterogeneity was also found to enhance the synchrony of rhythms, as416

measured in terms of coincident spikes within 10ms bins [39].417

The heterogeneity-enhanced synchrony we have identified suggests that the coherence of γ-rhythms418

emerging in different interacting networks could also be enhanced by neuronal heterogeneity. It has419

been proposed that the coherence of different γ-rhythms, which has been observed to be modified420

by attention [8], plays an important role in the communication between the corresponding networks421

[11,32]. Computational studies have shown that the direction of information transfer between networks422

depends on the relative phase of their rhythms [12, 13], which can be changed by switching between423

different base states [40, 41]. Whether the enhanced synchrony resulting from neuronal heterogeneity424
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enhances this information transfer is still an open question.425

Disrupted γ-rhythms have been observed in multiple brain regions in neurological diseases, especially426

Alzheimer’s disease. Optogenetic and sensory periodic stimulation at γ-frequencies has been found to427

entrain the γ-rhythm in hippocampus and visual cortex, respectively, and has resulted in a significant428

reduction in total amyloid level [42]. Similar neuro-protective effects of entrainment by external γ-429

stimulation have also been found for other sensory modalities [14,43]. This suggests that γ-stimulation430

by sensory input might be a feasible therapeutic approach. Our results suggest a potential role of431

neuronal heterogeneity in this context.432

From a functional perspective, it has been shown that the noise-induced synchronization mentioned433

above can facilitate certain learning processes [44]. Specifically, a read-out neuron was considered434

that received input from neurons in two networks via synapses that exhibited spike-timing dependent435

plasticity. The two networks were interacting with each other and each of them exhibited a γ-rhythm,436

albeit at different frequencies. For low noise the two rhythms were not synchronized and the read-out437

neuron received inputs from the two networks at uncorrelated times. These inputs drove the plasticity438

inconsistently, leading only to a very slow overall evolution of the synaptic weights, if any. However, for439

stronger noise the two networks were synchronized, providing a more consistent spike timing that lead440

to substantial changes in the synaptic weights. As a result, the read-out neuron was eventually only441

driven by the network that had the larger natural frequency in the absence of the coupling between442

the networks. It is expected that synchrony by neuronal heterogeneity will have a similar impact.443

4 Methods444

Neuron model. Both E-cells and I-cells were modeled as leaky integrate-and-fire neurons, each445

characterized by a membrane potential Vi(t) satisfying446

τE,I
d

dt
Vi = −(Vi − Vrest) +

I
(syn)
i

gsyn
+
I
(ext)
i

gext
+
I
(bias)
i

gbias
, (1)

where Vrest is the resting potential and τE,I the membrane time constants of the E- and I-cells,447

respectively. I
(syn)
i (t) is the total synaptic current that the neuron receives from the other neurons448

within the network. I
(ext)
i (t) is a time-dependent external input that represents perturbations applied449

to determine the fmPRC or, in the study of synchronization, the periodic input generated by the450
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clock network. I
(bias)
i denotes a tonic, neuron-specific excitatory bias current that implements the451

heterogeneity of the neuron properties. The corresponding conductances are denoted gsyn, , gext, and452

gbias. Upon the ith neuron reaching the spiking threshold Vpeak, the voltage Vi was reset to the fixed453

value Vreset. Parameters for the neuron were kept fixed throughout all simulations (see Table 1). The454

local field potential (LFP) of the network was approximated as the mean voltage across all neurons455

j = 1, ...N in the respective population.456

Network model. We studied two types of networks: an ING network and a PING network. The457

ING network was modeled as an all-to-all inhibitory network of N
(ING)
I interneurons. The PING458

network was modeled as a network of N
(PING)
I interneurons and N

(PING)
E principal cells with all-to-459

all interneuron-principal and principal-interneuron connections (i.e., without principal-principal and460

interneuron-interneuron connections). In PING, only principal cells received external input Iext(t).461

To gain insight into the interaction between two ING rhythms, we considered the simplified situation in462

which all neurons in the network received strictly periodic input I(ext), which was generated by another463

ING network (‘clock’). Similarly, for PING rhythms, the E-cells of the PING network received strictly464

periodic excitatory input I(ext) from another PING network through all-to-all connection between their465

