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Abstract 1

1. Modern, high-throughput animal tracking studies collect increasingly large volumes of data at very fine temporal 2

scales. At these scales, location error can exceed the animal’s step size, confounding inferences from tracking data. 3

‘Cleaning’ the data to exclude positions with large location errors prior to analyses is one of the main ways movement 4

ecologists deal with location errors. Cleaning data to reduce location error before making biological inferences is 5

widely recommended, and ecologists routinely consider cleaned data to be the ground-truth. Nonetheless, uniform 6

guidance on this crucial step is scarce. 7

2. Cleaning high-throughput data must strike a balance between rejecting location errors without discarding valid animal 8

movements. Additionally, users of high-throughput systems face challenges resulting from the high volume of data 9

itself, since processing large data volumes is computationally intensive and difficult without a common set of efficient 10

tools. Furthermore, many methods that cluster movement tracks for ecological inference are based on statistical 11

phenomena, and may not be intuitive to understand in terms of the tracked animal’s biology. 12

3. In this article we introduce a pipeline to pre-process high-throughput animal tracking data in order to prepare it 13

for subsequent analysis. We demonstrate this pipeline on simulated movement data to which we have randomly 14

added location errors. We further suggest how large volumes of cleaned data may be synthesized into biologically 15

meaningful ‘residence patches’. We then use calibration data to show how the pipeline improves its quality, and to 16

verify that the residence patch synthesis accurately captures animal space-use. Finally, turning to real tracking data 17

from Egyptian fruit bats (Rousettus aegyptiacus), we demonstrate the pre-processing pipeline and residence patch 18

method in a fully worked out example. 19

4. To help with fast implementations of our pipeline, and to help standardise methods, we developed the R package 20

atlastools, which we introduce here. Our pre-processing pipeline and atlastools can be used with any high- 21

throughput animal movement data in which the high data volume combined with knowledge of the tracked individuals’ 22

biology can be used to reduce location errors. The use of common pre-processing steps that are simple yet robust 23

promotes standardised methods in the field of movement ecology and better inferences from data. 24

Keywords ATLAS, data cleaning, movement ecology, high-throughput tracking, R package atlastools, residence patch 25

1 Introduction 26

Tracking individual animals is the methodological mainstay of movement ecology, which seeks to link animal movement 27

with internal causes, environmental factors, and resulting consequences (Holyoak et al., 2008; Nathan et al., 2008). Inves- 28

tigating fine-scale environmental and social drivers and the consequences of movement requires position data from many 29

individuals at high temporal and spatial resolution. Such high-throughput tracking is possible using GPS tags (see recent 30
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examples in Harel et al., 2016; Papageorgiou et al., 2019; Strandburg-Peshkin et al., 2015), yet ‘reverse-GPS’ systems de- 31

veloped to track animals over land (MacCurdy et al., 2009, 2019; Toledo et al., 2014, 2016, 2020; Weiser et al., 2016) and 32

in aquatic systems (Baktoft et al., 2019, 2017; Hussey et al., 2015; Jung et al., 2015) routinely produce high-throughput 33

tracking data at much lower costs. Although high-resolution tracking inherently provides more detailed information about 34

the true path of the tracked animal, high-throughput data presents a two-fold challenge to ecologists. First, the location 35

error of each position may approach or exceed the true step size of the animal compared to low-resolution tracking with 36

the same measurement error. This biases derived metrics such as speed and tortuosity (see Calenge et al., 2009; Hurford, 37

2009; Noonan et al., 2019; Ranacher et al., 2016). Additionally, the absolute location errors around a position introduces 38

uncertainty when studying the location of an animal relative to fixed landscape features (e.g. roads) or mobile elements 39

(e.g. other tracked individuals). Users have two main options to improve data quality: making inferences after modelling the 40

system-specific location error (Fleming et al., 2014, 2020; Johnson et al., 2008; Jonsen et al., 2005, 2003; Patterson et al., 41

2008), or pre-processing data to clean it of positions with large location errors (Bjørneraas et al., 2010). The first approach 42

may be limited by the animal movement models it can fit to the data (Fleming et al., 2014, 2020; Noonan et al., 2019), 43

and may be beyond the computational capacity of common hardware, leading users to prefer data cleaning instead. When 44

attempting data cleaning, the second challenge of high-throughput tracking reveals itself: the large number of observations 45

themselves (Toledo et al., 2020; Weiser et al., 2016). Having large volumes of data to clean makes manual identification 46

and removal of errors from individual tracks prohibitively time consuming, incentivising automation based on a protocol. 47

Pre-processing steps must justifiably discard large location errors, also called outliers, from tracks (analogous to re- 48

ducing false positives) while avoiding the overzealous rejection of valid animal movements (analogous to reducing false 49

negatives). How well researchers balance these imperatives has consequences for downstream analyses (Stine and Hun- 50

saker, 2001). For instance, small-scale resource selection functions can easily infer spurious preference and avoidance 51

effects when there is uncertainty about an animal’s true position and movement (Visscher, 2006). Ecologists recognise 52

that tracking data are imperfect observations of the underlying process of animal movement, yet they implicitly consider 53

cleaned data equivalent to be the ground-truth. This assumption is reflected by popular statistical methods in movement 54

ecology such as Hidden Markov Models (HMMs) (Langrock et al., 2012), stationary-phase identification methods (Patin 55

et al., 2020), or step-selection functions (SSFs) (Avgar et al., 2016; Barnett and Moorcroft, 2008; Signer et al., 2017), which 56

expect low location errors relative to real animal movement (i.e., a high signal-to-noise ratio). This makes the reproducible, 57

standardised removal of location errors crucial to any animal tracking study. While gross errors are often removed by 58

positioning-system algorithms, ‘reasonable’ errors often remain to confront end users (Fischler and Bolles, 1981; Ranacher 59

et al., 2016; Weiser et al., 2016). Location errors may be exacerbated by the conditions of deployment, with systematic 60

differences in location error among different landscape types (see D’Eon et al., 2002; Frair et al., 2004; Lewis et al., 2007). 61

