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Abstract
Modern analytical techniques enable researchers to collect data about cellular states, before and after perturbations.
These states can be characterized using analytical techniques, but the inference of regulatory interactions that
explain and predict changes in these states remains a challenge. Here we present a generalizable unsupervised
approach to generate parameter-free, logic-based mechanistic hypotheses of cellular processes, described by multiple
discrete states. Our algorithm employs a Hamming-distance based approach to formulate, test, and identify, the
best mechanism that links two states. Our approach comprises two steps. First, a model with no prior knowledge
except for the mapping between initial and attractor states is built. Second, we employ biological constraints to
improve model fidelity. Our algorithm automatically recovers the relevant dynamics for the explored models and
recapitulates all aspects of the original models biochemical species concentration dynamics. We then conclude
by placing our results in the context of ongoing work in the field and discuss how our approach could be used to
infer mechanisms of signaling, gene-regulatory, and any other input-output processes describable by logic-based
mechanisms.

Introduction 1

A mechanistic understanding of dynamic cellular processes is at the core of multiple areas of research including 2

molecular cell biology, physiology, biophysics, and bioengineering [1–6]. Although analytical tools have improved the 3

breadth and depth with which intra- or extra-cellular biochemical processes are explored [7–9], the vast majority of 4

available data is limited to experiments that probe cue-response relationships with a specified set of inputs and 5

outputs. Although significant efforts have been devoted to understand how biochemical interactions link these 6

inputs and outputs, the formulation of mechanistic hypotheses remains a challenging problem which is essential to 7

explain and predict cellular responses to perturbations [10–15]. 8

The Boolean logic formalism, introduced by Kauffmann in 1969 [16] is a simple yet powerful approach to describe 9

gene-regulatory networks, signaling networks, metabolic networks, and many others [17, 18]. In this representation, 10

each node in a network corresponds to a gene or gene-product while each edge corresponds to a Boolean rule or set 11

of rules that describes the interaction between nodes. The system can evolve for a number of discrete steps, where 12

the state of each node (one or zero) is determined by evaluating its associated logic rules at each step. The system 13

is typically evolved for a number of steps using a Markov-chain process until a steady state (aka attractor state) is 14

achieved [19]. These Boolean representations of biochemical reaction networks have yielded important biochemical 15

insights [20–25] and offer a parameter-free alternative to other formalisms where exact parameters may be difficult 16

or impossible to acquire [26,27]. 17

Despite the mathematical simplicity of Boolean logic based biochemical networks, the interaction rules that dictate 18

the dynamics cannot be directly obtained from either experimental data or curated interaction databases [28–30]. 19

For this reason, logic rules enumeration, which comprise a specific mechanism of action, remains a central challenge 20

in Boolean logic modeling. This problem can be found in all areas of biology as well as other areas (e.g. ecology, 21
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control theory) where Boolean modeling is employed. Therefore, our goal is to propose a rigorous methodology to 22

automatically generate Boolean rules, given input and output states, and generate mechanistic hypothesis to link 23

network states within biological constraints in an unsupervised manner. 24

Assembling a Boolean-logic based model from experimental data is most commonly done manually, requiring 25

inference of both the network structure and the Boolean rules. For that purpose data from various sources, 26

including time series data, can be used [31–33]. The attractors obtained from these formalisms are therefore model 27

predictions, given a specified mechanism rather than the inverse problem of formulating a mechanism for a set of 28

observables [31,33]. Although it is desirable to preserve experimentally observed attractors, there is no guarantee 29

for such models that a given initial state necessarily evolves towards the correct steady states [34]. Enforcing such 30

constraints manually is often a tedious and error-prone process. The choice of updating scheme chosen for model 31

evolution can significantly affect the interpretation of model dynamics. For example, synchronous updating schemes 32

may yield network dynamics with no clear biological interpretation [35–38]. By contrast, sequential node updating 33

schemes, such as General Asynchronous, can provide a mechanism with better biochemical correlation [22,39–42]. 34

In this work, we address the problems of mechanism inference in biological processes where input states and 35

attractors are known but the mechanism is unknown. The proposed algorithm constructs both candidate network 36

structure and the corresponding Boolean rules in an unsupervised manner. Our method guarantees that the 37

selected initial states reach their designated steady states, that no spurious steady states are introduced, and 38

that the network logic inferred is compatible with the biological relevant asynchronous updating [34]. In addition, 39

experimentally-observed probability distributions from one initial state to multiple attractor states are preserved 40

by our algorithm – often a biologically important observation. Our algorithm can thus be used for hypothesis 41

exploration, model identification, and mechanism exploration in silico in the context of complex experimental data. 42

Methods & Results 43

The main idea of the proposed algorithm is shown in Figure 1. As input a mapping between each initial state and 44

the corresponding steady states is given. In an asynchronous update, as we consider here, the state of only one 45

species can be changed per step. This means that the Hamming distance of all states that are reachable in the 46

next step is equal to one [43]. We exploit this knowledge to construct paths from each initial value to the reachable 47

steady states, while avoiding paths that lead to incorrect results. This allows us to generate (in general many) 48

candidate networks that satisfy precisely the prescribed mapping. The probability distribution of the steady states 49

can also be specified. This is then used, within a genetic optimization algorithm, to select models which show the 50

same dynamics. At this point, expert knowledge on the network (such as on which species a given rule depends on 51

or specific transitions that should be included) can be incorporated as well. A number of good candidate models 52

are then selected and the corresponding Boolean rules are generated. The algorithm automatically simplifies these 53

results using symbolic manipulation. The algorithm proposed is described in the following sections for two examples: 54

an Enzyme-Substrate kinetics model and an established Epithelial to Mesenchymal Transitions (EMT) epithelial 55

mouse cancer cell metastasis [44,45]. 56

The basic algorithm is explained in some detail for the Enzyme-Substrate kinetics reaction mechanism which is 57

facilitated by the smaller size of that particular problem. However, all the steps in the algorithm (except for the 58

problem specific expert guidance that can be used) have been fully automated and are part of a parallelized hybrid 59

Python/C++ code. Thus, the creation of the Boolean rules is done fully automatically and the detailed enumeration 60

of some of those steps for the Enzyme-Substrate kinetics reaction mechanism problem are only provided as examples 61

to gain a better understanding of the algorithm. For both examples we show how to incorporate expert knowledge 62

into our method. This by necessity is problem dependent and thus different approaches, that should generalize well 63

to many other problems, are explored. 64

Network inference for Enzyme-Substrate dynamics 65

We employ an enzyme-substrate reaction system to demonstrate the details of our approach. In this representation
E is the enzyme, S is the substrate, and P is the resulting product. The enzyme can bind to the substrate
into the complex ES via a specific rate kf and break up into the two species via the rate kr or catalyze the
substrate-to-product reaction, resulting in free enzyme and product according to the chemical equation

E + S
kf



kr

ES, ES
kc→ E + P.
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Fig 1. Schematic depiction of our workflow. Our input data is of the form initial state and corresponding steady
states. If the same initial state is observed to end up in multiple steady states, a probability to reach each steady
state can be prescribed as well. From the initial state to attractor relationship, a network is created, taking into
account every possible connection allowed by an asynchronous updating scheme. We then simulate the network and
compare the resulting probabilities to the specified measurement data. If necessary, we remove transitions from the
network to achieve a better match between the probabilities of the resulting network and the the experimental data.
The result is a system of Boolean rules that describes the network dynamics.

