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Bait-ER: a Bayesian method to detect targets of selection in9

Evolve-and-Resequence experiments10

Abstract11

For over a decade, experimental evolution has been combined with high-throughput sequencing12

techniques in so-called Evolve-and-Resequence (E&R) experiments. This allows testing for selection in13

populations kept in the laboratory under given experimental conditions. However, identifying signatures14

of adaptation in E&R datasets is far from trivial, and it is still necessary to develop more efficient and15

statistically sound methods for detecting selection in genome-wide data. Here, we present Bait-ER – a16

fully Bayesian approach based on the Moran model of allele evolution to estimate selection coefficients17

from E&R experiments. The model has overlapping generations, a feature that describes several18

experimental designs found in the literature. We tested our method under several different demographic19

and experimental conditions to assess its accuracy and precision, and it performs well in most scenarios.20

However, some care must be taken when analysing specific allele trajectories, particularly those where21

drift largely dominates and starting frequencies are low. We compare our method with other available22

software and report that ours has generally high accuracy even for very difficult trajectories.23

Furthermore, our approach avoids the computational burden of simulating an empirical null distribution,24

outperforming available software in terms of computational time and facilitating its use on genome-wide25

data.26

We implemented and released our method in a new open-source software package that can be accessed27

at https://github.com/mrborges23/Bait-ER.28

Key-words: targets of selection, E&R, pool-seq, selection coefficients, Moran model, Bayesian inference29
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1 Introduction30

Natural selection is a very complex process that can dramatically alter phenotypes and genotypes over31

remarkably short timescales. Researchers have successfully tested theoretical predictions and collected32

evidence for how strong laboratory selection acting on phenotypes can be. However, it is not as33

straightforward to measure selection acting on the genome. There are many confounding factors that34

can lead to spurious results. This is particularly relevant if we are interested in studying how35

experimental populations adapt to laboratory conditions within tens of generations, in which case we36

need to take both experiment- and population-related parameters into account.37

Regardless of said difficulties, numerous experimental evolution studies, where populations are exposed38

to a controlled laboratory environment for some number of generations (Kawecki et al., 2012), have39

made remarkable discoveries on the genomic architecture of adaptation. Examples of long-term40

experimental evolution studies include those on yeast (Burke et al., 2014), red flour beetles (Godwin41

et al., 2017) and fruit flies (Turner et al., 2011; Debelle et al., 2017). By combining experimental42

evolution with next-generation sequencing, Evolve-and-Resequence studies (E&R, fig. 1) can shed light43

on the genetic basis of short-term adaptation. The E&R set-up allows for describing the divergence44

between experimental treatments while accounting for variation among replicate populations45

(Schlötterer et al., 2015). In other words, to find signatures of selection, one must not only monitor46

allele frequency changes throughout the experiment but also search for consistency across replicates.47

Moreover, it is often the case that experimental populations are sampled and pooled for genome48

sequencing. Sequencing pooled samples of individuals (pool-seq) is cost-effective and produces largely49

accurate estimates of population allele frequencies (Futschik and Schlötterer, 2010). Thus, statistical50

methods developed for E&R studies are especially useful if our aim is to find signatures of selection51

across the genome. Notably so when we investigate allele frequency trajectories originating from pooled52

samples.53

In contrast to E&R experiments in bacteria, those in sexual eukaryotes aim at describing adaptation due54

to standing genetic variation rather than that caused by new advantageous mutations. E&R time series55

datasets are particularly well-suited to fully characterise allele frequency trajectories. Several statistical56

approaches have been proposed to analyse these data and detect signatures of selection across the57

genome. A few such methods consider allele frequency changes between two time points. These simply58

identify those loci where there is a consistent difference in frequency between time points. One such59

approach is the widely-used Cochran-Mantel-Haenszel (CMH) test (Cochran, 1954). Such tests are60

often preferred since they are very fast, which makes them suitable for genome-wide datasets. Other61

approaches employ methods that allow for more than two time points: for example, Wiberg et al.62

(2017) used generalised linear models, and introduced a quasi-binomial distribution for the residual63
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error; and Topa et al. (2015) employed Gaussian Process models in a Bayesian framework to test for64

selection while accounting for sampling and sequencing noise. While the latter methods use more65

sophisticated statistical approaches, they remain descriptive and empirical with respect to underlying66

evolutionary processes. In contrast, mechanistic approaches explicitly model evolutionary forces, such as67

genetic drift and selection. Such models have the advantage that they can properly account for drift,68

which may generate allele frequency changes that can easily be mistaken for selection. Indeed, this is69

usually the case for E&R experimental populations with low effective population sizes (Ne), where70

genetic drift is the main evolutionary force determining the fate of most alleles.71

To our knowledge, three main mechanistic methods have thus far been developed: Wright-Fisher72

Approximate Bayesian Computation (WFABC, Foll et al. (2015)), Composition of Likelihoods for E&R73

experiments (CLEAR, Iranmehr et al. (2017)) and LLS (Linear Least Squares, Taus et al. (2017)).74

These methods differ in how they model drift and selection, the inferential approach to estimate75

selection coefficients, the hypothesis testing strategy, and the extent to which they consider specific76

experimental conditions (table 1). WFABC employs an ABC approach which uses summary statistics77

to compare simulated and real data. This method jointly infers the posterior of both Ne and the78

selection coefficient at some locus in the genome using allele frequency trajectory simulations. It79

performs simulations until both real and simulated summary statistics agree to a certain predefined80

scale. This makes WFABC computationally intensive. CLEAR computes maximum-likelihood estimates81

of selection parameters using a hidden Markov model tailored for small population sizes. LLS assumes82

that allele frequencies vary linearly with selection coefficients such that the slope provides the coefficient83

estimate. Although all three methods have been shown to accurately estimate selection coefficients,84

they rely heavily on empirical parameter distributions to perform hypothesis testing: (i) WFABC is85

highly dependent on the priors used to simulate those trajectories; (ii) CLEAR relies on genome-wide86

simulations to calculate an empirical likelihood-ratio statistic to assess significance; and (iii) LLS87

computes an empirical distribution of p-values simulated under neutrality. Additionally, the three88

software vary substantially on computational effort. Therefore, currently available methods are still89

limited in their use for genome-wide hypothesis testing.90

Here, we propose a new Bayesian inference tool – Bait-ER – to estimate selection coefficients in E&R91

time series data. It is suitable for large genome-wide polymorphism datasets and particularly useful for92

small experimental populations. We show that our method is faster than other available software (when93

accounting for hypothesis testing) while still performing accurately in some particularly difficult94

scenarios.95
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2 New Approaches96