Standardised pre-processing steps should thus be general enough to tackle animal movement data recovered from a range 62

of environments. 63

Despite the importance and ubiquity of reducing location errors in tracking data, movement ecologists lack formal 64
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guidance on this crucial step. Pre-processing protocols are often system-specific, or have limited availability, or may not be 65

easily tractable for mainstream computing hardware and software. Furthermore, filtering out positions on their location error 66

estimates may not be sufficient to recover a good track estimate when location error does not correspond to biological realism 67

in movement (Ranacher et al., 2016; Weiser et al., 2016). This makes identifying and removing implausible movements 68

from a track an important component of recovering true animal movement (Bjørneraas et al., 2010). Even after removing 69

large location errors and evidently unrealistic movement, a track may comprise of positions that are distributed around the 70

true animal location. Discarding these positions as ‘untrue’ would lead to excessive data loss, but treating them as ‘real’ 71

locations would lead to unrealistic estimates of metrics such as speed (Noonan et al., 2019). The large data-volumes of high- 72

throughput tracking allow for a neat solution: tracks can be ‘smoothed’ to reduce small location errors that have remained 73

undetected. This large data volume becomes a challenge when users seek to examine animal space-use in relation to relevant 74

environmental covariates, such as the predictors of prolonged residence in an area (see Bracis et al., 2018). First, statistical 75

modelling using high-throughput data may suffer from pseudo-replication since both the response (e.g. step-length) and the 76

predictors (e.g. resource landscape values) are spatio-temporally auto-correlated and hence non-independent (Aarts et al., 77

2008; Bijleveld et al., 2016; Fleming et al., 2014; Harel et al., 2016; Oudman et al., 2018). Second, fitting statistical models 78

to datasets with many millions of observations may require significant innovation in mainstream statistical software (e.g. 79

Wood et al., 2015), and users may instead want to reduce data volumes by thinning or clustering. 80

Here, we present a hands-on guide to pre-processing high-throughput tracking data, and demonstrate a relatively simple 81

data cleaning pipeline to prepare these data for subsequent analyses (see Fig. 1). We take two important considerations 82

into account, (1) that methods must be computationally efficient, and (2) that the pre-processing steps should be easily 83

understood and reproduced. With these in mind we have developed the R package atlastools (Gupte, 2020; R Core 84

Team, 2020), which implements important steps of the pre-processing pipeline. R is the computational environment of 85

choice in movement ecology (Joo et al., 2020) and formalising tools as an R package improves portability and reproducibility 86

(Marwick et al., 2018). atlastools functions are easy to use and understand, and rely on the efficiency of the R package 87

data.table (Dowle and Srinivasan, 2020). We begin by showing how the pipeline can clean simulated tracks to which we 88

have artificially introduced location error (Gurarie et al., 2017). Beginning with basic spatio-temporal filtering of positions, 89

we cover filtering movement tracks, and reducing the effect of location error with a median smooth. Then, we suggest one 90

solution to issues of computational tractability, which is to synthesise residence patches (sensu Barraquand and Benhamou, 91

2008; Bijleveld et al., 2016; Oudman et al., 2018) from clusters of spatio-temporally proximate positions, and so reveal 92

important aspects of animal space use. Using calibration data from a manually transported ATLAS tag, we demonstrate how 93

the residence patch method in atlastools accurately identifies areas of prolonged residence under real field conditions. 94

Finally, we turn to data from Egyptian fruit bats (Rousettus aegyptiacus) tracked in the Hula Valley, Israel, to show a fully 95

worked out example of the pre-processing pipeline and the residence patch method. 96
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Figure 1. A general, modular pipeline for pre-processing high-throughput tracking data from raw localisations to cleaned
data, and optionally into residence patches. Users should begin by plotting their data to determine its status,
for instance whether it needs to be susbet within a certain time interval, or whether there are obvious location
errors. Users can then pre-process their data using the appropriate module, following the pre-processing steps
corresponding to each module. The atlastools function that may be used to implement each pre-processing
step is shown in the grey boxes underneath each step. Users may use the pipeline in full or just the module most
appropriate for their data. In all cases, users are strongly encouraged to visualise their data and scan it for location
errors as a first step, and to visualise it along the way.
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2 Pipeline Overview, Usage, and Simulating Data 97

2.1 The Pipeline and atlastools 98

We lay out a modular pipeline for pre-processing raw high-throughput tracking data using the R package atlastools (Fig. 99

1). While the pipeline and package were designed with ATLAS systems in mind, the principles and functions can be used 100

with any high-throughput tracking data. Users may follow the pipeline in full, or implement the module most suitable for 101

their data. 102

1. After data access, we first encourage users to visualise their data to check for evident location errors (Slingsby and 103

van Loon, 2016). 104

2. Users can install atlastools using the install github function from the R package remotes. The package can 105

be installed using the R command 106

remotes::install github("pratikunterwegs/atlastools"). 107

Package functions are prefixed ‘atl ’, and rely heavily on the data.table package (Dowle and Srinivasan 2020). 108

Certain functions modify the input data ”in place”, and users must work on a copy of their data to preserve both the 109

original and cleaned data (details in the Supplementary Material). Since ATLAS systems typically cover an area of 110

a few hundred square kilometres, atlastools assumes a coordinate system in metres, and users must convert their 111

geographic coordinates to metres. 112

3. Users with a specific area or time of interest can use simple spatio-temporal range filters to select positions (see 113

Spatio-Temporal Filtering). 114

4. Next, users should reduce gross location errors by removing unreliable positions which may be identified by an error 115

measure, or by the plausibility of associated movement metrics (see Filtering to Reduce Location Errors). 116

5. Users should then reduce small-scale location errors by applying a median smooth (see Smoothing and Thinning 117

Data). 118

6. Users who need uniformly thinned data can then thin by either aggregating or resampling (see Smoothing and 119

Thinning Data). At this stage, the data are ready for a number of popular statistical treatments such as Hidden 120

Markov Model-based classification (Michelot et al., 2016). 121

7. Finally, users wishing to study prolonged animal residence in an area can classify their data into residence patches 122

based on the movement ecology of their study system, after filtering out non-stationary positions (see Synthesising 123

Movement Tracks into Residence Patches). 124
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2.2 Simulating Movement Tracks 125

To demonstrate the pipeline, we simulated a realistic movement track of 5,000 positions (unbiased correlated velocity model; 126

UCVM) using the R package smoove (Gurarie et al., 2017, see Fig. 2.a). We added three kinds of error to the simulated 127

track: (1) normally distributed small-scale offsets to the X and Y coordinates independently, (2) normally distributed large- 128

scale offsets to a random subset (0.5 %) of the positions, and (3) large-scale displacement of a continuous sequence of 300 129

of the 5,000 positions (indices 500 – 800) (Fig. 2.a). To demonstrate the residence patch method, we chose to simulate 130

three independent rotational/advective correlated velocity movement (RACVM) tracks of 500 positions each (ω = 7, initial 131

velocity = 0.1, µ = 0; see Gurarie et al. 2017), and connected them together with a roughly linear path (see Fig. 6.a). 132