Mathematically, this results in a system of ordinary differential equations (ODEs) with species concentration E, S, 66

ES, and P as well as the three parameters kf , kr, and kc. 67

Our goal is to model the corresponding dynamics using a Boolean network. Boolean networks assume that 68

the species are either present (1) or absent (0), i.e. E,S,ES, P ∈ {0, 1}, and that all reactions are equally likely, 69

i.e. all rate constants are equal to 1. To match this we will also make the assumption that kf = kr = kc = 1 70

in our enzyme-substrate reaction. For the concentrations we will start with either 1 or 0 for each species, but 71

the concentration is allowed to take on fractional values as the reaction dynamics evolve. The results of such a 72

simulation are shown in Figure 2. The initial value to steady state mapping so obtained will be used in this section 73

to automatically construct a Boolean network using the proposed algorithm. The goal of this Boolean network is 74

to recover the dynamics of the ODE simulation. Let us note that in the Boolean model the values of the species 75

are necessarily either 1 or 0. We will, however, interpret the average of the stochastic asynchronous update as a 76

(relative) concentration similar to the one found in the ODE model. 77

For this particular system, we have four species each of which can take on two conditions, for a total of 24 = 16
possible states of the system, namely:

(E,S,ES, P ) = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1),

(0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1),

(1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)}.

For consistency, each tuple represents the species in the order as shown (i.e. the first entry is the E state, the 78

second entry is the S state, the third is the ES state, and the fourth entry is the P state). Once all states have been 79
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Fig 2. Reaction kinetics of an enzyme-substrate system with rate constants kf = kr = kc = 1 and initial
concentrations E = S = 1 and ES = P = 0. The simulation is the solution of the underlying ordinary differential
equation, and the concentrations of the species are therefore still ∈ R[0,1]. The dynamics depicted in this graph is
considered to be the underlying truth that our algorithm tries to recreate with an automatically generated Boolean
logic network.

defined we can analyze the states for biochemical significance. For example, state (0, 0, 0, 0) signifies that no species 80

are present in the system and therefore no chemical reactions can occur. States (1, 0, 0, 0), (0, 1, 0, 0), and (0, 0, 0, 1) 81

similarly have only one of enzyme, substrate, or product present and similarly no chemical reactions can take place. 82

Absence of reactions is also seen in the state (0, 1, 0, 1), since substrate and product do not interact with each other. 83

Removing those states form further considerations leads to a network that treats them as a steady state which can 84

not be accessed by any other state. All other states, however, converge towards the attractor state (1, 0, 0, 1). The 85

first step of our introduced method is to match all initial states to their according steady state represented in Table 86

1. 87

Steady State Initial States
(0, 0, 0, 0) (0, 0, 0, 0)
(0, 0, 0, 1) (0, 0, 0, 1)
(0, 1, 0, 0) (0, 1, 0, 0)
(0, 1, 0, 1) (0, 1, 0, 1)
(1, 0, 0, 0) (1, 0, 0, 0)

(1, 0, 0, 1)
(0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 0, 1), (1, 0, 1, 0),

(1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)

Table 1. Mapping of the initial states to their corresponding steady state. By mapping states to themselves, they
create a steady state for the network that can not be accessed by any other state. Note, that in principle, initial
states can converge towards multiple different steady states. This behavior is captured easily by just adding these
states to all of the corresponding steady state lists.

In the next step, for each attractor, the initial states are sorted according to their Hamming distance from the 88

steady state. The sorting for steady state (1, 0, 0, 1) is listed in Table 2. 89

Based on the asynchronous updating scheme, a state with Hamming distance n will require at least n updates to 90

reach the attractor. We then identify the transitions necessary to build a pathway for each Hamming distance level. 91
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Hamming distance from steady state (1, 0, 0, 1) Initial States
1 (1, 0, 1, 1), (1, 1, 0, 1)
2 (0, 0, 1, 1), (1, 0, 1, 0), (1, 1, 0, 0), (1, 1, 1, 1)
3 (0, 0, 1, 0), (0, 1, 1, 1), (1, 1, 1, 0)
4 (0, 1, 1, 0)

Table 2. Sorting of the initial states according to their Hamming distance from the steady state (1, 0, 0, 1).

We use this information to create a transition map for each species that contains the necessary transformations 92

to reach a given attractor. We achieve this by working our way backwards from each attractor. For example, for a 93

level one (i.e. Hamming distance = 1) transition, the state (1, 0, 1, 1) needs to flip the third bit (the bit for ES) to 94

reach the attractor (1, 0, 0, 1). Similarly the state (1, 1, 0, 1) needs to flip the second bit (the bit for S) to reach 95

the attractor (1, 0, 0, 1). Therefore, the transition lists for S and ES will be updated with the states (1, 1, 0, 1), 96

and (1, 0, 1, 1) respectively. We do the same for level 2 (i.e. states with Hamming distance=2), as well as for all 97

other levels and extend the lists accordingly. The full sorting can be found in Table 3. Note, that for a system with 98

multiple attractors, each attractor gets a similarly created list. 99

species list for d = 1 list for d = 2 list for d = 3 list for d = 4
E (0, 0, 1, 1) (0, 0, 1, 0), (0, 1, 1, 1) (0, 1, 1, 0)
S (1, 1, 0, 1) (1, 1, 1, 1) (0, 1, 1, 1), (1, 1, 1, 0) (0, 1, 1, 0)
ES (1, 0, 1, 1) (1, 1, 1, 1) (1, 1, 1, 0)
P (1, 0, 1, 0), (1, 1, 0, 0) (0, 0, 1, 0), (1, 1, 1, 0) (0, 1, 1, 0)

Table 3. List of transitions for each species that make up the network pathways sorted by their Hamming distance
d to the steady state (1, 0, 0, 1). Note, that a state can reach the steady state in multiple ways. It is therefore
possible to have the same initial assigned to multiple species.