E&R experiments produce a remarkable amount of data, namely allele counts for thousands to millions97

of loci. We created a Bayesian framework to infer and test for selection at an individual locus that is98

based on the Moran model. The Moran model is especially useful for studies that have overlapping99

generations, such as insect cage experimental designs (fig. 1). Such cage experiments are easier to100

maintain in the lab and allow for larger experimental population sizes avoiding potential inbreeding101

depression and crashing populations. Furthermore, Bait-ER combines modelling the evolution of an102

allele that can be under selection while accounting for sampling noise to do with pooled sequencing and103

finite sequencing depth. Our method takes allele count data in the widely-used sync format (Kofler104

et al., 2011) as input. Each locus is described by allele counts per time point and replicate population.105

The algorithm implemented includes the following key steps:106

1. Bait-ER calculates the virtual allele frequency trajectories accounting for Ne that is provided by107

the user. This step includes a binomial sampling process that corrects for pool-seq-associated108

sampling noise.109

2. The log posterior density of σ is calculated for a given grid of σ-values. This step requires110

repeatedly assessing the likelihood function (equation 3 in section 4).111

3. The log posterior values obtained in the previous step are fitted to a gamma surface (details on112

surface fitting can be found in supplementary fig. S1).113

4. Bait-ER returns a set of statistics that describe the posterior distribution of σ per locus. In114

particular, the average σ and the log Bayes Factor (BF) are the most important quantities. In this115

case, BFs test the hypothesis that σ is different from 0. Bait-ER also returns the posterior shape116

and rate parameter values, α and β, respectively. These can be used to compute other relevant117

statistics (e.g., credible intervals, variance).118

As our new approach was implemented in a Bayesian framework, it allows for measuring uncertainty119

associated with inference, for it gives posterior distributions of any selection parameters. Bait-ER jointly120

tests for selection and estimates selection parameters contrary to other state-of-the-art methods. It121

does not rely on empirical or simulation-based approaches that might be computationally intensive, and122

it properly accounts for specific shortcomings of E&R experimental design. Bait-ER performs well even123

for trajectories simulated under complex demographic scenarios.124
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3 Results and Discussion125

3.1 Prior fitting with Bait-ER126

Bait-ER employs a Bayesian approach outlined in the New Approaches section and described in further127

detail in the Methods section. Bayesian model fitting depends on the prior distribution implemented and128

requires further testing. Bait-ER uses a gamma prior for which the shape α and rate β parameters have129

to be defined beforehand. We tested the impact of uninformative (α = β = 0.001) and informative130

(α = β = 105) gamma priors on the posterior distribution of σ under standard (60x coverage, 5 time131

points and 5 replicates) and sparse (20x coverage, 2 time points and 2 replicates) E&R experiments.132

Our results show that the prior parameters have virtually no impact on the posterior estimates when133

α = β < 100 (fig. 2 and supplementary fig. S1), and thus, by default, Bait-ER sets both prior134

parameters to 0.001.135

Calculating the posterior distribution of σ is a computationally intensive step because it requires solving136

the exponential Moran matrix for several σ-values. To reduce the number of times Bait-ER assesses the137

log-posterior, we fit the posterior density to a gamma distribution. We found that a gamma surface fits138

the posterior quite well, and further that five points are enough to provide a good estimate of its139

surface. This remains true even for neutral scenarios, where the log-likelihood functions are generally140

flatter (fig. S1).141

3.2 Impact of E&R experimental design on detecting targets of selection142

Bait-ER not only models the evolution of allele frequency trajectories but it also considers aspects of143

the experimental design specific to E&R studies. Bait-ER can thus be used to gauge the impact of144

particular experimental conditions in pinpointing targets of selection. We simulated allele frequency145

trajectories by considering a range of experimental parameters, including the number and span of146

sampled time points, the number of replicated populations, and the coverage. Each of these settings147

was tested in different population scenarios that we defined by varying the population size, starting148

allele frequency, and selection coefficient. We assessed the error of the estimated selection coefficients149

by calculating the absolute bias in relation to the true value. In total, we investigated 576 scenarios150

(Supplementary table S2). The heatmaps in figure 3A-C show the error for each scenario.151

The heatmaps A, B, and C of figure 3 show that the initial frequency is a determining factor in the152

accuracy of σ̂ in E&R experiments. We observed that trajectories starting at very low frequencies153

(around 0.01) may provide unreliable estimates of σ. However, σ̂’s accuracy on those trajectories can154

be improved by either increasing the sequencing depth or the number of replicates. Similar results have155
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been obtained using other methods such as in Kofler and Schlötterer (2014) and Taus et al. (2017).156

Designs with high coverage and several replicates may be appropriate when potential selective loci157

appear at low frequencies (e.g., dilution experiments). Surprisingly, alternative sampling schemes do not158

seem to substantially impact the accuracy of σ (supplementary text S1). These results have practical159

importance because sampling additional time points is time-consuming and significantly increases the160

cost of E&R experiments.161

3.2.1 A note on population size162

When using Bait-ER to estimate selection coefficients, one needs to specify the effective population163

size Ne . However, as effective population size and strength of selection are intertwined, mispecifying Ne164

will directly affect estimates of selection. The effective population size is often not known at the start165

of the experiment, but plenty of methods can estimate it from genomic data, e.g., Jonas et al. (2016).166