RACVM models approximate the tracks of soaring birds which circle on thermals over a relatively small area, and move 133

between thermals (‘thermalling’; Gurarie et al., 2017; Harel et al., 2016). This complex track structure provides a suitable 134

challenge for the residence patch method and helps to demonstrate its generality. 135

3 Spatio-Temporal Filtering 136

3.1 Spatial Filtering Using Bounding Boxes and Polygons 137

First, data can be filtered to exclude positions outside the spatial bounds of a study area. This simply involves comparing 138

position coordinates with the range of acceptable coordinates (the bounding box), and removing those positions outside 139

them (Fig. 2.b; Listing 1). A bounding box filter retains data from within a subset of the tracking range without the need 140

for a geospatial representation such as a shapefile. This can help remove unreliable data from a tracking system that is 141

less accurate beyond a certain range (e.g. ATLAS; Beardsworth et al. in prep.). In some special cases, users may wish 142

to remove positions inside a bounding box, either because movement behaviour within an area is not the focus of a study, 143

or because positions recorded within an area are known to be erroneous. An example of the former is studies seeking to 144

study transit behaviour between features which can be approximated by their bounding boxes. Instances of the latter are 145

likely to be system specific, but are known from ATLAS systems (Bijleveld et al. in prep.). One drawback to bounding 146

box filters is that they are restricted to rectangular areas. Users seeking to filter for areas with other geometries, such as 147

a circular or irregular study area, need a geometric intersection between their data and a spatial representation of the area 148

of interest (e.g. shapefile, geopackage, or sf-object in R). The atlastools function atl filter bounds implements 149

bounding box and explicit spatial filters and accepts X and Y coordinate ranges, an sf-polygon object (Pebesma, 2018), or 150

any combination of the three to filter the data (Listing 1). Multipolygon objects are supported, allowing data from different 151

areas to be selected. When both coordinate ranges and a polygon are provided, the data is first filtered by the ranges and then 152

the polygon. The boolean function argument remove inside determines whether positions inside the bounds are retained 153

(FALSE) or removed (TRUE). 154
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1 filtered_data <- atl_filter_bounds(data = data ,

2 x = "X", y = "Y",

3 x_range = c(x_min , x_max),

4 y_range = c(y_min , y_max),

5 sf_polygon = your_polygon ,

6 remove_inside = FALSE)

Listing 1. The atl filter bounds function removes positions outside an area defined by coordinate ranges, a polygon, or
all three (remove inside = FALSE), or positions inside the area (remove inside = TRUE). The arguments x
and y determine which columns are considered the X and Y coordinates, the arguments x range and y range

determine the acceptable range of coordinates in a reference system based in metres, while the sf polygon

argument allows the data to be filtered by the user specified sf-(MULTI)POLYGON object. atl filter bounds

returns a filtered data.table, which must be saved as an object (here, filtered data).

3.2 Temporal and Spatio-temporal Filters 155

Temporal filtering can exclude positions from periods during tracking when data are expected to be unreliable, either due to 156

abnormal movement behaviour or poor tracking quality. An animal’s movement may be non-representative when it has been 157

fitted with a tracker but has not been released, leading to artificial stationary positions, or in the time shortly after release 158

when its movement may be influenced by the stress of capture and handling (see example implementation in amt; Signer et al. 159

(2019)). In these cases, all positions from a short time after release (e.g. 24 hours) can be excluded. Periods of poor tracking 160

quality may result from system malfunctions, and temporal filters can be applied to exclude such chunks from the datastream. 161

Temporal filters can be combined with spatial filters to exclude time-location combinations which would be unrealistic for 162

the tracked animal. For example, red knots in the Dutch Wadden Sea congregate at communal roosts during high-tide, when 163

their foraging grounds on the inter-tidal mudflats are inaccessible (van Gils et al., 2006). A spatio-temporal filter that retains 164

positions inside the bounds of roosts during high-tide can quickly return data that reveals individual presence at high-tide 165

roosts, while excluding positions that erroneously place individuals on the inundated mudflats. Users should apply filters 166

in sequence rather than all at once, and visualise the output after each filtering step (‘sanity checks’). 167

The atlastools function atl filter covariates allows convenient filtering of a dataset by any number of logical 168

statements (Listing 2). This function can be used to easily filter timestamps in a range, as well as combine simple spatial and 169

temporal filters. It accepts a character vector of R expressions that each return a logical vector (i.e., TRUE or FALSE; Listing 170

2). The function returns only those data which satisfy each of the filter conditions. Users must ensure that the filtering 171

variables exist in their dataset in order to avoid errors. 172

4 Filtering to Reduce Location Errors 173

4.1 Filtering on Quality Covariates 174

Tracking data covariates can be good indicators of the reliability of calculated positions (Beardsworth et al. in prep.). For 175

intance, in ATLAS systems the number of base stations involved in each localisation is an indirect indicator of data quality, 176
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Figure 2. (a) A velocity-autocorrelated movement track simulated for 5,000 positions (black line) using the smoove package
(Gurarie et al. 2017). Three kinds of errors have been artificially added: (1) each position (grey points) is offset
from the canonical track with the addition of normally distributed small-scale error, (2) large-scale error has
been added to 0.5% of positions, and (3) 300 positions (indices 500 – 800) have been displaced to the top-right
of the track to simulate a gross distortion that affects a continuous subset of the track. The goal of pre-processing
such datasets is to get the estimated positions (grey points) to match the canonical track (black line) as closely
as possible. (b) Tracks can be quickly filtered by spatial bounds (0.5 ≤ Y ≤ 1.0; dashed grey lines) using the
atlastools function atl filter bounds. Setting the function argument remove inside = FALSE retains
positions within user supplied bounds (dashed grey lines; green points), and excludes those outside (grey points).

and positions localised using more receivers are usually more reliable (the minimum required for an ATLAS localisation 177

is 3; see Weiser et al., 2016). GPS systems’ location error may be similarly indicated indirectly by the number of satellites 178

involved in the localisation, or directly by an error measure such as the Horizontal Dilution of Precision (HDOP). ATLAS 179

and other TOA systems also calculate direct measures of location error during localisation: VARX, VARY, and COVXY, which 180

are the variance of the X and Y coordinates, and the covariance of the X and Y coordinates, respectively (MacCurdy et al., 181
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1 night_data <- atl_filter_covariates(data = dataset ,

2 filters = c("!inrange(hour , 6, 18)"))

3
4 data_in_area <- atl_filter_covariates(data = dataset ,

5 filters = c("between(time , t_min , t_max)",

6 "between(x, x_min , x_max)"))

Listing 2. The atl filter covariates function can be used both as a simple temporal filter, and also as a combined
spatio-temporal filter. Filter predicates are passed to the filters argument as a character vector, each of which
is then evaluated as an R expression in the context of the data supplied. Only rows in the data satisfying all the
conditions passed as filters are retained. Users must make sure the filter variables exist in their dataset. Here,
the first example shows how nighttime data can be retained using a predicate (inrange from data.table) that
determine whether the value of ‘hour’ is between 6 and 18. The ! sign indicates that the negative of the predicate
should be returned, i.e., TRUE when the hour is between 6 PM and 6 AM, but FALSE when the hour is between
6 AM and 6 PM. The second example shows the use of multiple filter statements; this data will be filtered to be
within the range of times bounded by t min and t max, and with X coordinates between x min and x max. The
between function is from data.table.