E populations.466

Synaptic currents. We used delayed double-exponential conductance-based currents to model the467

excitatory and the inhibitory synaptic inputs from neuron j to neuron i,468

I
(syn)
ij (t) = gsyn

τE,I

τE,I
2 − τE,I

1

(
A

(2)
ij (t)−A(1)

ij (t)
)

(Vrev,j − Vi(t)) , (2)

with the two exponentials A
(1,2)
ij (t) satisfying469

d

dt
A

(1,2)
ij (t) = −

A
(1,2)
ij (t)

τE,I
1,2

+
∑
k

Wijδ(t− t(k)j − τd) , (3)

where Vrev,j is the synaptic reversal potential corresponding to the synapse type, Wij the dimensionless470

synaptic strength, and δ the Dirac δ-function. All synapses of the same type (I-I, I-E, E-I) were equally471

strong. The time constants of A
(1,2)
i (t) satisfied τE,I

2 > τE,I
1 . The synaptic current was normalized472

to render the time integral independent of the synaptic time constants τE,I
1,2 . The inhibitory synaptic473

currents had a slower decay than the excitatory ones (cf. Table 1). We included an explicit synaptic474

delay τd in the model. Every spike of the presynaptic neuron j at time t
(k)
j triggered a jump in both475
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A
(1,2)
ij (t), making the synaptic conductance rise continously after a synaptic delay τd.476

External periodic inputs were also modeled as double-exponential conductance-based currents with477

gsyn in (2,3) replaced by gext. The time constants and delay were as for the within-network synaptic478

inputs.479

Heterogeneous tonic input. The bias currents I
(bias)
i of the ING network were Gaussian distributed480

around Imean with a coefficient of variation CV and arranged in increasing order, I
(bias)
1 > I

(bias)
2 ... >481

I
(bias)
N . For the PING network, all excitatory neurons received a heterogeneous bias I

(bias)
E with mean482

I(E) and a coefficient of variation CV (E). Similarly, the bias currents I
(bias)
I to the inhibitory neurons483

were characterized by their mean I(I)and their coefficient of variation CV (I). Without the excitatory484

input from principal cells, the voltage of interneurons remained below the spiking threshold. In our485

investigation of the impact of the neuronal heterogeneity on the phase response and entrainment of486

the PING rhythm we kept CV (I) fixed and varied CV (E).487

Macroscopic Phase-response Curve for Finite-Amplitude Perturbations (fmPRC).488

ING rhythm. For a single ING network, we applied a single inhibitory δ-pulse to each neuron489

j = 1, ...N
(ING)
I at time tinh (dashed green line in Fig.1B) and recorded the resulting phase shift ∆ϕ.490

The amplitude of the inhibitory perturbation to each neuron was the same. The phase of the inhibition491

was defined as492

φinh =
tinh − t(unperturbed)firstspike

T
, (4)

where T was the period of the network LFP and t
(unperturbed)
firstspike the time of the first spike in the spike493

volley of the unperturbed network that was closest to tinh. The resulting phase shift ∆φ was given by494

∆φ =

(
t
(unperturbed)
firstspike − t(perturbed)firstspike

)
T

, (5)

where t
(perturbed)
firstspike is the time of the first spike in the corresponding volley in the perturbed network.495

∆φ and φinh were taken to be in the range [−0.5 0.5). Positive ∆φ indicated that the network was496

advanced by the perturbation, while negative indicated a delay.497

The periodic input (‘clock’) that was used to test the synchronizability of the ING-rhythm was gen-498

erated by a homogeneous ING network. The phase of the periodic input in the nth clock cycle was499

defined by500
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Φ
(n)
inh =

(
t
(clock)(n)
firstspike + τd − t(network)(n)

firstspike

)
T

, (6)

where t
(network)(n)
firstspike was the time of the first spike in the spike volley of the network in the nth cycle and501

t
(clock)(n)
firstspike the time of the spike of the clock. In contrast to the definition of φinh in (4), the definition502

of Φ
(n)
inh included the delay τd, since the inhibition generated by the clock arrived with delay τd in the503

network.504

PING rhythm. To probe the phase response of the PING network we used the same approach as505

for the ING rhythm, except that we used excitatory instead of inhibitory δ-pulses and applied them506

only to the E-cells. The phase of the excitation φexc and the resulting phase shift ∆φ were determined507

similarly as in the case of the ING rhythm,508

φexc =
texc − t(unperturbed)firstspike

T
, (7)