To assess the impact of mispecifying the effective population size on p(σ), we simulated allele167

frequency trajectories using a fixed population size of 300 individuals. We then ran Bait-ER setting the168

effective population size to 100 or 1000. By doing so, we are increasing and decreasing, respectively,169

the strength of genetic drift relative to the true simulated population.170

Bait-ER seems to produce highly accurate estimates of σ regardless of varying the effective population171

size (fig. 4 and supplementary fig. S5). This is the case since misspecifying Ne merely rescales time172

in terms of Moran events rather than changing the relationship between Ne and the number of Moran173

events in the process. Further, we observed that the BFs are generally higher when the specified Ne is174

greater than the true value, suggesting that an increased false positive rate. The opposite pattern is175

observed when the population size one specifies is lower than the real parameter. Additionally, we176

investigated the relationship between BFs computed with the true Ne and those produced under a177

misspecified Ne . We found that these BFs are highly correlated (Spearman’s correlation coefficients178

were always higher than 0.99; fig. 4 and supplementary fig. S5). Taken together, our results indicate179

one should use a more stringent BF acceptance threshold if estimates of the real effective population180

size have wide confidence intervals.181

Furthermore, we assessed Bait-ER’s computational performance by comparing the relative CPU time182

while varying several user-defined experimental parameters. We found that increasing the effective183

population affects our software’s computational performance most substantially (31-fold increase in184

CPU time when increasing the simulated population size from 300 to 1000 individuals; supplementary185

table S1).186
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3.3 Benchmarking Bait-ER with LLS, CLEAR and WFABC187

3.3.1 Simulated Moran trajectories188

To compare the performance of Bait-ER to that of other relevant software, we set out to simulate189

Moran frequency trajectories under the base experiment conditions described above. We tested Bait-ER190

as well as CLEAR (Iranmehr et al., 2017), LLS (Taus et al., 2017) and WFABC (Foll et al., 2015) on191

100 trajectories for 4 starting frequencies (ranging from 1% to 50%) and 4 selection coefficients192

(0 � Neσ � 10). All population parameters were tested for both 75 and 150 generations of193

experimental evolution. Figure 5 shows the σ estimates for all methods under two starting frequency194

scenarios – 10% and 50%. CLEAR and LLS largely agree with Bait-ER’s estimates of σ, even though195

the level of statistical significance is often not the same. It is evident that LLS produces estimates that196

are not as accurate as CLEAR’s. This might have to do with the former not explicitly considering197

sampling bias in pool-seq data as a direct source of error. On the other hand, WFABC systematically198

disagrees with Bait-ER’s estimates because its distribution is very skewed towards high selection199

coefficients. This is perhaps unsurprising given that WFABC does not consider replicate populations nor200

does it account for finite sequencing depth unlike the other three methods. We have included WFABC201

in our study for comparing Bait-ER with another Bayesian method. However, WFABC was not designed202

for E&R experiments, hence its poor performance on our simulated datasets.203

Despite Bait-ER and CLEAR generally agreeing on the estimates of σ, there are a few trajectories that204

result in divergent estimates between these two methods. This is the case for those estimates seen on205

the top right plot in the leftmost corner in figure 5. In these few cases, Bait-ER overestimates σ,206

whereas CLEAR produces estimates closer to the true value. We investigated these further, and it207

seems that most alleles get lost – or fixed if we consider the alternative allele – between the first and208

the second time point. Furthermore, Bait-ER’s BFs are also significant (mean approx. 6.4), suggesting209

our method is reflecting consistency across replicates (for further details, see fig. S6).210

Regarding computational performance, Bait-ER seems to be the fastest of the four methods, even211

though it is comparable to WFABC (see fig. 6). However, we tested WFABC on the first replicate212

population data rather than the five experimental replicates used for the three remaining methods.213

Additionally, WFABC does not provide any statistical testing output such as a Bayes Factor. All these214

features make Bait-ER more thorough and just as fast as WFABC. In contrast, CLEAR and LLS are215

slower than the other two approaches. While CLEAR takes less than 40 seconds on average to analyse216

100 sites, LLS is the slowest of the four, averaging around 4 minutes. Overall, these results suggest217

Bait-ER is just as accurate and potentially faster than other currently available approaches, which218

makes it a good resource for testing and inferring selection from genome-wide polymorphism datasets.219

8

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.12.15.422880doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422880
http://creativecommons.org/licenses/by/4.0/


3.3.2 Complex simulation scenarios with recombination220

For a more comprehensive study of Bait-ER’s performance, we have analysed a complex simulated221

dataset produced by Vlachos et al. (2019). The authors simulated an E&R experiment inspired by the222

experimental setup of Barghi et al. (2019) and used polymorphism data from a Drosophila melanogaster223

population. In particular, we choose to focus on the classic sweep scenario, which is one of three224

complex scenarios simulated in Vlachos et al. (2019). For the sweep scenario, each experiment had 30225

targets of selection randomly distributed along the chromosome arm. Each SNP was simulated with a226

fixed selection coefficient of 0.05. This dataset is key for benchmarking software like Bait-ER because it227

accounts for varying rates of recombination along the genome as well as replicated populations.228

ROC (Receiver Operating Characteristic) curves are compared for five methods, Bait-ER, CLEAR, the229

CMH test (Agresti, 2003), LLS and WFABC, similarly to figure 2A in Vlachos et al. (2019). Bait-ER230

performs well with an average true positive rate of 80% at a 0.2% false positive rate (fig. 7). Its231

performance is as good as the CMH test’s, but it does underperform slightly in comparison to CLEAR.232

Bait-ER, CLEAR and the CMH test greatly overperform LLS and WFABC.233

ROC curves serve the purpose of showing how a method’s level of statistical significance compares to234

other methods’, may it be a p-value or a BF. It addresses whether the method places the true targets235

of selection amongst its highest scoring hits. While this is informative, it fails to account for the236

importance of finding a suitable significance threshold. For example, figure 7 suggests that Bait-ER237

and the CHM test perform very similarly. However, the CHM test returns more potential targets than238