1 filtered_data <- atl_filter_covariates(data = data ,

2 filters = c("NBS > 3",

3 "SD < 100",

4 "between(day , 5, 8)"))

Listing 3. Filtering ATLAS data on position covariates. The filters argument accepts a character vector with the logical
statements. The function only retains data for which all the conditions are satisfied; here that is positions
calculated using > 3 base stations (NBS), with location error (SD) < 100, and data between an arbitrary day
5 and day 8.

2009, 2019; Weiser et al., 2016). A location error measure associated with each coordinate pair (similar to GPS HDOP) 182

can be calculated and assigned to a new column SD using the formula for the sum of correlated random variables 183

SD =
√
V ARX + V ARY + 2× COVXY 184

Filtering on the position-specific standard deviation allows removing unreliable positions, and the filter can be applied using 185

atl filter covariates. 186

4.2 Filtering Unrealistic Movement 187

Filtering on system-generated measures of error may not result in the removal of all erroneous positions, and data may 188

remain which would require biologically implausible movement. Users are encouraged to visualise their tracks before 189

and after filtering point locations, and especially to ‘join the dots’ and connect consecutive positions with lines. Whether 190

the resulting track looks realistic is ultimately a subjective human judgement, but one which implicitly integrates prior 191

knowledge of the movement ecology of the study species to ask, ‘Does the animal move this way?’. Segments which appear 192

to represent unrealistic animal movement are often obvious to researchers with extensive experience of the study system (the 193

non-movement approach; see Bjørneraas et al., 2010). Since it is both difficult and prohibitively time consuming to exactly 194
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reproduce expert judgement when dealing with large volumes of tracking data from multiple individuals, some automation 195

is necessary. Users should first manually examine a representative subset of tracks and attempt to visually identify problems 196

— either with individual positions, or with subsets of the track — that persist after basic filtering. Once such problems are 197

identified, users can conceptualise algorithms that can be applied to their data to resolve them. 198

An example of a problem with individual positions is that of point outliers or ‘spikes’ (Bjørneraas et al., 2010), where 199

a single position is displaced far from the track (see Fig. 3.a). Point outliers are characterised by artificially high speeds 200

between the outlier and the positions before and after (called incoming and outgoing speed, respectively Bjørneraas et al., 201

2010), lending a ‘spiky’ appearance to the track. Removing spikes is simple: remove positions with extreme incoming and 202

outgoing speeds. Users must first define plausible upper limits for speed and turning angle for the study species (Calenge 203

et al., 2009; Seidel et al., 2018). Here, it is important to remember that speed estimates are scale-dependent; high-throughput 204

tracking typically overestimates the speed between positions where the animal is stationary or moving slowly due to small- 205

scale location errors (Noonan et al., 2019; Ranacher et al., 2016). Even after data with large location errors have been 206

removed by filters, it is advisable to begin with a liberal (high) speed threshold that excludes only the most unlikely of 207

speeds. Estimates of maximum speed may not always be readily obtained for all species, and an alternative is to use a 208

data-driven threshold such as the 95th percentile of speeds from the track. Once a speed threshold S has been chosen, 209

positions with incoming and outgoing speeds ≥ S may be identified as spikes and removed. Some species can realistically 210

achieve speeds ≥ S in fast transit segments when assisted by environmental factors, such as birds with tailwinds, and a 211

simple filter on incoming and outgoing speeds would exclude this valid data. To avoid removing real, fast transit segments 212

while still excluding spikes we suggest combining the speed filter with a filter on the turning angles of each position (see 213

Calenge et al., 2009). This combined filter assumes that positions in high-throughput tracking with both high speeds and 214

large turning angles are likely to be due to location errors, since most species are unable to turn sharply at high speed. 215

Users can then retain only those positions whose incoming and outgoing speeds are both< S which or satisfy the condition 216

θ < A, where θ is the turning angle, and A is the turning angle threshold. The removal of spikes is implemented using the 217

atl filter covariates function (Listing 4). Many other track metrics may be used to identify implausible movement 218

and on which data may be filtered (Seidel et al., 2018). 219

Sometimes entire susbets of the track may be affected by the same large-scale location error. For instance, multiple 220

consecutive positions may be roughly translated (geometrically) away from the real track and form ‘prolonged spikes’, or 221

‘reflections’ (see Fig. 3.a, b). These cannot be corrected by targeted removal of individual positions, as in Bjorneraas and 222

colleagues’ approach (2010), since there are no positions with both high incoming and outgoing speeds. Since filtering 223

individual positions will not suffice, algorithms to correct such errors must take a track-level view, and target the displaced 224

sequence overall. Track-subset algorithms are likely to be system-specific, and may be challenging to conceptualise or 225

implement. In the case of prolonged spikes, one relatively simple solution is identifying the bounds and removing positions 226

between them. We show an illustrative example of such an algorithm in the form of track-subset filtering for prolonged 227

spikes using the atlastools function atl remove reflections (Listing 5). Users are strongly encouraged to visualise 228
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1 data$speed_in <- atl_get_speed(data ,

2 x = "x", y = "y",

3 time = "time", type = c("in"))

4
5 data$angle <- atl_turning_angle(data ,

6 x = "x", y = "y", time = "time")

7
8 filtered_data <- atl_filter_covariates(data = data ,

9 filters = c("(speed_in < S & speed_out < S) | angle < A"))

Listing 4. Filtering a movement track on incoming and outgoing speeds, and on turning angle to remove unrealistic
movement. The functions atl get speed and atl turning angle are used to get the speeds and turning
angles before filtering, and assigned to a column in the data (assignment of speed out is not shown). The filter
step only retains positions with speeds below the speed threshold S or angles above the turning angle threshold
θ, i.e., positions where the animal is slow but makes sharp turns, and data where the animal moves quickly in a
relatively straight line.