A graphic representation for the corresponding pathways can be found in the transition graphs Figures S1 and 100

S2 in the supplementary material. 101

This list includes all the necessary transitions for each species to reach a given attractor. In a system with 102

multiple steady states, this algorithm has to be performed for each attractor. 103

With the transition list, we can then infer the Boolean rules to update each species according to its associated 104

transition list. This is done by translating every transition state via the logical operator AND (∧) and connecting 105

each of the transition states from Table 3 via a the logical OR (∨) operator. An exclusive XOR (Y) with the active 106

species ensures that the species activates only with the states from the given list. In our example, the inferred 107

Boolean rules are written as: 108

109

110

rule for E:

((E ∧ S ∧ ES ∧ P ) ∨ (E ∧ S ∧ ES ∧ P ) ∨ (E ∧ S ∧ ES ∧ P ) ∨ (E ∧ S ∧ ES ∧ P )) Y E,

which simplifies to:

E ∨ ES

The same procedure for the other species results in the following rules

rule for S:
((E ∧ S ∧ ES ∧ P ) ∨ (E ∧ S ∧ ES ∧ P ) ∨ (E ∧ S ∧ ES ∧ P ) ∨ (E ∧ S ∧ ES ∧ P )

∨(E ∧ S ∧ ES ∧ P )) Y S = (E ∧ S ∧ ES) ∨ (S ∧ ES ∧ P )

rule for ES:

((E ∧ S ∧ ES ∧ P ) ∨ (E ∧ S ∧ ES ∧ P ) ∨ (E ∧ S ∧ ES ∧ P )) Y ES = (E ∧ ES) ∨ (S ∧ ES ∧ P )
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rule for P :
((E ∧ S ∧ ES ∧ P ) ∨ (E ∧ S ∧ ES ∧ P ) ∨ (E ∧ S ∧ ES ∧ P ) ∨ (E ∧ S ∧ ES ∧ P )

∨(E ∧ S ∧ ES ∧ P )) Y P = (E ∧ S) ∨ ES ∨ P

Dynamic behavior of the forward-only (ES-F) network 111

The described way to obtain Table 3 only includes the transitions in one direction (from initial state to steady state)
and therefore qualifies as "forward-only" network that does not allow for transitions that step backwards away from
the steady state. The automatically created network evaluating forward-only interactions results in the following set
of update rules

E∗ = E ∨ ES
S∗ = (E ∧ S ∧ ES) ∨ (S ∧ ES ∧ P )
ES∗ = (E ∧ ES) ∨ (S ∧ ES ∧ P )
P ∗ = (E ∧ S) ∨ ES ∨ P.

The generated network structure of the forward network is depicted in Figure 3 top left. Using the General 112

Asynchronous updating scheme [39, 40,42] for the initial state (1, 1, 0, 0) for 100 simulations yields the result shown 113

in Figure 3 on the top right. The depicted initial condition is the same as we have used for the kinetic simulation in 114

Figure 2 to compare and judge the quality of our result. 115

The kinetic model in Figure 2 depicts concentrations of the species in the system, i.e, E,S,ES, P ∈ R≥0. Since 116

this is not possible for a Boolean simulation, where E,S,ES, P ∈ {0, 1}, to capture the overall dynamics of the 117

network, multiple simulations have to be performed. The random nature underlying the General Asynchronous 118

updating scheme results in different pathways taken by each simulation. Looking for each species at the fraction 119

of how many simulations are 0 or 1 at each simulation step allows us to capture dynamics similar to the kinetic 120

description. 121

As we can see, the correct steady state is achieved. However, in these dynamics the enzyme never gets bound to the 122

substrate, but substrate is directly convert into the product. The middle part of the enzyme-substrate kinetics is 123

thus omitted. This is clearly not the desired dynamics. 124

A look at the graphic representation of the network as depicted in Figure 3, top left, gives us further insight 125

into this problem. We can see that by our basic construction, we only allow the direct "forward" pathway for the 126

network: The state (1, 0, 0, 0), i.e., the state where substrate is consumed has not been included into the network 127

and therefore, the only possibility of our initial state to change is the creation of the product into the state (1, 1, 0, 1). 128

This state has also no other path than directly go to the final state (1, 0, 0, 1), i.e., consume the substrate. However, 129

no circulation or other dynamics are allowed in this network. Michaelis Menten kinetics, however, are only a simple 130

example that already demonstrates, that circulation within the pathways are an important biological factor of 131

networks. 132

We therefore propose to extend our method to include the backward pathways into the network as well. 133

Backward dynamic paths to enable dynamic loops (ES-B) 134

The list from Table 3 only accounts for transitions in the forward direction towards the attractor. By extending the
corresponding lists to include the backward transitions, we generate a new rule-set that extends to a new network
including all possible backward pathways as well. Note, however, that we can only include backward pathways
starting with level 1 and higher. Including a backward path for level 0, i.e., the attractor, means that the simulation
can leave this state and it therefore would be no longer be a steady state.
Using the extended transition sets and the same translation into updating rules, we obtain

E∗ = (E ∧ ES) ∨ (E ∧ ES)
S∗ = (S ∧ ES) ∨ (E ∧ S ∧ ES) ∨ (S ∧ ES ∧ P )
ES∗ = (E ∧ ES) ∨ (E ∧ S ∧ ES) ∨ (S ∧ ES ∧ P )
P ∗ = (ES ∧ P ) ∨ (E ∧ S ∧ P ) ∨ (E ∧ ES ∧ P ) ∨ (S ∧ ES ∧ P ).

The network structure and simulation results for this rule-set and the initial state (1, 1, 0, 0) is depicted in the 135

middle row of Figure 3 on the left. 136

The network depiction now demonstrates, that all paths in the network are now enabled. I.e., the state (1, 1, 0, 0) 137

can also transition into (1, 1, 1, 0), which means that the product ES is generated. We observe, that the simulation 138
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Fig 3. Boolean networks created by our proposed rules generator (left) for the enzyme-substrate mechanics and
their resulting dynamics after 100 asynchronous updating simulations for the initial state (E,S,ES, P ) = (1, 1, 0, 0)
(right). The first row depicts the resulting network from the forward-only pathways network (ES-F), the second row
the network including backward paths (ES-B), and the third row the network including expert knowledge (ES-E).
For the network representation, the pathway for state (1, 1, 0, 0) to reach the steady state is highlighted in green.
The darker the arrow, the more simulation steps are necessary to reach this particular transition in principle.
For the dynamics plots, the fraction of 100 simulations of the asynchronous updating scheme that are on/off is
shown on the y-axis. The x-axis represents the number of simulation steps it takes to reach the steady state.
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now both consumes enzyme and creates the complex ES before the attractor is reached. The dynamics, depicted in 139

the middle row of Figure 3 on the right, match the ground truth from Figure 2 well. We can also see, that it takes 140

noticably longer for all simulations to reach their overall attractor. This makes sense, since backward paths also 141

enable simulations to loiter in loops. 142

Reduction of logic-rule search space with experimental data (ES-E) 143

Both networks described above are created by automatically mapping initial states to their corresponding attractor
without any additional knowledge. Due to the construction of our method, however, it is straightforward to include
expert knowledge into the dynamics as well.
Let us for example look back at the construction of our first network. We have noted that in this case we omit
the pathway for the creation of the complex ES. We are, however, aware that this part is a necessary step of the
dynamics. In this example, we therefore propose to start with the forward-pathway network and add the transitions
for (1, 1, 0, 0) to (1, 1, 1, 0), as well as the resulting consumption of E, namely the transition from (1, 1, 1, 0) to
(0, 1, 1, 0) to the corresponding transition list.
The resulting ruleset is