Bait-ER when comparable thresholds are used for both methods (e.g. figure 10 that shows the239

comparison between Bait-ER logBFs and CMH test p-values for a real D. simulans dataset). This240

indicates that Bait-ER is more conservative and that the CMH test is more prone to producing false241

positives.242

To assess why Bait-ER seems to be outperformed by CLEAR, we further investigated CLEAR’s243

selection coefficient estimates. Comparison of selection coefficients estimated by Bait-ER and CLEAR244

showed that Bait-ER is slightly more accurate at estimating true targets’ σ (fig. S7). In addition, it245

seems that those trajectories that scored highest with CLEAR are also the highest Bait-ER σ̂ (fig. S8).246

Overall, Bait-ER and CLEAR perform to a similar high standard. However, the frequency variance filter247

implemented in Bait-ER seems to explain our method’s slight underperformance shown in figure 7.248

Whilst the two method’s false positive rates seem to be comparable, Bait-ER excluded a few selected249

sites from further analyses as they had changed very little in frequency throughout the experiment.250

Despite having excluded fewer than 70 (out of 30 targets times 100 experiments) targets of selection,251

Bait-ER’s filtering step has also classified approximately the same amount of neutral trajectories for252

being too flat for inferring selection.253
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Overall, our results indicate that the dataset might be impacted by a phenomenon known as254

Hill-Robertson Interference (HRI) (Hill and Robertson, 1966). This is when adaptation is hindered by255

linked positively selected loci. It can result in incomplete sweeps, which are often hard to detect.256

Bait-ER estimated scaled selection coefficients ranged from 5.85 to 43.2, which suggests each target257

was under strong selection. Such values should be enough for selection to overcome genetic drift unless258

there is some degree of interference between selected sites within a 16Mb region. For the undetected259

targets of selection, the HRI effect and inconsistent responses between replicate populations might260

cause Bait-ER not to perform optimally.261

3.4 Analysing E&R data from hot adapted Drosophila simulans populations262

We have applied Bait-ER to a real E&R dataset that was published by Barghi et al. (2019). The263

authors exposed 10 experimental replicates of a Drosophila simulans population to a new temperature264

regime for 60 generations. Each replicate was surveyed using pool-seq every 10 generations. This265

dataset is particularly suited to demonstrate the relevance of our method, as Barghi et al. (2019)266

observed a strikingly heterogeneous response across the 10 replicates. The highly polygenic basis of267

adaptation has proved challenging to measure and summarise thus far.268

The D. simulans genome dataset is composed of six genomic elements: chromosomes 2-4 and269

chromosome X. For each element, we have estimated selection parameters using Bait-ER. Figure 8270

shows a Manhattan plot of BFs for the right arm of chromosome 3. We can observe that there are two271

distinct peaks across the chromosome arm that seem highly significant (BF greater than 9). These two272

peaks – one at the start and another just before the centre of the chromosome – should correspond to273

loci that responded strongly to selection in the new lab environment. Such regions display a consistent274

increase in frequency across replicate populations. Overall, there are only a few other peaks that exhibit275

very strong evidence for selection across the genome (fig. S10). Those are located on chromosomes276

2L, 2R and 3L. When compared to the CMH test results as per Barghi et al., Bait-ER’s most277

prominent peaks seem to largely agree with those produced by the CMH (see fig. S11). The same is278

true for high BF regions on chromosomes 2L and 2R where there are similarly located p-value chimneys279

at the start of these genomic elements (fig. S12). Both Bait-ER and the CMH test did not produce280

clear signals of selection on chromosomes 3L, 4 and on the X.281

One of the advantages of Bait-ER is that we have implemented a Bayesian approach for estimating282

selection parameters, which means we can calculate both the mean and variance of the posterior283

distributions. To examine both of these statistics, we looked into how the posterior variance varies as a284

function of mean σ. Figure 9 shows the relationship between variance and mean selection coefficient285

for the X chromosome. We observe that the highest mean values also correspond to those with the286
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highest variance. Interestingly, most of those do seem to be statistically significant at a fairly lenient287

threshold (BF = 2). This suggests that the strongest response to selection, i.e. the highest estimated288

σ values, are also those showing a highly heterogeneous response across replicates. The remaining289

genomic elements seem to show similar patterns, apart from chromosome 4 (see fig. S13). This is290

consistent with other reports that inferring selection on this chromosome is rather difficult due to its291

size and low levels of polymorphism (Jensen et al., 2002).292

Finally, we compared the p-values obtained by Barghi et al. (2019) and the BFs computed by Bait-ER.293

Barghi and colleagues performed genome-wide testing for targets of selection between first and last time294

points using the CMH test. The tests seem to largely agree for the most significant BFs correspond to295

the most significant p-values. However, Bait-ER appears to be more conservative than the CMH test.296

This follows from the finding that there is quite a substantial proportion of loci (less than 10% of all297

loci) that are deemed significant by a p-value threshold of 0.01, which are not accepted as such by298

Bait-ER. This is true even for a BF threshold of 2 such as that shown in figure 10 for chromosome 2L.299

Overall, Bait-ER performs well on such small experimental population. Bait-ER was designed to account300

for strong genetic drift on such small populations, hence the use of a discrete-population state space. It301

is rather conservative and produces only a few very significant peaks across the genome, which suggests302

it has a low false positive rate. Most of the genome produced BFs greater than 2, indicating that there303

is not enough resolution to narrow down candidate regions to specific genes despite those very304

significant peaks. Barghi et al. (2019) argue that there is strong genetic redundancy caused by a highly305

polygenic response to selection in their experiment. Despite Bait-ER modelling sweep-like scenarios306

rather than the evolution of a quantitative trait, the overall elevated BF signal across the genome might307

indicate that the genetic basis of adaptation to this new temperature regime is rather polygenic.308