1 filtered_data <- atl_remove_reflections(data = track_data ,

2 x = "x", y = "y", time = "time",

3 point_angle_cutoff = A,

4 reflection_speed_cutoff = S,

5 est_ref_len = N)

Listing 5. Removing prolonged spikes from a movement track. The important function arguments here are
point angle cutoff (A), reflection speed cutoff (S), and est ref len, the maximum number of
positions after the inner bound that are candidates for the end of the prolonged spike, i.e., the outer bound.
If the prolonged spike ends after less thanN positions, the true end point is used as the outer bound of the spike.
However, the algorithm behind this function fails when the prolonged spike ends after more than N positions.
Users are advised to use a liberally large value of N in the est ref len argument; 1,000 may be appropriate for
3s interval data. Further, users are cautioned against relying on such algorithms for severely distorted data.

their data before and after applying this method, and we caution against relying on this method if data are heavily distorted 229

by errors affecting entire track-subsets. 230

5 Smoothing and Thinning Data 231

5.1 Median Smoothing 232

After filtering out large location errors may, the track may still look ‘spiky’ at small scales, and this is due to smaller 233

location errors. These smaller errors are challenging to remove since their covariates (such as speed and turning angles) 234

are within the expected range of movement behaviour for the study species. The large data volumes of high-throughput 235

tracking allow users to resolve this problem by smoothing the positions. A ‘smooth’ works by approximating the value of 236

an observation based on neighbouring values. For a one-dimensional series of observations, the neighbouring values are 237

theK observations centred on each index value i. The range i− (K − 1)/2 . . . i+ (K − 1)/2 is referred to as the moving 238

window as it shifts with i, and K is called the moving window size. A common smooth is nearest neighbour averaging, in 239

which the value of an observation xi is the average of the moving window K. The median smooth is a variant of nearest 240
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Figure 3. Reducing large-scale outliers in a movement track. The goal is to remove positions far away from the canonical
track (black line), and retain those with only reasonable displacements from the canonical track (green points).
(a) location error may affect single observations resulting in point outliers or ‘spikes’ (grey circles), but it may
also affect continuous subsets of a track, called a ‘prolonged spike’ (purple triangles). The former may be tar-
geted by filtering on appropriate covariates such as speed and turning angle using the atlastools function
atl filter covariates. Here, we filter out positions with incoming and outgoing speeds≥ the 90th percentile
(0.025) and turning angle ≥ the 10th percentile (35◦). Howevever, prolonged spikes cannot be effectively cor-
rected by targeting each coordinate pair in isolation. (b) The atlastools function atl remove reflections

to remove prolonged spikes (grey circles) in tracking data is an example of targeting track subsets with a com-
mon distortion (here, a geometric translation). While this method filters out the prolonged spike to return only
positions with reasonable displacement from the canonical track (green points) in this example, conceptualising
and implementing such algorithms is difficult. Users are cautioned to frequently check this and similar methods’
results.

neighbour averaging which uses the median rather than the mean, and it is robust to outliers (Tukey 1977). The median 241
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1 atl_median_smooth(data = track_data ,

2 x = "x", y = "y",

3 time = "time",

4 moving_window = 5)

Listing 6. Median smoothing a movement track using the function atl median smooth function with a moving window
K = 5. Larger values of K yield smoother tracks, but K should always be some orders of magnitude lower than
the number of observations.

smoothed value of the X coordinate, for instance, is 242

Xi =Median(Xi−(K−1)/2 . . . Xi+(K−1)/2) 243

Users can apply a median smooth with an appropriate K independently to the X and Y coordinates of a movement track 244

to smooth it (see Fig. 4.a – e). The median smooth is robust to even very large temporal and spatial gaps, and does not 245

interpolate between positions when data are missing. Thus it is not necessary to split the data into segments separated by 246

periods of missing observations when applying the filter (see Fig. 4). 247

Smoothing does not change the number of observations, but does decouple the coordinates from some of their co- 248

variates. For instance, smoothing breaks the relationship between a coordinate and the location error estimate around it 249

(VARX, VARY, and SD in ATLAS systems, or HDOP in GPS tracking). This makes subsequent filtering on covariates of data 250

quality unreliable, and smoothed data are unsuitable for use with methods that model location uncertainty (Calabrese et al., 251

2016; Fleming et al., 2014, 2020; Noonan et al., 2019). Furthermore, while larger K may result in smoother tracks (Fig. 252

4.b – e), one drawback of using a large K is that short, quick forays away from the main track are likely to be smoothed 253

away, leading to a loss in detail of the individual’s small-scale movement. Users must themselves judge how best to trade 254

large-scale and small-scale accuracy, and chooseK accordingly. One empirical way to compareK is by calculating the root 255

mean squared error (RMSE) for different K on the same data. Median smoothing is provided by the atlastools function 256

atl median smooth, with the only option being the moving window size, which must be an odd integer (Listing 6). 257

5.2 Thinning Movement Tracks 258

Most data at this stage is technically ‘clean’, yet its volume alone may pose challenges for lower-specification or older 259

hardware and software if these are not optimised for efficient computation. Thinning data need not compromise researchers’ 260

ability to answer scientific questions with them; for instance, social interactions lasting 1 – 2 minutes would still be detected 261

on thinning from a sampling interval of 1 second to 1 minute. Indeed, temporal auto-correlation may hinder some methods 262

such as the estimation of home-ranges or step-selection functions (Dupke et al., 2017; Fleming et al., 2014). Added to 263

the requirement of uniform sampling intervals by many methods in the field, evenly reducing data volumes is a worthwhile 264

endeavour (e.g. Avgar et al., 2016; Fleming et al., 2014; Michelot et al., 2016). Two plausible approaches here are resampling 265

and aggregation, and both approaches begin with identifying time-interval groups (e.g. of 1 minute). Resampling picks 266
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Figure 4. Median smoothing position coordinates reduces small-scale location error in tracking data. (a) The goal of this
step is to approximate the simulated canonical track (black line), given positions with small-scale error remaining
from previous steps (green points). The canonical track is shown ‘zoomed in’ for better representation, and the
missing data at the top of the track (line with no points) is from where the prolonged spike was earlier removed.
Median smoothing the given position coordinates ((a) green points) over a moving window (K) of (b) 3, (c) 5,
(d) 11, and (e) 21 positions respectively, yields approximations (purple lines) of the canonical track. Users are
cautioned that there is no correctK, and they must subjectively choose aK which most usefully trades small-scale
details of the track for large-scale accuracy.