∆φ =
(t

(unperturbed)
firstspike − t(perturbed)firstspike )

T
, (8)

where t
(perturbed)
firstspike and t

(unperturbed)
firstspike were the times of the first spike in the respective spike volleys of509

the E-population.510

Analogously to Φ
(n)
inh, the phase of the periodic input in the nth clock cycle was given by511

Φ(n)
exc =

(t
(clock)(n)
firstspike + τd − t(network)(n)

firstspike )

T
. (9)

Throughout, the tonic, Gaussian distributed input to the interneurons in the PING network was fixed:512

I(I) = 36 pA, CV (I) = 0.167.513
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ING network
Parameter Value
τI , membrane time constant 20 ms
urest, resting potential -55 mV
Vpeak, spiking threshold -50 mV
Vreset, reset voltage -60 mV
τd, synaptic delay 3 ms

N
(ING)
I , # of interneurons 500

W , synaptic strength within the
network

7.5× 10−3

W (ext), synaptic strength for the
input from the clock network

1.8× 10−3

Synaptic currents
Parameter Value
τE1 , time constant of rise in excitatory
synapse

0.5 ms

τE2 , time constant of decay in excitatory
synapse

2 ms

τ I1 , time constant of rise in inhibitory synapse 0.5 ms
τ I2 , time constant of decay in inhibitory
synapse

5 ms

V I
rev, reversal potential of inhibitory synapse -70 mV
V E
rev, reversal potential of excitatory synapse 0 mV

PING network
Parameter Value
τE , membrane time constant of
principal cells

20 ms

τI , membrane time constant of
interneurons

10 ms

urest, resting potential -70 mV
Vpeak, spiking threshold -52 mV
Vreset, reset voltage -59 mV
τd, synaptic delay 1 ms

N
(PING)
I , # of interneurons 200

N
(PING)
E , # of principal cells 800

W I , inhibitory synaptic
strength within the network

5.4× 10−3

WE , excitatory synaptic
strength within the network

1.67× 10−3

W (ext), clock-network synaptic
strength

1.6× 10−3

Synaptic conductances
Parameter Value

Excitatory input on principal cells : g
(PING)
ext ,

g
(PING)
bias E

0.19 nS

Excitatory input on interneurons: g
(ING)
bias ,

g
(PING)
syn EtoI , g

(PING)
bias I

0.3 nS

Inhibitory input on principal cells: g
(PING)
syn ItoE 2.5 nS

Inhibitory input on interneurons: g
(ING)
ext ,

g
(ING)
syn

4 nS

Table 1: Parameters used in the model. Most parameters are based on [29,45].
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Figure S1: Dependence of the phase dispersion on the heterogeneity of the bias current. The phase
dispersion was determined as the time difference between the first and the last spike in the same spike
volley normalized by the period. Blue: fixed natural frequency (fnetwork = 40Hz) for different neuronal
heterogeneity. Red: fixed mean input strength (I(I) =15.8 pA) for different neuronal heterogeneity.
For CV ≥ 0.075 (dashed line), some neurons spike more than once in a cycle.

30

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.15.422838doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422838
http://creativecommons.org/licenses/by/4.0/


-0.5 0 0.5
-0.05

0

0.05

0.1

0.15

 

CV = 0
CV = 0.05
CV = 0.1
CV = 0.15
CV = 0.2

Advance

Delay

Figure S2: fmPRC of heterogeneous ING networks for fixed steady current (I(I) =15.8 pA) instead of
fixed frequency (cf. Fig.2A). The paradoxical phase advance increased with neuronal heterogeneity.
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Figure S3: Subharmonic response of the ING rhythm with a longer synaptic delay within the network
(τd = 5 ms) receiving periodic inhibitory input. For each value of the input heterogeneity, the natural
frequency fnetwork was kept constant (fnetwork = 44 Hz) by adjusting the mean input strength I(I).
The range of detuning where increasing heterogeneity induced a type 3 synchronization became wider
compared to Fig.6B, where τd = 3 ms. W (ext) = 1.2× 10−3.

32

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.15.422838doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422838
http://creativecommons.org/licenses/by/4.0/