3.5 Conclusions and future directions309

One of the main aims of E&R studies is to find targets of selection in genome-wide datasets. For that,310

we developed an approach that uses time series allele frequency data to estimate selection parameters.311

Bait-ER is a flexible statistical approach for inferring and testing for selection in laboratory experiments.312

It is faster and just as accurate as other relevant software. In addition, Bait-ER’s implementation of the313

Moran model makes it suitable for experimental set-ups with overlapping generations. This is an314

advantage since it can be used in many large scale E&R designs.315

Our results suggest that Bait-ER’s inference is mostly affected by low starting allele frequencies.316

However, this can be overcome should the sequencing depth or the number of experimental replicates317

be increased. Although increasing the number of replicates might increase the cost of setting up an318

E&R experiment quite substantially, an improved sequencing depth is certainly within reach. This319
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interesting result might help guide future research. Encouragingly, Bait-ER performed well at small320

manageable population sizes, suggesting replication is key, but large populations are not necessarily321

required for achieving good results.322

One aspect of time series polymorphism datasets that is worth our attention is that of missing data. It323

is sometimes the case that there is no frequency data at consecutive time points for a given trajectory.324

In the future, we will extend Bait-ER to allow for missing time points. Such a feature will enable one325

not to discard alleles for which not all time points have been sequenced. Using a probabilistic approach326

to estimate missing allele frequencies, Bait-ER will then be able to cope with missing data and estimate327

selection parameters.328

Our approach assumes that each site in the genome is independent from one another. However, all329

selected sites will affect neighbouring loci. Neutral sites will increase in frequency towards fixation along330

which the true targets of selection. This causes allele frequencies to co-vary and selection to be331

overestimated around selected sites. On the other hand, the interference between positively selected332

sites, the HRI effect, leads to underestimation of the selection coefficients. Bait-ER can be extended to333

explicitly account for linkage, which decays with distance from any given locus under selection.334

Modelling the evolution of linked sites is not trivial, but it can be achieved if one includes information on335

the recombination landscape in the future.336
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4 Material and Methods337

4.1 Modelling allele trajectories338

Let us assume that there is a biallelic locus with two alleles, A and a. The evolution of allele A in time339

is fully characterised by a frequency trajectory in the state space {nA, (N − n)a}, where n is the total340

number of individuals that carry allele A (in a population of size N). Supposing the allele evolves341

according to the Moran model, the transition rates for the process are the following342

n → n − 1 : n(N−n)
N

n → n + 1 : n(N−n)
N (1 + σ)

, (1)

where 1 + σ is the fitness of any A-type offspring and σ the selection coefficient for allele A. If σ = 0,343

i.e. A is evolving neutrally, then none of the alleles is preferred at reproduction. Let Xt be the number344

of copies of A in a population of N individuals; the probability of a given allele trajectory X can be345

defined using the Markov property as346

p(X | σ) = p(X0 = x0)
T�

t=1

p(Xt = xt | Xt−1 = xt−1,σ) , (2)

where T is the total number of time points measured in generations at which the trajectory was347

assayed. The conditional probability on the left-hand side of the equation has one calculating348

Xt = e
QdtXt−1, where Q is the rate matrix defined in (1) and dt the difference in number of349

generations between time point t and t − 1. The probability of a single allele frequency trajectory can350

be generalised for R replicates by assuming their independence351

p(X | σ) =
R�

r=1

p(Xr0 = x
r
0)

T�

t=1

p(Xrt = x
r
t | Xrt−1 = x rt−1,σ) . (3)

The main caveat for pool-seq data is the fact that it provides estimates for allele frequencies, not true352

frequencies. For that reason, we assume that the allele counts are generated by a binomial sampling353

process B(n/N, C) which depends on the frequency of allele A and the total sequencing depth C354

obtained by pool-seq. We then recalculate the probability of the Moran states given an observed allele355

count c by considering the inverse of the binomial sampling process356

p({nA, (N − n)a} | {c, C}) ∝
�
C

c

�� n
N

�c �
1− n
N

�C−c
, n = 0, . . . , N . (4)

This step is key for it corrects for sampling noise generated during data acquisition. This is particularly357

relevant for low frequency alleles and poorly covered loci.358
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4.2 Inferential framework359

We used a Bayesian framework to estimate σ. It requires allele counts and coverage for each time point360

and replicate population {c,C} at each position as input. The posterior distribution can then be361

obtained by362

p(σ|{c,C}) ∝ p(σ)p({c,C}|σ) . (5)

Our algorithm is defined using a gamma prior on σ. The posterior cannot be formally obtained, hence363

we define a grid of σ values for which we calculate the posterior density. Estimating the posterior364

distribution p(σ|{c,C}) is a time consuming part of our algorithm because the likelihood is365

computationally costly to compute. To avoid this burden, we fit the posterior to a gamma density366

log p(σ|{c,C}) = c + (α− 1) logσ − βσ , (6)

where α and β are the shape and rate parameters, respectively, and c the normalization constant. The367

gamma fitting represents a good trade-off between complexity, since it only requires two parameters,368

but its density may take many shapes. As one requires the values of α and β that best fit the gamma369

density for further analyses, we find the least squares estimates of α and β (and c), such that the error370

is minimal. The estimation is as follows371

α̂ =
−(s2s4 + s24 − s6 − s7)(s21 − s8)− (s3 + s1s2 + s1s4 + s5)(s1s4 − s5)

s7s
2
1 − 2s4s5s1 + s25 + s24 s8 − s7s8

∧

β̂ =
−s3s24 + s2s5s4 + s1s6s4 − s5s6 − s1s2s7 + s3s7

s7s
2
1 − 2s4s5s1 + s25 + s24 s8 − s7s8

,

(7)

where s1 =
�
i xi/N, s2 =

�
i yi/N, s3 =

�
i xiyi/N, s4 =

�
i log xi/N, s5 =

�
i xi log xi/N,372

s6 =
�
i yi log xi/N, s7 =

�
i log

2 xi/N and s8 =
�
i x
2
i /N. We evaluated the fitting of the gamma373

density for neutral and selected loci, and observed that a gamma surface with five points describes the374