one position from each time-interval group. Aggregation involves computing the mean values of all covariates for positions 267

within a time-interval group. Both approaches yield one position per time-interval group. Categorical variables, such as 268

the habitat type associated with each position can be aggregated using a suitable measure such as the mode. 269

The aggregation method is less sensitive to selecting point outliers by chance than resampling. When users want to 270

account for location error with methods such as state-space models (Johnson et al., 2008; Jonsen et al., 2005, 2003), or 271

continuous time movement models (Calabrese et al., 2016; Fleming et al., 2014, 2020; Gurarie et al., 2017; Noonan et al., 272

2019), correctly propagating the location error when thinning is important. In ATLAS systems the location error (SD; see 273

Filtering on Position Covariates) is calculated from the variance-covariance matrix of the coordinates of candidate 274

positions considered by the location solver (Weiser et al., 2016); this is equivalent to GPS systems’ HDOP (Ranacher et al., 275

2016). The error around each coordinate (VARX or VARY in ATLAS systems) can be propagated to the averaged position as 276

the sum of errors divided by the square of the number of observations contributing to each average (N ): 277

V ar(X)agg =

(
i=N∑
i=1

V ar(X)i

)
/N2 278

Similarly, the overall location error estimate for the average of N positions in a time-interval can be calculated by treating 279

it as a variance (SD2): 280

SDagg =

√√√√(i=N∑
i=1

SD2
i

)
/N2 281

Users may question why thinning should be implemented after cleaning steps, when aggregation can obtain consensus 282

positions over an interval, correctly propagate the location error, and also reduce data volumes. We caution users that 283

thinning causes an extensive loss of small-scale detail in the data. Additionally, thinning prior to excluding unrealistic 284
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1 thinned_data <- atl_thin_data(data ,

2 interval = 60,

3 id_columns = c("animal_id"),

4 method = "aggregate")

Listing 7. Code to thin data by aggregation in atlastools. The method can be either ”aggregate” or ”resample”. The time
interval is specified in seconds, while the id columns allows a character vector of column names to be passed
to the function, with these columns used as identity variables. Both methods return a dataset with as many rows
as there are time-intervals. While the resampling method retains all columns, the aggregation method drops the
ATLAS specific columns specifying covariance in X and Y coordinates (COVXY), and location error (SD).

movement and smoothing can lead to estimates of essential metrics — such as speed — that are substantially different from 285

the true value (Noonan et al. 2019; see Fig. 5.c). The mis-estimation of track metrics could have knock-on consequences for 286

the implementation of subsequent filters based on detecting unrealistic movement. However, thinning before data-cleaning 287

may have its place as a useful step before exploratory visualisation of the movement track, since reduced data volumes are 288

easier to handle for plotting software. 289

Thinning is implemented in atlastools using the atl thin data function, with either aggregation or resampling 290

(specified by the method argument) over an interval using the interval argument. The column of timestamps must be 291

named ‘time’ and column classes except the identity columns (see below) should allow averaging. The ‘resample’ option 292

returns a thinned dataset with all columns from the input data, but ‘aggregate’ drops COVXY, as this cannot be propagated. 293

Using ‘resample’ returns the actual timestamp (in UNIX time) of each sample, while ‘aggregate’ returns the mean timestamp 294

(also in UNIX time). In both cases, an extra column time agg is added which has a uniform difference between each 295

element corresponding to the user-defined thinning interval. Due to its development for ATLAS systems, the ‘aggregate’ 296

assumes the variance around coordinates is named VARX and VARY, and standard deviation around each position is named 297

SD. These columns must be present together for the function to correctly handle the error. If there is no measure of error, 298

the function simply returns the averaged position and covariates in each time interval. Grouping variables’ names (such as 299

animal identity) may be passed as a character vector to the id columns argument (Listing 7). 300

6 Synthesising Movement Tracks into Residence Patches 301

6.1 The Residence Patch Algorithm 302

Tracking data that are still too large for statistical packages, or have strong autocorrelation, can benefit from segmentation- 303

clustering into ‘residence patches’ (Barraquand and Benhamou, 2008; Bijleveld et al., 2016; Oudman et al., 2018). Making 304

the patch the unit of observation conveniently sidesteps pseudo-replication while and reduces computational requirements. 305

Furthermore, metrics such as the distance travelled within and between patches can help compare broad-scale individual 306

movement strategies. 307

First, users should identify positions representing bouts of stationary behaviour, for instance on their speed or residence 308
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Figure 5. Thinning a movement track using aggregation preserves track structure while reducing data volume, but thin-
ning without removing gross location errors and unrealistic movement affects track metrics such as speed. (a, b)
Movement track positions with an interval of 1 second (green points) aggregated over intervals of (a) 10 and (b)
30 seconds (purple circles), after removing large location errors or filtering unrealistic movement. The canonical
track is shown as a black line in both panels, while the red line shows the track connecting thinned positions. (c)
Boxplots show the median and interquartile ranges for speed estimates of tracks aggregated over intervals of 3,
10, 30, and 120 seconds, but without the removal of location errors. For comparison, the median and 95th per-
centile of speed of the canonical track are shown as solid and dashed horizontal lines, respectively. Green circles
and associated error bars show, in contrast, the median (± standard deviation) speed for the same aggregation
interval, but after removing large- and small-scale location errors (median smooth K = 11). Removing location
errors and unrealistic movement before aggregation substantially improves speed estimates, especially at smaller
aggregation intervals, as it removes the apparent spikes that contribute to over estimation of speed if not filtered.

time (Bracis et al., 2018). Patch identification assesses whether consecutive positions and the bouts they comprise are spatio- 309

temporally independent, and clusters them together if they are not. The splitting and lumping of positions into bouts, and 310

bouts into patches is based on simple user specified thresholds — the distance and the time interval between positions (and 311

bouts) beyond which they should be considered independent. Users are encouraged to base these thresholds in the movement 312

habits of their study species. For example, residence patch classification of red knot movement tracks considers consecutive 313

stationary positions independent if they are 20m apart and considers consecutive bouts independent if the distance between 314

them≥ 100m, or the time difference between them≥ 30 minutes (Listing 8). The 20m distance represents a maximum speed 315

of 6.667 m/s between positions, above which the individual is more likely in transit. The 100m and 30 minute thresholds 316

are chosen to account for potentially missing data between bouts; if a track ends abruptly and then reappears ≥ 100m away 317

or ≥ 30 minutes later, this is more safely considered a new residence patch. 318

A cleaned movement track can be classified into residence patches using the function atl res patch (see Fig. 6.c). 319

atl res patch requires three parameters: (1) the distance threshold between positions (called buffer size), (2) the 320

distance threshold between clusters of positions (called lim spat indep), and (3) the time interval between clusters (called 321

lim time indep). Clusters formed of fewer than a minimum number of positions can be excluded. Our residence patch 322
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1 patches <- atl_res_patch(data = track_data ,