E∗ = (ES ∧ P ) ∨ (E ∧ ES) ∨ (E ∧ ES) ∨ (S ∧ ES)
S∗ = (E ∧ S ∧ ES) ∨ (S ∧ ES ∧ P )
ES∗ = (E ∧ ES) ∨ (S ∧ ES ∧ P ) ∨ (E ∧ S ∧ ES ∧ P )
P ∗ = (E ∧ S) ∨ ES ∨ P

and in Figure 3 bottom, we see the resulting network (left) and the corresponding simulation for the initial state 144

(1, 1, 0, 0) (right). Since we only added the absolute minimum necessary to create ES, most of the loops from the 145

backward pathways model are omitted and the simulation reaches the steady state in a similar time frame as the 146

simulation with the forward pathways only while also capturing some of the dynamics of the ES creation and E 147

consumption. 148

Note, that in this case we manually added transitions to the network we judged feasible. We also provide the option 149

to exclude transitions that the user is certain are biologically unfeasible. 150

Our implementation enables the user to start with either the forward-path network, or the full backward path 151

including network from which transitions can be added or removed as seen fit. Note, however, that not all removals 152

are valid to keep the network dynamics: adding and/or removing random transitions could result in the following 153

problems: 154

1. adding a transition that leads directly away from the attractor will result in a loss of this attractor as a steady 155

state 156

2. adding a transition could create a pathway to the wrong attractor 157

3. removing a transition could make it impossible for a state to reach its attractor 158

Since the full backward path network includes all possible pathways between all nodes in the network, for an 159

unknown process, we recommend to start with the full backward path network and start strategically removing 160

transitions from there. This way, we can be certain that the necessary network connections are present, while 161

we only need to assure that point 3. of the list is not violated. Note, however, that due to the many loops that 162

are created in this network, more steps are required by the asynchronous updating scheme before equilibrium is 163

achieved. 164
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Application to an established model: Epithelial to Mesenchymal Transitios (EMT) in 165

cancer cell metastasis 166

To demonstrate our mechanism inference approach in a real-world system, we infer the Boolean logic mechanism for
the EMT transition observed in [44,45]. The ruleset for the reference EMT model is:

NICD∗ = Notch ∧ TP63_TP73 ∧ TP53
Notch∗ = ECM ∧miRNA
TP53∗ = (DNAdam ∨NICD ∨miRNA) ∧ EMTreg ∧ TP63_TP73

TP63_TP73∗ = DNAdam ∧miRNA ∧NICD ∧ TP53
miRNA∗ = (TP53 ∨ TP63_TP73) ∧ EMTreg
EMTreg∗ = NICD ∧miRNA
ECM∗ = ECM

DNAdam∗ = DNAdam

The system comprises six species NICD, Notch, TP53, TP63_TP73, miRNA, and EMTreg. ECM and DNAdam 167

are input parameters that do not change during the simulation. For example, the model has been used in [44] to 168

investigate the effect of Notch upregulation and TP53 deletion. The model captures the EMT dynamics triggered 169

by TP53 deletion and Notch activation, and the interplay between multiple interactions that lead to mesenchymal 170

behavior in epithelial mouse cells. Such mechanism are also common in many other cancers. 171

Let us now assume, that this set of rules is the underlying truth for our mechanism inference algorithm, and therefore 172

refer to the model as EMT-O (original). We have generated reference data by running the asynchronous updating 173

simulator 100 times for each of the 28 = 256 states and recorded the steady state for each run. We use this data, to 174

automatically infer a set of rules. 175

Table 4 summarizes the so obtained results. 176

(ECM,DNAdam) SS frequency

(0,0) (0,0,0,0,0,0,0,0) 0.61
(0,0,1,0,1,0,0,0) 0.39

(0,1) (0,0,1,0,1,0,0,1) 1.0

(1,0) (0,0,1,0,1,0,1,0) 0.52
(1,1,0,0,0,1,1,0) 0.48

(1,1) (0,0,1,0,1,0,1,1) 0.79
(1,1,0,0,0,1,1,1) 0.21

Table 4. Summary of the asynchronous updating results for the EMT model from [44] after 100 asynchronous
updating simulations for each of the 256 possible initial states. The order of species is
(NICD,Notch,TP53,TP63_TP73,miRNA,EMTreg,ECM,DNAdam). The network splits into four mutually
exclusive sub-networks depending on the two parameters ECM and DNAdam. Initial states for three of those
sub-networks can run into two different attractors with varying frequency.

Since ECM and DNAdam are parameters and can not change during the simulation, the network naturally
divides into four mutually exclusive sub-networks depending on the parameter inputs

(ECM,DNAdam) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

Each of those sub-networks contains the 64 states with the corresponding parameters fixed in each. In three of the four 177

networks, the data suggests that initial states can run into two different steady states. A closer inspection reveals, 178

that the system has in total three different attractors: (NICD,Notch,TP53,TP63_TP73,miRNA,EMTreg) = 179

(0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 1, 0), or (1, 1, 0, 0, 0, 1). Note, however, that for our method we treat the parameters as 180

species and therefore work with seven different attractors. A schematic depiction of the resulting four sub networks 181

divided by the corresponding parameter set can be found in the file states_to_remove.pdf. The input file for our 182

method consists of a list for every one of the 256 states and their corresponding attractors. 183

We can now run the Boolean rules generator described in the previous section. Due to the many species involved 184

in this system, we do not expect our method to produce rules that are short and easily understandable (at least 185

not without additional constraints). However, they are created automatically and we could immediately put the 186

generated rule-set into the asynchronous simulator and analyze the inferred model. 187
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In the supplemental Figures S3, S4, S5, and S6, we depict the four generated subnetworks determined by the four 188

different parameter options generated by our method. The blue lines are transitions that are captured in the original 189

model (EMT-O) [44] as well as our forward path model (EMT-FW). The orange lines are transitions that are 190

captured by EMT-FW but not EMT-O. The green lines are transitions that are not captured by EMT-FW, but are 191

added by the backward model (EMT-BW). We want to point out, that EMT-O introduced some states that are 192

part of a dual-attractor network, but only reach one of the steady states (denoted with the bright blue lines). Our 193

implementation recognizes those states and successfully treats them in the same way. 194

In the supplementary Figure S4, we can observe the difference between EMT-FW and EMT-BW for a network with 195

a single steady state more clearly. Due to the large number of species, the inter-connectivity between the states 196

results in backward transitions even in EMT-FW (thus a forward connection for one rule can act as the backward 197

connection for another). The difference between the two networks only occurs between level 1 and level 2 of the 198

distance to the steady state. Note, that for some states, EMT-O includes these transitions that are not captured by 199