log posterior of selected and neutral loci quite suitably (fig. S1).375

Additionally, Bait-ER was implemented with an allele frequency variance filter that is applied before376

performing the inferential step of our algorithm. This filtering process excludes any trajectories that do377

not vary or vary very little throughout the experiment from further analyses. To do that, we assess the378

trajectories’ frequency increments and exclude loci with frequency variance lower than 0.01. These379

correspond to cases where trajectories are too flat to perform any statistical inference on. Trajectories380

such as these typically have both inflated σ̂ and BFs.381

Bait-ER is implemented in C++ and freely available for download at382

https://github.com/mrborges23/Bait-ER (accessed on December 12th 2020). Here, we provide a383

tutorial on how to compile and run Bait-ER, including a toy example with 100 loci taken from Barghi384
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et al. (2019).385

4.3 Simulated data386

We tested our algorithm’s performance under several biologically relevant scenarios using (1) a Moran387

model allele frequency trajectory simulator, and (2) the individual-based forward simulation software388

MimicrEE2 (Vlachos and Kofler, 2018).389

The Moran model simulator was used, firstly, for benchmarking Bait-ER’s performance across a range390

of experimental conditions, and, secondly, to compare our estimates of σ to those of CLEAR (Iranmehr391

et al., 2017), LLS (Taus et al., 2017) and WFABC (Foll et al., 2015). We started out by testing392

Bait-ER under different combinations of experimental and population parameters. A full description of393

these parameters can be found in table S2. Scenarios that explored several experimental designs394

included those with varying coverage (20x, 60x and 100x), number of replicate populations (2, 5 and395

10) and number of sampled time points (2, 5 and 11). In addition to simulating even sampling396

throughout the experiment, we tested our method on trajectories where we varied sampling towards the397

start or towards the end of said experiment. Total study length might also affect Bait-ER’s estimation,398

therefore we tracked allele frequency trajectories for 0.2Ne and 0.4Ne generations.399

We set out to compare Bait-ER to other selection estimation software using experimental parameters400

that resemble realistic E&R designs. Our base experiment replicate populations consist of 300401

individuals that were sequenced to 300x coverage. There are five such replicates that were evenly402

sampled five times throughout the experiment. We then simulated 100 allele frequency trajectories for403

all starting frequencies and selection coefficients mentioned above. We simulated trajectories for404

0.25Ne as well as 0.5Ne generations.405

The performance of both CLEAR and LLS was assessed by running the software on any sync file with a406

fixed population size of 300 individuals (flag –N=300 and estimateSH(..., Ne = 300), respectively).407

Additionally, to estimate the selection coefficient under the LLS model, we used the estimateSH(...)408

function assuming allele codominance (argument h = 0.5). WFABC was tested with a fixed population409

size of Ne individuals (flag -n 300), lower and upper limit on the selection coefficient of -1 and 1,410

respectively (flags -min s -1 and -max s 1), maximum number of simulations of 10000 (flag -max sims411

10000) and four parallel processes (flag -n threads 4). The program was run for 1200 seconds, after412

which the process timed out to prevent it from running indefinitely in case fails to converge. This413

caused trajectories with starting allele frequencies of 5% and 1% not to be analysed at all. We have414

thus only been able to include results for alleles starting at 10% and 50% frequencies.415

We used data simulated by Vlachos et al. (2019) using MimicrEE2 (Vlachos and Kofler, 2018) to416
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benchmark Bait-ER and compare it with other relevant statistical methods. MimicrEE2 allows for whole417

chromosomes to be simulated under a wide range of parameters mimicking the effects of an E&R setup418

on allele frequencies. We used this data for it allows for testing our method including relevant biological419

parameters such as variation in recombination rate. Moreover, the simulated data were used to test the420

performance of other relevant statistical methods.This dataset consisted of 10 replicate experimental421

populations, and each experimental population consisted of 1,000 diploid organisms evolving for 60422

generations. The haplotypes used to found the simulated populations were based on 2L chromosome423

polymorphism patterns from Drosophila melanogaster fly populations (Bastide et al., 2013).424

Recombination rate variation was based on the D. melanogaster recombination landscape (Comeron425

et al., 2012). Low recombination regions were removed from the dataset. 30 segregating loci were426

randomly picked to be targets of selection with a selection coefficient of 0.05. Sites were initially427

segregating at a frequency between 0.05 and 0.95.428

4.4 Application429

We applied our algorithm to the recently published dataset from an E&R experiment in 10 replicates of430

a Drosophila simulans population to a hot temperature regime for 60 generations (Barghi et al., 2019).431

All populations were kept at a census size of 1000 individuals. The experimental regime consisted of432

light and temperature varying every 12 hours. The temperature was set at either 18◦C or 28◦C to433

mimic night and day, respectively. The authors extracted genomic DNA from each replicate population434

every 10 generations using pool-seq. The polymorphism datasets are available at435

https://doi.org/10.5061/dryad.rr137kn in sync format. The full dataset consists of more than 5436

million SNPs. We subsampled the data such that Bait-ER was tested on 20% of the SNPs.437

Subsampling was performed randomly across the whole genome.438

16

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.12.15.422880doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422880
http://creativecommons.org/licenses/by/4.0/


5 Acknowledgements439

This work was supported by the Vienna Science and Technology Fund (WWTF) through project440

MA16-064. CK received funding from the Royal Society (RG170315) and Carnegie Trust (RIG007474).441

The computational results presented have been partly achieved using the St Andrews Bioinformatics442

Unit (StABU), which is funded by a Wellcome Trust ISSF award (grant 105621/Z/14/Z). We are443

grateful to Peter Thorpe for his help with using the StABU cluster. We thank Neda Barghi, Abigail444

Laver and Mike Ritchie for helpful discussions and suggestions on an early version of Bait-ER. The445

genome-wide scan for selected loci in the Barghi et al. (2019) dataset was conducted using the Vienna446