2 buffer_radius = 10,

3 lim_spat_indep = 100,

4 lim_time_indep = 30,

5 min_fixes = 3,

6 summary_variables = c("speed"),

7 summary_functions = c("mean", "sd"))

8
9 patch_summary <- atl_patch_summary(patch_data = patches ,

10 which_data = "summary",

11 buffer_radius = 10)

Listing 8. The atl res patch function can be used to classify a track into residence patches. The arguments
buffer radius and lim spat indep are specified in metres, while the lim time indep is provided in
minutes. In this example, specifying summary variables = c("speed"), and summary functions =

c("mean", "sd")will provide the mean and standard deviation of instantaneous speed in each residence patch.
The atl patch summary function is used to access the classified patch in one of three ways, here using the
summary option which returns a table of patch-wise summary statistics.

algorithm is capable of correctly identifying clusters of related residence points from a movement track (Fig. 7.a, 7.b). 323

This includes clusters where the animal is relatively stationary (orange and green patches, Fig. 7.c), as well as clusters 324

where the animal is moving slowly (blue patch, Fig. 7.c). This flexibility is especially useful when studying movements 325

that may represent two different modes of the same behaviour, for instance, area-restricted search, as well as slow, searching 326

behaviour with a directional component. 327

The function atl patch summary can be used to extract patch-specific summary data such as the median coordinates, 328

the patch duration, the distance travelled within the patch, and the patch area. Position covariates such as speed may also be 329

summarised patch-wise by passing covariate names and summary functions as character vectors to the summary variables 330

and summary functions arguments, respectively. Setting the which data argument to "spatial", returns sf MULTIPOLYGON 331

objects, and setting which data = "points" returns the positions in each patch, with patch-specific covariates. 332

6.2 Validating the Residence Patch Method 333

We applied the pre-processing pipeline using atlastools functions described above to a calibration dataset to verify that 334

the residence patch method could correctly identify known stopping points (see Fig. 7). We collected the calibration data 335

(n = 50,816) by walking and boating with a hand-held WATLAS tag (sampling frequency = 1 Hz) around the island of 336

Griend (53.25◦N, 5.25◦E) in August 2020 (Beardsworth et al. in prep.; Bijleveld et al. in prep.). Stops in the calibration 337

track were recorded as waypoints using a handheld GPS device (Garmin Dakota 10) at each stop. We estimated the real 338

duration of each stop as the time difference between the first and last position recorded within 50m of each waypoint, within 339

a 10 minute window before and after the waypoint timestamp (to avoid biased durations from revisits). Stops had a median 340

duration of 10.28 minutes (range: 1.75 minutes – 20 minutes; see Supplementary Material). We cleaned the data before 341

constructing residence patches by (1) removing a single outlier (> 15 km away), removing unrealistic movement (≥ 15 m/s), 342

smoothing the data (K = 5), and (4) thinning the data by resampling over a 30 second interval. The cleaning steps retained 343
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Figure 6. A rotation-advection movement track, similar to the movement of a soaring bird (Gurarie et al. 2017) classified
into residence patches with the atlastools function. (a) The goal is to segment-cluster the track into areas
of prolonged residence (clusters of points) while leaving out the transit between them. (b) A plot of residence
time against time (solid line; Bracis et al. 2018) shows how the residence patch algorithm segments and clusters
positions of prolonged residence. Regions are shaded by the temporal bounds of each residence patch. The
arguments passed to atl res patch determine the clustering, and can be adjusted to get a result that fits the
study system. Users are cautioned that there are no ‘correct’ arguments. (c) The residence patch method correctly
identifies clusters of positions where the individual is relatively stationary (orange and green patches), as well as
positions where it is slowly moving (blue patch). This is especially useful when studying more complex behaviour
such as area-restricted search, which may have a directional component. The function atl patch summary

conveniently presents the classified data for further use, either as an sf object (left: coloured polygons around
clustered points), or as summary data of each patch (right: coloured circles). While the sf object retains the patch
geometry as well as the patch attributes (such as duration), the summary data discards the patch geometry. Both
spatial and summary objects lose the details of movement between patches (compare black lines of the canonical
track [left], and lines connecting patch centroids [right]), but are helpul for questions where the general structure
is more relevant.

37,324 positions (74.45%), while thinning reduced these to 1,803 positions (4.8% positions of the smoothed track). Details 344

and code are provided in the Supplementary Material (see Validating the Residence Patch Method with Calibration 345

Data). 346

We identified stationary positions (residence time≥ 5 minutes) using the recurse package (n = 837, 46.42 %; radius = 347

50m Bracis et al., 2018). We clustered these positions into residence patches with a buffer radius of 5m, spatial independence 348
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limit of 50m, temporal independence limit of 5 minutes, and a minimum of 3 positions per patch. Inferred residence patches 349

corresponded well to the locations of stops (see Fig. 7.c). However, the residence patch algorithm detected more stops than 350

were logged as waypoints (n = 28, n waypoints = 21). One of these was the field station on Griend where the tag was 351

stored between trips (red crossed-square, Fig. 7.c). The method also did not detect two stops of 105 and 563 seconds (1.75 352

and 9.4 minutes) since they were data poor and aggregated away in the thinning step (n positions = 6, 15). To determine 353

whether the residence patch method correctly identified the duration of stops in the calibration track, we first extracted the 354

patch attributes using the function atl patch summary. We then matched the patches to the waypoints by their median 355

coordinates (rounded to 100 metres). We assigned the inferred duration of the stop as the duration of the spatially matched 356

residence patch. We compared the inferred duration with the real duration using a linear model with the inferred duration 357

as the only predictor of the real duration. Inferred duration was a good predictor of the real duration of a stop (linear model 358

estimate = 1.021, t-value = 12.965, p < 0.0001, R2 = 0.908; see Supplementary Material Fig. 1.7). This translates to a 2% 359

underestimation of the stop duration at a tracking interval of 30 seconds. 360

7 Worked-Out Example on Animal Tracking Data 361

We present a fully worked-out example of our pre-processing pipeline and residence patch method using movement data 362

from three Egyptian fruit bats tracked using the ATLAS system (Rousettus aegyptiacus; Toledo et al. (2020)). Code can 363

be found in the Supplementary Material (see Processing Egyptian Fruit Bat Tracks). Bats were tracked over three 364

nights (5th, 6th, and 7th May, 2018) in the Hula Valley, Israel (33.1◦N, 35.6◦E), with an average of 13,370 positions (SD 365