EMT-FW. 200

Comparison between data and automatically created networks 201

Since the construction of EMT-BW includes all possible transitions under the asynchronous updating scheme, we 202

need to remove particular transitions to recapture EMT-O. In the supplementary file states_to_remove.pdf, we 203

list the full list of transitions to be removed from EMT-BW to capture the original EMT model, and depict the 204

resulting network graph separated by the corresponding parameter set. In Table 5, we summarize the transitions by 205

counting how many of them to remove from EMT-BW to obtain the original model. 206

(ECM,DNAdam) NICD Notch TP53 TP63_TP73 miRNA EMTreg
(0,0) 32|61 32|61 32|56 32|56 28|56 24|57
(0,1) 32|63 32|63 32|63 28|63 36|63 24|63
(1,0) 32|62 32|62 32|59 32|59 28|59 24|59
(1,1) 32|60 32|62 32|57 28|57 32|60 24|57

52.03% 51.61% 54.47% 51.06% 52.1% 40.68%
Table 5. Summary of transitions assigned to each network. Each species in each sub-network has a number of
transitions. The number on the left is the number of transitions for EMT-O, the number on the right is the number
of transitions for the backward pathway model generated by our tool. The last row denotes the percentage for all
four sub-networks in total.

The numbers on the left denote the number of transitions for EMT-O, while the numbers on the right are the 207

corresponding numbers of transition we obtain with the backward rule generator. These numbers confirm our 208

suspicion, that our generated rules include about twice as many transitions as EMT-O. 209

210

Let us now look at some simulation results. In Figure 4, we depict the dynamics of two initial states 211

(NICD,Notch,TP53,TP63_TP73,miRNA,EMTreg,ECM,DNAdam) = (0, 0, 0, 0, 0, 0, 1, 0), and (0, 1, 0, 0, 0, 1, 0, 0) 212

for the original model (row 1), and EMT-BW (row 2). For the first initial condition, EMT-O reaches the steady 213

state (1, 1, 0, 0, 0, 1, 1, 0) more than half the time and the steady state (0, 0, 1, 0, 1, 0, 1, 0) less than half the time. For 214

EMT-BW this dynamics is exactly reversed. For the second initial state reaching the attractor (0, 0, 1, 0, 1, 0, 0, 0) is 215

significantly less likely in EMT-O than in EMT-BW, but qualitatively the correct behavior is obtained. 216

To get a broader view, we extended Table 4 by the according frequencies for our automatically created systems 217

in Table 6. We can see that the subnetwork (ECM,DNAdam) = (1, 0) experiences a trend towards steady state 218

(1, 1, 0, 0, 0, 1, 1, 0) for the systematic approach, where for EMT-O, both steady states of the subnetwork are reached 219

about the same number of times. For the other three subnetworks, the frequencies to enter into a given steady state 220

generally match well with EMT-O. 221

Automated model selection 222

Our automatic rule-creation method does not take the time evolution of the system into account. It is therefore not 223

surprising, that our results experience some qualitative differences between the input model and our created models. 224

If, however, a model predicts the majority of a cell fate as death, when the experiment clearly states the majority as 225

survival, the model is very restricted in its usefulness. In this section, we therefore propose an automatic model 226

selection algorithm to find a model that agrees better with the underlying data. 227
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Fig 4. Comparison between EMT-O and some of our automatically created rulesets (EMT-BW, EMT-C, EMT-E).
Initial state (0, 0, 0, 0, 0, 0, 1, 0) has the two attractors (0, 0, 1, 0, 1, 0, 0, 0) and (1, 1, 0, 0, 0, 1, 1, 0) (left column). The
initial state (0, 1, 0, 0, 0, 1, 0, 0) converges towards the two attractors (0, 0, 1, 0, 1, 0, 0, 0) and (0, 0, 0, 0, 0, 0, 0, 0) (right
column). On top, we depict the dynamics of the original model EMT-O. From row 2 to row 3 and 4, we include the
more and more sophisticated automatically created network (EMT-BW, EMT-C, and EMT-E, respectively).
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(ECM,DNAdam) SS EMT-O EMT-FW EMT-BW

(0,0) (0,0,0,0,0,0,0,0) 0.61 0.51 0.52
(0,0,1,0,1,0,0,0) 0.39 0.49 0.48

(0,1) (0,0,1,0,1,0,0,1) 1.0 1.0 1.0

(1,0) (0,0,1,0,1,0,1,0) 0.52 0.73 0.72
(1,1,0,0,0,1,1,0) 0.48 0.27 0.28

(1,1) (0,0,1,0,1,0,1,1) 0.79 0.78 0.77
(1,1,0,0,0,1,1,1) 0.21 0.22 0.23

Table 6. Summary of the asynchronous updating results after 100 asynchronous updating simulations for each of
the 256 possible initial states. The numbers on the right hand side are frequencies that the simulation reaches the
corresponding steady state for the EMT model from [44], EMT-FW, and EMT-BW, respectively. The order of
species is (NICD,Notch,TP53,TP63_TP73,miRNA,EMTreg,ECM,DNAdam).

If we start with the backward pathway model, we already cover all possible connections in the system. From Table 228

5, we know that we would need to remove about half of the connections from each network. This, however, is 229

information taken from the underlying truth and can not be assumed as knowledge in a real experiment. 230

Our hypothesis is, that by removing a transition from the pathway towards an attractor, the initial state has to take 231

a "detour" through the network to reach the attractor, thus making it less likely to reach this particular steady state, 232

and more likely to move towards the other one instead. Due to the highly interconnected structures of our networks, 233

however, we are aware that by removing the transition for one state to make it harder to reach an attractor, we 234

might involuntarily also affect states that are supposed to reach the attractor more often. Therefore, a gradient 235

based optimization will not perform well. 236

We chose a genetic optimization algorithm instead and extended our implementation by an option to randomly 237

remove a number of transitions from the transition lists of each species. After gathering all the transitions created 238

by EMT-BW and before we translate the transition lists into the ruleset, we randomly remove entries from those 239

lists. The number of transitions to remove is the parameter that our optimizer chooses in order to improve the 240

frequencies of the steady states. 241

This setup leads to a couple of difficulties. 242

1. By randomly removing transitions, we could violate point 3 of our problem list above and remove the pathway 243

necessary to reach the attractor at all. Before we remove any transition from a species list, we therefore first 244

check, if removing this transition is legal. Only if the reachability check answers TRUE, the transition will be 245

removed from the list. We therefore ensure that the initial states will always be able to reach their attractors. 246

These checks, however, extend the runtime for the creation of each model. Furthermore, we do not always 247

remove the number of transitions proposed by the optimizer. If, for example, the optimizer proposes to remove 248