Scientific Cluster (VSC).447

17

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.12.15.422880doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422880
http://creativecommons.org/licenses/by/4.0/


6 Tables448

WFABC CLEAR LLS Bait-ER

Inference

approach

Approximate

Bayesian

computation

Maximum

likelihood

Linear least

squares*
Bayesian

Hypothesis

testing

• Bayes factors
• Depends
heavily on

summary

statistics

• Likelihood-
ratio

tests

• Empirical
p-values based

on

genome-wide

drift

simulations

• Empirical
simulated

p-values based

on simulations

of allele

trajectories

• Bayes factors
• Based on the
posterior

distribution

Assumptions • WF model • WF model

• WF and
Moran model

• The allele
frequencies

vary linearly

with the

selection

coefficients

• Weak
selection

• Time-
continuous

Moran model

Accounts for No Yes Yes Yes

replicates

Accounts for No Yes No Yes

sequencing

noise

Reference
(Foll et al.

2015)

(Iranmehr et al.

2017)

(Taus et al.

2017)
This study

Table 1: Currently available software for estimating selection coefficients in E&R experiments.a

aThe table describes several features of each method namely: i) the approach used for inferring selection coefficients, ii)

whether it performs hypothesis testing or not, iii) what sort of assumptions are made about the underlying population genetics

model, iv) its overall computational and inference performance, v) whether it accounts for multiple replicate populations,

and vi) whether it accounts for sampling variance due to sequencing noise. WF: Wright-Fisher. *LLS under the assumption

of linearity is equivalent to a maximum likelihood approach.
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7 Figures449

Time t0 Time t1 Time tN

Pressure

Sequencing

Evolve
. . . 

Cage

Replicates

Figure 1: Example of an E&R experimental setup. E&R experiments expose several replicated populations (e.g.,

of flies, yeast, viruses) to a selective pressure (e.g., temperature, food regimes) for a specific number of generations

tT . The replicated populations are surveyed at several time points by whole-genome sequencing, which allows one

to quantify changes in allele frequencies over time.
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Figure 2: Impact of the prior on the posterior estimates of the selection coefficients. The posterior distribution

of σ was calculated using gamma priors G(α,β), where α and β are the shape and rate parameters. We set α = β

and allowed β to vary from 0.001 to 105 (i.e. ranging from a very uninformative to a very informative prior,

respectively). The different priors were tested under three E&R experiment scenarios: the first was a sparse

experimental design (coverage (C) = 20x, number of time points (T) = 2 and number of replicates (R) = 2), while

the second mimicked a standard set up (C = 60x, T = 5 and R = 5). Finally, the third scenario had the most

thorough experimental conditions (C = 100x, T = 11 and R = 10). Red lines indicate the true value of σ. Blue

lines point to the mean of the prior imposed on σ. Black lines and points correspond to the posterior mean of σ

and credibility intervals at 0.95.
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Figure 3: Impact of E&R experimental design on the estimated selection coefficients. Each square of the

heatmap represents the error of the estimated selection coefficients, i.e., the absolute difference between the

estimated and the true σ: |σ̂ − σ|, for a range of population dynamics and E&R experimental conditions. (A)
Number, span and distribution of sampled time points. The six time schemes differ according to the following

criteria: most time schemes have five sampling events, except for TS1 and TS6, which have two and eleven time

points, respectively; all time schemes have a total span of Ne/5 generations, except for TS5, which has double the

span (2Ne/5); uniform sampling was used in most scenarios but for TS3, which is more heavily sampled during the

first half of the experiment, and TS4, during the second half. The two maximum experiment lengths considered

(0.2Ne and 0.4Ne) were chosen based on typical E&R experimental designs. (B) number of replicates. (C)

coverage. To test the experimental conditions, we defined a base experiment with five replicates, five uniformly

distributed time points (total span of 0.20Ne generations) and a coverage of 60x. The complete set of results is

shown in supplementary fig. S2-S5.
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Figure 4: Impact of the user-specified population size on the estimation of selection coefficients. The plots

show the distribution of the estimated selection coefficients where the population size is misspecified. Vertical

lines and points indicate the interquartile range and median selection coefficient. Each plot represents a specific

scenario that was simulated by varying the population size, the true selection coefficient (indicated within brackets

(Ne , Neσ)) and starting allele frequency (indicated by the yellow-to-red colour gradient). The numbers next to

each bar correspond to the Spearman’s correlation coefficient, which correlates the BFs of the 100 replicated

trajectories between the cases where we have either under- and overspecified the population size (Ne = 100

or 1000, respectively) and the case where we use the true population size (Ne = 300). Regarding simulated

experimental design, we defined a base experiment with five replicates, five uniformly distributed time points (total

span of 0.20Ne generations) and a coverage of 60x.
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Figure 5: Comparison of estimates of σ produced by Bait-ER versus CLEAR, LLS and WFABC. These plots

include estimates for those trajectories simulated with starting frequencies of 10% and 50%. Each horizontal

panel compares Bait-ER’s estimates to those produced by CLEAR, LLS and WFABC from top to bottom row,

respectively. The left and right hand side panels correspond to two different experiment lengths: 150 and 75

generations, respectively. LLS returned NA’s for 4 out of 800 trajectories which were excluded from these graphs.
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Figure 6: Real computational time for Bait-ER and the other three approaches tested. From left to right,

computational time in seconds including both inference and hypothesis testing for Bait-ER, CLEAR, LLS and

WFABC is shown here. Similarly to figure 5, these boxplots include estimates for those trajectories simulated with

starting frequencies of 10% and 50%, as well as both study lengths investigated, i.e. 150 and 75 generations.

Those 4 NA’s produced by LLS were again removed from these plots.