= 2,173; range = 11,195 – 15,542; interval = 8 seconds) per individual. Plotting the tracks showed severe distortions (see 366

Supplementary Material Fig. 2.1). We first reduced location errors by removing observations with ATLAS SD > 20, and 367

observations calculated using fewer than four base stations (mean positions remaining = 10,447 / individual; 78% of the 368

raw data on average). We removed unrealistic movement represented by positions with incoming and outgoing speeds > 369

20 m/s leaving 10,337 positions per individual on average (98% of previous step). We median smoothed the data with a 370

moving window K size = 5, and no observations were lost. 371

We began the construction of residence patches by finding the residence time within 50 metres of each position (Bracis 372

et al., 2018). Bats may repeatedly traverse the same routes, and this could artificially inflate the residence time of positions 373

along these routes. To avoid confusing revisits with residence, we limited the summation of residence times at each position 374

to the period until the first departure of 60 minutes or more. Thus, two nearby locations (≤ 50m apart) each visited for one 375

minute at a time, but separated by an interval of some hours would not have a residence time of two minutes each, but only 376

one minute each. Bats had a mean residence time at locations of 100.54 minutes (SD = 114.7); this measure was strongly 377

biased by time spent at the roost. We opted for a first-principles approach and selected as residence positions any locations 378

with a residence time > 5 minutes, reasoning that a flying animal stopping for > 5 minutes at a location should plausibly 379

indicate resource use or another interesting behaviour. This step retained 7,819 positions per bat on average (75.6%) of the 380

smoothed data; suggesting the extent to which roosting biases the data. 381

20

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.12.15.422876doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422876
http://creativecommons.org/licenses/by/4.0/


Figure 7. Pre-processing steps for WATLAS calibration data showing filtering filtering on speed, median smoothing and
thinning by aggregation, and making residence patches. (a) Positions with incoming and outgoing speed ≥ the
15 m/s are removed (N removed = 13,491, 26.6%; grey crosses = removed, green points = retained). Rectangles
show the region expanded in subfigures (b) and (c). (b) Expanded view of upper rectangle in (a) showing the raw
data (grey crosses), the median smoothed positions (green circles; moving window K = 5), and the smoothed
track thinned by aggregation to a 30 second interval (purple squares). Square size corresponds to the number
of positions used to calculate the averaged position during thinning, with no significant differences. Median
smoothing retains all 37,324 observations (though changing their coordinates). Thinning aggregates these posi-
tions into 1,803 aggregates (4.8% of the smoothed data volume). Median smoothing recovers a good estimate of
the true track from significantly over-dispersed raw data, while thinning reduces the data volume but preserves
track structure. (c) Classifying thinned data into residence patches yields robust estimates of the duration of
known stops. The island of Griend (53.25◦N, 5.25◦E) is shown in beige. Residence patches (green polygons;
function parameters in text) correspond well to the locations of known stops (purple crossed-squares). However,
the algorithm identified all areas with prolonged residence, including those which were not intended stops, such
as stops at the field station (n = 12; green polygon over red crossed-squares). The algorithm also failed to find
two stops of 6 and 15 seconds duration, since these were lost in the data thinning step (crossed-square without
green polygon shows one of these).

We constructed residence patches with a buffer distance of 25m, a spatial independence limit of 100m, a temporal 382

independence limit of 30 minutes, and rejected patches with fewer than three positions. We extracted summary data and 383

spatial polygons from the constructed residence patches. Plotting the bats’ residence patches and the linear paths between 384

them showed that though all three bats roosted at the same site, they used distinct areas of the study site (Fig. 9.a). Bats 385

tended to show prolonged residence near known food sources (fruit trees), travelling repeatedly between previously visited 386
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areas (Fig. 9.b). However, bats also appeared to spend some time at locations where no fruit trees were recorded, prompting 387

questions about their use of other food sources, or another behaviour entirely (Fig. 9.b, 9.c). Bats occurring close together 388

did not have strongly overlapping residence patches, and their paths to and from area of co-occurrence were different (Fig. 389

9.a, 9.c). Constructing residence patches for multiple individuals over multiple nights suggests interesting dynamics of 390

within- and between-individual overlap. 391

Figure 8. Synthesising animal tracks into residence patches can reveal how individuals in a population move in relation
to landscape features, prior exploration, and other individuals. (a) Linear approximations of the paths (coloured
lines) between residence patches (circles) show the movement of three Egyptian fruit bats (Rousettus aegyptia-
cus), tracked over three nights in the Hula Valley, Israel. Bat tracks are are shown as thin lines below the linear
approximations. Colours show bat identity. The grey hexagon represents a roost site. Dark green points represent
known fruit trees. Background is shaded by elevation at 30 metre resolution (SRTM). (b) Spatial representations
of an individual bat’s residence patches (green polygons) can be used to study site-fidelity by examining overlaps
between patches, or to study resource selection by inspecting overlaps with known resources (here, black circles
show the location of clusters of fruit trees). In addition, the linear approximation of movement between patches
(blue paths in panel (a)) can be contrasted with the estimated real path between patches (green lines). (c) Resi-
dence patch polygons can also show how individuals partition space and resources (black circles are fruit trees),
and the combined influence of resource and potential social cues on movement between patches (coloured paths).
Patches and paths are coloured by bat identity.
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8 Discussion 392

Our guide anticipates high-throughput animal tracking data becoming increasingly common. A uniform pipeline and toolset 393

for data cleaning promotes reproducibility and standardisation across studies, making comparative inferences more robust. 394

The open-source R package atlastools serves as a starting point for methodological collaboration among movement 395

ecologists. Efficient location error modelling approaches (Fleming et al., 2020) may eventually make data-cleaning optional. 396

Yet cleaning tracking data even partially before modelling location error will be faster than error-modelling on the full data, 397

and the removal of large location errors may improve model fits. Thus we see our pipeline as complementary to these 398

approaches (Fleming et al., 2014, 2020). Finally, we recognise that the diversity and complexity of animal movement and 399

data collection techniques often requires bespoke pre-processing solutions. Though the principles outlined here are readily 400

generalised, users’ requirements will eventually exceed the particular tools we provide. We see this as an incentive for more 401

users to be involved in developing methods for their systems. We offer our pipeline and package as a foundation for system 402

specific tools in the belief that simple, robust concepts are key to methods development that balances system-specificity and 403

broad applicability. 404
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