50 transitions and the algorithm can only find 40 valid transitions to remove, it will stop at the removal of 40 249

transitions, while still registered as a model with 50 transitions removed. 250

2. Due to the randomness of the removal, it is not enough to only create one model according to the suggested 251

number of transition removals. In a genetic optimizer, every generation consists of multiple individuals that 252

suggest their own number of transitions to remove. One of the individuals might have found the perfect 253

number, however, the randomly selected transitions might be a bad choice and thus result in a bad fit. To 254

avoid this, each individual of the algorithm does not only simulate one model, but multiple models with the 255

same number of transitions removed. 256

A genetic algorithm consists of a number of individuals called a generation. After each individual computes its 257

fitness, a selection process decides how to pick individuals to mate with each other and produce two new individuals 258

according to the selected crossover. Some parts of the new individuals also get mutated according to the given 259

mutation percentage. 260

For our optimization, our algorithm is based on the software package DEAP [46] using the build-in toolboxes for 261

crossover, mutation, and selection. 262

We initialize 150 individuals as lists of random numbers between 0 and 1, denoting the number of transitions to 263

be removed. Then, each individual uses its list of numbers to create 50 models that differ from each other by the 264

randomness of the transition removals. Each of these models then runs 100 asynchronous updating simulations for 265

each of the 256 initial states. It gathers the resulting frequencies of each state and compares it with the corresponding 266

frequencies of the experimental data (i.e., the data taken from the model from [44]). The root mean square error 267
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(RMS) is computed by taking the difference between each of the corresponding frequencies. The fitness for each 268

individual is the smallest RMS from the 50 simulations. 269

The detailed parameter setup of DEAP for our simulation can be found in the supplementary Table S1. In the 270

supplementary Figure S7, we see the development of the RMS over 90 generations. This simulation creates a total 271

of 150× 50× 90 = 675000 models.We identify the smallest RMS at the 86th generation with a value of 12.68. This 272

will be from now on referred to as model EMT-C. A similar RMS of 12.76 can be found at generation 40 (EMT-B), 273

which is less than half of the full simulation. As a third point of interest, we chose a relatively early model found at 274

generation 7 with an RMS of 13.14 (EMT-A). 275

Model selection using expert knowledge 276

The above introduced model selection is the most general version with the least amount of knowledge input possible. 277

In this section, we decrease the state space of models by adding expert knowledge to the interference process. 278

Often the network structure (i.e. the dependence of a rule on other species) is known, or at least suspected. In our 279

situation, the rule for NICD, e.g., displays a dependency to Notch, TP63_TP73, and TP53, but not to miRNA, 280

EMTreg, ECM, or DNAdam. We now assume here that we know the dependencies for each node. In other words, 281

the expression of our new rule set is no longer allowed to include the dependency of a species that it does not depend 282

on in the original rule set. For this task, we take a closer look into how the ruleset is formulated from the transition 283

states that have been determined by our model creator. Similar to the automated model selection from the previous 284

section, we select our new network by legally discarding transitions. In this case, however, we do not randomly 285

choose a set, but exploit the fact that (x∧ y ∧ z)∨ (x̄∧ y ∧ z) = y ∧ z. I.e., if we want to eliminate a dependency of a 286

variable, we need to eliminate each transition that does not include its symmetric counter part in the transition list. 287

This method assures a non-dependency of the right hand side on the chosen species. Note, however, that our rules 288

are formulated by species∗ =

( ∨
transitions

transition state
)
Y species. Due to the XOR operation, we need to treat 289

the self-dependency in the opposite matter. While for the elimination process of the other species we want to make 290

sure that the symmetric counter parts are all present in the transition list, to ensure non self dependency we want 291

to make sure that only one state of the two counter parts is present. In this step we need to be careful to ensure the 292

symmetry from the step before. Let us, e.g,. assume that we want to create the first rule for species A for a list of 293

five species (A,X, Y, Z,W ), that only depends on the second and third species X and Y . Let us further assume, 294

that the last two species, Z and W , have been eliminated form the formulation by only keeping the symmetric 295

counterparts of each transition state in the list. In addition, both states (0, X, Y, Z,W ) and (1, X, Y, Z,W ) are in 296

the transition list. We therefore need to eliminate one of those states. The algorithm needs to choose, whether to 297

eliminate the transition, where the first species is in state 0, or in state 1. Both choices lead to a correct network. 298

However, to guarantee the symmetry, for a fixed pattern of X and Y , the same choice has to be made. The selection 299

process is detailed in Algorithm 1. 300

Due to the non-unique choice of the asymmetric elimination process taking place for the self-elimination, this 301

algorithm leads once again to multiple possibilities of the network structure. In Table 7, we give an overview of the 302

species to eliminate and the resulting number of possibilities for each rule. 303

From there we can see, that the rule for Notch and EMTreg are both unique. There are, however, still > 8e6 304

network possibilities for the rule for TP53 alone. This method still leads to a total of 16×1×8388608×256×32×1 > 305

1e12 possible networks to choose from. We therefore used again the DEAP algorithm to optimize for the frequencies 306

of the steady states. For the list of the used DEAP parameters see the supplementary Table S1. In the supplementary 307

Figure S8, we show the results for running the optimization over 25 generations using a population of 150 individuals. 308

We already reach an RMS of 7.45 at generation 14, however, the smallest RMS achieved in this optimization is 7.44 309

at generation 20. This is the model that we use as expert guided model (EMT-E) in the following analysis. Note, 310

that for this optimization, there was no additional random choice necessary. This simulation therefore produced 311

150× 25 = 3750 models, where some of them are equivalent. 312
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start with all possible transitions EMT-BW;
while select species to make rule for do

while select species that must not be part of the rule, except self reference do
if symmetric counterpart not in transition list then

eliminate transition from list
else

keep both transitions in list
end

end
if both symmetric counterparts regarding the selected species are in the transition list then

choose a pattern for the non-eliminated species;
decide the state of the species to remove (either 0 or 1);
for every transition state of the same pattern, eliminate the transition where the species is in the
chosen state;

else
keep the transition

end
end

Algorithm 1: Model selection using biological insight.

rule species to eliminate possible number of resulting networks
NICD NICD, miRNA, EMTreg, ECM, DNAdam 16
Notch NICD, Notch, TP53, TP63_TP73, EMTreg, DNAdam 1
TP53 Notch, TP53, ECM 8388608

TP63_TP73 Notch, TP63_TP73, EMTreg, ECM 256
miRNA NICD, Notch miRNA, ECM, DNAdam 32
EMTreg Notch, TP53, TP63_TP73, EMTreg, ECM DNAdam 1

Table 7. Overview of model selection for the expert knowledge guided variant.