23

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.12.15.422880doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422880
http://creativecommons.org/licenses/by/4.0/


False positive rate

Av
er

ag
e 

tru
e 

po
si

tiv
e 

ra
te

0.000 0.002 0.004 0.006 0.008 0.010

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CLEAR CMH LLS WFABC Bait−ER

Figure 7: Performance of Bait-ER and other software at testing for selection in a complex simulated dataset.

ROC (Receiver Operating Characteristic) curves for Bait-ER, CLEAR, CMH, LLS and WFABC under the classic

sweep scenario simulated by Vlachos et al. (2019).
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Figure 8: Bayes Factors on chromosome 3R. This Manhattan plot shows log-transformed Bayes Factors computed

by Bait-ER for loci along the right arm of the 3rd chromosome in the Barghi et al. (2019) time series dataset. The

orange line indicates a conservative threshold of approximately 4.6, which corresponds to log(0.99/0.01), meaning

all points in orange have very strong evidence for these to be under selection. The SNPs that are significant at

this level are sorted by size according to how strong Bait-ER’s selection coefficients are. In other words, points are

sized according to how strong the large selection coefficient is estimated to be.
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Figure 9: Variance versus mean sigma on the X chromosome. This graph compares log transformed variances

in σ estimates to average σs. The variance is calculated using the inferred rate and shape parameters for the

beta distribution, and the average σ is the mean value of the posterior distribution estimated by Bait-ER. Orange

coloured points are significant at a conservative BF threshold of log(0.99/0.01), approx. 4.6.
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Figure 10: Bait-ER’s Bayes Factors versus CMH test’s p-values on chromosome 2L. Orange coloured points

correspond to BFs which are greater than log(0.99/0.01) (approx. 4.6) and p-values less than or equal to 0.01, i.e.

those that are considered significant by both tests. Blue coloured points indicated that the computed BF is greater

than our threshold, but not significant according to the CMH test. Additionally, dark grey points are significant

according to the CMH test, but not to Bait-ER, and light grey points are inferred not significant by both tests.
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Bastide, H., Betancourt, A., Nolte, V., Tobler, R., Stöbe, P., Futschik, A., and Schlötterer, C. (2013).455

A genome-wide, fine-scale map of natural pigmentation variation in drosophila melanogaster. PLoS456

genetics, 9(6):e1003534.457

Burke, M. K., Liti, G., and Long, A. D. (2014). Standing Genetic Variation Drives Repeatable458

Experimental Evolution in Outcrossing Populations of Saccharomyces cerevisiae. Molecular Biology459

and Evolution, 31(12):3228–3239.460

Cochran, W. G. (1954). Some Methods for Strengthening the Common χ 2 Tests. Biometrics,461

10(4):417.462

Comeron, J. M., Ratnappan, R., and Bailin, S. (2012). The many landscapes of recombination in463

drosophila melanogaster. PLoS genetics, 8(10):e1002905.464

Debelle, A., Courtiol, A., Ritchie, M. G., and Snook, R. R. (2017). Mate choice intensifies motor465

signalling in Drosophila. Animal Behaviour, 133:169–187.466

Foll, M., Shim, H., and Jensen, J. D. (2015). WFABC: a Wright-Fisher ABC-based approach for467

inferring effective population sizes and selection coefficients from time-sampled data. Molecular468

Ecology Resources, 15(1):87–98.469

Futschik, A. and Schlötterer, C. (2010). The Next Generation of Molecular Markers From Massively470

Parallel Sequencing of Pooled DNA Samples. Genetics, 186(1):207–218.471

Godwin, J. L., Vasudeva, R., Michalczyk, �L., Martin, O. Y., Lumley, A. J., Chapman, T., and Gage, M.472

J. G. (2017). Experimental evolution reveals that sperm competition intensity selects for longer,473

more costly sperm. Evolution Letters, 1(2):102–113.474

Hill, W. G. and Robertson, A. (1966). The effect of linkage on limits to artificial selection. Genetical475

Research, 8(03):269.476

Iranmehr, A., Akbari, A., Schlötterer, C., and Bafna, V. (2017). Clear: Composition of Likelihoods for477

Evolve and Resequence Experiments. Genetics, 206(2):1011–1023.478

Jensen, M. A., Charlesworth, B., and Kreitman, M. (2002). Patterns of genetic variation at a479

chromosome 4 locus of Drosophila melanogaster and D. simulans. Genetics, 160(2):493–507.480

Jonas, A., Taus, T., Kosiol, C., Schlotterer, C., and Futschik, A. (2016). Estimating the Effective481

Population Size from Temporal Allele Frequency Changes in Experimental Evolution. Genetics,482

204(2):723–735.483

Kawecki, T. J., Lenski, R. E., Ebert, D., Hollis, B., Olivieri, I., and Whitlock, M. C. (2012).484

Experimental evolution. Trends in Ecology & Evolution, 27(10):547–560.485

Kofler, R., Pandey, R. V., and Schlötterer, C. (2011). PoPoolation2: Identifying differentiation between486

populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics, 27(24):3435–3436.487

27

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.12.15.422880doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422880
http://creativecommons.org/licenses/by/4.0/


Kofler, R. and Schlötterer, C. (2014). A Guide for the Design of Evolve and Resequencing Studies.488

Molecular Biology and Evolution, 31(2):474–483.489

Papkou, A., Guzella, T., Yang, W., Koepper, S., Pees, B., Schalkowski, R., Barg, M. C., Rosenstiel,490

P. C., Teotónio, H., and Schulenburg, H. (2019). The genomic basis of red queen dynamics during491

rapid reciprocal hostpathogen coevolution. Proceedings of the National Academy of Sciences of the492

United States of America.493

Schlötterer, C., Kofler, R., Versace, E., Tobler, R., and Franssen, S. U. (2015). Combining494

experimental evolution with next-generation sequencing: a powerful tool to study adaptation from495

standing genetic variation. Heredity, 114(5):431–440.496

Taus, T., Futschik, A., and Schlötterer, C. (2017). Quantifying Selection with Pool-Seq Time Series497

Data. Molecular Biology and Evolution, 34(11):3023–3034.498
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