The resulting rule set for this choice is

NICD∗ = (Notch ∧ TP53 ∧ TP63_TP73)
∨(Notch ∧ TP53 ∧ TP63_TP73)

Notch∗ = ECM ∧miRNA
TP53∗ = (DNAdam ∧ EMTreg ∧miRNA ∧NICD ∧ TP63_TP73)

∨(DNAdam ∧ EMTreg ∧miRNA)
∨(DNAdam ∧ EMTreg ∧NICD)
∨(DNAdam ∧miRNA ∧NICD)

∨(DNAdam ∧NICD ∧ TP63_TP73)
∨(DNAdam ∧ EMTreg ∧miRNA ∧NICD)
∨(EMTreg ∧miRNA ∧ TP63_TP73)

∨(EMTreg ∧miRNA ∧NICD ∧ TP63_TP73)
∨(EMTreg ∧NICD ∧ TP63_TP73)

TP63_TP73∗ = False
miRNA∗ = EMTreg ∧ TP53
EMTreg∗ = NICD ∧miRNA
ECM∗ = ECM

DNAdam∗ = DNAdam

As we can see, the unique possibilities of the model selection for Notch and miRNA result in the correct rule 313

expression. Setting TP63_TP73 to False is correct from a mathematical point of view (all attractors have this 314

species at 0). This is a choice out of 256 possibilities and is valid given the system constraints imposed on the model 315

selection. This rule could be made more biologically relevant by imposing additional expert knowledge, if desired. 316

Due to the > 8e6 possible formulations for TP53, the convoluted formulation is not very surprising. The randomly 317
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chosen models from the model optimizer above, as well as the original EMT-FW and EMT-BW models have even 318

longer and more convoluted terms, which is why we do not represent the rulesets themselves in this paper. The 319

rules for NICD and miRNA are very close to the ones from the original paper. 320

Analysis of the different models 321

In Figure 4, we can observe how the optimizers gradually improves the model. While EMT-BW produces some 322

qualitatively wrong dynamics, EMT-C converges towards the correct dynamics. EMT-E captures the dynamics 323

nearly perfectly. For a full comparison of the dynamics of all initial values, we refer the reader to the additional files 324

comp_SS1.pdf, comp_SS2.pdf, comp_SS3.pdf, comp_SS4.pdf. To get an overall idea of how the dynamics of the 325

states develop, we extend Table 6 by the frequencies resulting from the three models with EMT-A, EMT-B, and 326

EMT-C, as well as the result for the expert knowledge guided optimization EMT-E, respectively in Table 8. As we 327

have observed before, the steady state for the parameter set (ECM,DNAdam) = (0, 0) for the EMT model is biased 328

towards the first state (NICD,Notch,TP53,TP63_TP73,miRNA,EMTreg,ECM,DNAdam) = (0, 0, 0, 0, 0, 0, 0, 0) 329

with approximately 60%. Both the EMT-FW and EMT-BW, as well as our first selected model EMT-A are very 330

close in their behavior to 50%. With an RMS < 13 (EMT-B, EMT-C, EMT-E), the models, however, capture the 331

bias towards the first steady state with 60% very similar to EMT-O. 332

(ECM,DNAdam) SS EMT-O EMT-FW EMT-BW EMT-A EMT-B EMT-C EMT-E

(0,0) (0,0,0,0,0,0,0,0) 0.61 0.51 0.52 0.59 0.66 0.6 0.63
(0,0,1,0,1,0,0,0) 0.39 0.49 0.48 0.42 0.34 0.4 0.37

(0,1) (0,0,1,0,1,0,0,1) 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(1,0) (0,0,1,0,1,0,1,0) 0.52 0.73 0.72 0.5 0.5 0.5 0.5
(1,1,0,0,0,1,1,0) 0.48 0.27 0.28 0.5 0.5 0.5 0.5

(1,1) (0,0,1,0,1,0,1,1) 0.79 0.78 0.77 0.75 0.76 0.77 0.8
(1,1,0,0,0,1,1,1) 0.21 0.22 0.23 0.25 0.24 0.23 0.2

Table 8. Summary of the asynchronous updating results after 90 asynchronous updating simulations for each of
the 256 possible initial states. The numbers on the right hand side are frequencies that the simulation reaches the
corresponding steady state for the EMT model from [44]. This is an extension to Table 6 with the inclusion of the
three selected models from the genetic optimizer EMT-A, EMT-B, and EMT-C, respectively. Furthermore, we
include the model found by the expert knowledge guided optimization EMT-E.

Contrary to the predictions of EMT-FW and EMT-BW, that bias the steady states of the parameter set 333

(ECM,DNAdam) = (1, 0) towards the steady state 334

(NICD,Notch,TP53,TP63_TP73,miRNA,EMTreg,ECM,DNAdam) = (0, 0, 1, 0, 1, 0, 1, 0) with 70%, all of our 335

selected model keep the ratio of approximately 50% towards both steady states similar to the EMT results. 336

The bias observed for the parameter set (ECM,DNAdam) = (1, 1) towards the steady state 337

(NICD,Notch,TP53,TP63_TP73,miRNA,EMTreg,ECM,DNAdam) = (0, 0, 1, 0, 1, 0, 1, 1) is observed by all the 338

models. 339

Looking at the dynamics for parameter set (ECM,DNAdam) = (1, 0), we immediately see the effect of the optimizer 340

finding the trend of no bias towards a steady state compared with the non-optimized models. In Figure 5, we look 341

into the distributions of the models according to Table 8. We only depict one of the steady states, since the other 342

state would only be a complement to the corresponding figure. 343

The Kolmogorov-Smirnov test tries to evaluate, whether two data sets are drawn from the same distribution. A 344

small p-value therefore hints towards two different distributions underlying the data sets. In Figure 5, we see for the 345

subnetwork (ECM,DNAdam) = (0, 0), that the distributions of EMT-FW and EMT-BW hint towards a different 346

underlying distribution, than the data drawn from EMT-O. The generally selected models with EMT-A, EMT-B, 347

and EMT-C have a relatively large p-value and therefore hint towards a similar distribution to the data for EMT-O. 348

For the expert knowledge guided selected EMT-C model, the p-value is close to 1, and therefore we have obtained 349

excellent agreement. 350

A similar behavior can be observed for the subnetwork (ECM,DNAdam) = (1, 0). However, the p-values for 351

EMT-FW and EMT-BW are even smaller, while for the optimized models, the p value is relatively large. This 352

means that performing the optimizing is more important for this subnetwork. 353

For the subnetwork (ECM,DNAdam) = (1, 1), we see that EMT-FW and EMT-BW give a relatively large p-value 354

compared to the other two subnetworks - they can still be considered small, however, far from significant. These 355
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models, therefore, might already give a decent approximation to the underlying data set. The optimization, in this 356

case, actually gives a worse result for the models EMT-A and EMT-B. The effect of the optimization for EMT-C 357

and EMT-E are not as strong as for the other subnetworks, both optimization results, however, can still be seen as 358

an improvement to EMT-FW and EMT-BW. 359

360

Fig 5. Frequency distribution of the states divided by the corresponding subnetworks. The second steady state for
each of those subnetworks is omitted, since it is the complement of the depicted plots here. The noted p-value is
taken from a Kolmogorov-Smirnov test between the distribution of frequencies between the original model EMT-O
and EMT-FW, EMT-BW, EMT-A, EMT-B, EMT-C, and EMT-E, respectively. The left figure depicts the
distribution of all states that can reach the attractor (00000000). The figure in the middle depicts the distribution
of all states that can reach the attractor (00101010). The figure on the right depicts the distribution of all states
that can reach the attractor (00101011).

The dynamics for all models discussed in this chapter for steady state 1, 2, 3, and 4 can be found in the 361

files comp_SS1.pdf, comp_SS2.pdf, comp_SS3.pdf, comp_SS4.pdf, respectively. Note, that for steady state 362

(ECM,DNAdam) = (0, 1) (file comp_SS2.pdf), the initial states all converge towards a single attractor. Since the 363

corresponding steady state is unique, EMT-BW, EMT-A, EMT-B, and EMT-C are equivalent (up to random 364

fluctuations in the stochastic solver). 365

To summarize those findings, we look at Figure 6, where we explore in detail the differences between EMT-O 366

and our automatically generated models. In the first category < 10, we include all the states that are within 10% of 367

the EMT model. If a state, e.g., in EMT-O reaches a steady state 70%, and our selected model reaches the same 368

state 65% of the time, we compute the distance using 70− 65 = 5. A distance of 5 is smaller than 10 and thus can 369

be considered as a good state that represents a similar behavior than EMT-O. 370
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Fig 6. Accuracy of the steady state frequencies in relation to the EMT-O. The categories on the x-axis are in
reference to the distance of the frequencies resulting from the EMT model over all states that converge to 2 steady
states. In category < 10, all states are counted that are within a distance of 10% of the frequencies resulting from
EMT-O. Category [10, 19] counts the number of states that are within a distance of 20% from the results from
EMT-O with the same qualitative behavior. In category r[10, 19], we count the number of states that are within a
distance of 20% from the results from EMT-O that also have a reversed qualitative behavior. Categories [20, 29]
and r[20, 29] count the number of states that are within 30% of the EMT states with the same qualitative behavior,
and the reversed qualitative behavior respectively, similar to categories [30, 39], r[30, 39], [40, 49], and r[40, 49]. In
category > 50, we count all the states that are more than 50% away from the EMT-O frequencies.

Category [10, 19] counts all the states that are within 20% of the EMT results, and also experience the same 371

qualitative behavior. If, e.g., a state in EMT-O reaches a steady state 70%, and the corresponding model state 372

reaches this state 55%, the distance of these states is 70− 55 = 15. Both states have a bias towards this steady 373

state (i.e., they are both larger than 50%), and therefore this state gets sorted into this category. 374

If the EMT-O state reaches a steady state 60%, and the corresponding model state reaches the same steady state 375

45%, the distance is still 60− 45 = 15, the qualitative behavior, however, is now reversed (60 > 50, but 45 < 50), 376

and this state gets sorted into category r[10, 19]. On first glance, the qualitative behavior of the states seems like a 377

more important metric to keep on the states behavior. Note, however, that for a state to be within 20% of the 378

EMT states and have a reversed behavior, both frequencies have to be relatively close to 50% and thus can still be 379

considered approximately half. 380

The larger the distance, the more significant the impact of qualitatively wrong behavior gets as well. Therefore, 381

the higher the bar on the left, i.e, the more states that are close to the EMT frequencies, the better the model. In 382

this figure, we include now all the models discussed in this section. The purple colors depict the non-optimized 383

models EMT-FW and EMT-BW. We can see, that both models experiences a couple of states, that are more than 384

50% away from the behavior of the EMT model. Neither of our optimized models has states in this category. 385

Our expert knowledge guided model has one state that is within 30% discrepancy that has the wrong qualitative 386

behavior. 77% of states are within 10% of the original frequency values. This graph shows clearly, that most states 387

are on the left side of the graph, i.e., close to the results of EMT-O, and that the optimization algorithm clearly 388

skews the bars further to the left. The 217 orange states in the category <10 demonstrate the power of additional 389

knowledge to guide the model selection process. 390
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Discussion 391

We have proposed an algorithm to infer Boolean rules from the mapping of initial states to attractors. We have 392

exemplified this method for two biologically relevant examples. Namely, a classic enzyme-substrate system and a 393

model of Epithelial to Mesenchymal Transition (EMT) in cancer metastasis. In both cases the algorithm, without 394

providing any additional information, provides candidate models that match the dynamics of the underyling 395

system well. In particular, the steady states and their respective probability are reproduced accurately. For the 396

enzyme-substrate system the dynamics is also well resolved. However, for the EMT model there are still an extremely 397

large number of possible candidates and thus the dynamical behavior is not always faithfully resolved. This can 398

be improved by incorporating additional insight into the systems. We have done this by constraining the network 399

structure. That is, we have made assumptions on the species that each Boolean rule depends on. This results in a 400

Boolean network which extremely accurately describes the dynamics of the underlying model. In fact, some of the 401

inferred Boolean rules are identical to the ground truth. 402

The proposed algorithm could be used to infer the mechanisms of signaling, gene-regulatory, and any other 403

input-output processes in an automatic (i.e. fully unsupervised) way. This enables us to use our methodology as part 404

of a larger data processing, model inference, and prediction framework that can be used without human intervention. 405

In this work we have exclusively considered data that only model the initial and final state of the system, because 406

such experimental data are commonly available. However, with ever advancing measurement techniques more and 407

more time series information tend to be available for such systems. We envisage the use of such time series to 408

further improve the model selection. This will be subject of future research. 409

Our work takes advantage of parallel computing environments, thus reducing the amount of time required to 410

enumerate logic rules by hand. We believe that computer-driven mechanism exploration coupled with a model 411

selection, such as that presented in this work, could be a highly suitable tool to advance mechanism exploration and 412

accelerate hypothesis prediction and testing in silico, for experimental validation, thus reducing the time and effort 413

required to obtain mechanistic knowledge from experimental data. 414

Conclusion 415

We presented a general-purpose algorithm for mechanism exploration, hypothesis exploration, and model selection 416

using initial and attractor state data and high-performance computing. Our approach greatly accelerates the 417

inference of logic-based rules for complex biochemical networks and leads to dynamic networks that can be further 418

explored in order to obtain testable hypotheses. 419

Materials and methods 420

The generic model selection consists of a genetic algorithm population of 150 individuals. Each of the individuals 421

performs 50 simulations to account for the randomness of transition removal. We sequentially initialize the 422

optimization with a Python interface and spawn a parallel environment using 50 nodes. On each node, one of the 50 423

individuals create and simulate the model according to the random process of transition removal. To speed up the 424

simulations, each of the created rule sets was compiled into a C++ code to perform the asynchronous updating 425

simulations. The full code can be accessed at https://github.com/LoLab-VU/Boolean_rules_creator. 426
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