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Abstract Recent human behavioral and neuroimaging results suggest that people are selective9

in when they encode and retrieve episodic memories. To explain these findings, we trained a10

memory-augmented neural network to use its episodic memory to support prediction of11

upcoming states in an environment where past situations sometimes reoccur. We found that the12

network learned to retrieve selectively as a function of several factors, including its uncertainty13

about the upcoming state. Additionally, we found that selectively encoding episodic memories at14

the end of an event (but not mid-event) led to better subsequent prediction performance. In all of15

these cases, the benefits of selective retrieval and encoding can be explained in terms of16

reducing the risk of retrieving irrelevant memories. Overall, these modeling results provide a17

resource-rational account of why episodic retrieval and encoding should be selective and lead to18

several testable predictions.19

20

Introduction21

In a natural setting, when should an intelligent agent encode and retrieve episodic memories? For22

example, suppose I am viewing the BBC television series Sherlock. Should I retrieve an episodic23

memory that I formed when I watched earlier parts of the show, and if so, when should I retrieve24

this memory? When should I encode information about the ongoing episode?25

Although episodic memory is one of the most studied topics in cognitive psychology and cogni-26

tive neuroscience, the answers to these questions are still unclear, in large part because episodic27

memory research has traditionally focused on experiments using simple, well-controlled stimuli,28

where participants receive clear instructions about when to encode and retrieve. For example, a29

typical episodic memory experiment could ask participants to remember a set of random word-30

pairs; later on, given a word-cue, the participants need to report the associated word (Kahana,31

2012). In this kind of word-pair experiment, the optimal timing for encoding and retrieval is clear:32

The participant should encode an episodic memory when they study a word-pair and retrieve the33

associate when they are prompted by a cue. Existing computational models of human memory34

have similarly focused on discretized list-learning paradigms like the (hypothetical) word-pair learn-35

ing study described above – these models (see Norman et al. 2008 for a review) are primarily de-36

signed to answer questions about what happens as a result of a particular sequence of encoding37

and retrieval trials, not questions about when encoding and retrieval should occur in the first place.38

Recently, there has been increasing interest in using naturalistic stimuli such as movies or au-39
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dio narratives in psychological experiments, to complement results from traditional experiments40

using simple and well-controlled stimuli (Sonkusare et al., 2019; Nastase et al., 2020). These ex-41

periments have the potential to shed light on when encoding and retrieval take place during event42

perception in a naturalistic context, where no one is explicitly instructing participants about how43

to use episodic memory. These studies have found evidence that episodic encoding and retrieval44

occur selectively over time. For example, results from fMRI studies suggest that episodic encoding45

occurs preferentially at the ends of events (Baldassano et al., 2017; Ben-Yakov et al., 2013; Ben-46

Yakov and Henson, 2018; Reagh et al., 2020), and episodic retrieval happens preferentially when47

people are uncertain about the ongoing situation (Chen et al., 2016). Selectivity effects can also48

be observed in the realm of more traditional list-learning studies – for example, there is exten-49

sive behavioral and neuroscientific evidence that stimuli that trigger strong prediction errors are50

preferentially encoded into episodic memory (for reviews, see Frank and Kafkas 2021; Quent et al.51

2021b).52

The goal of the present work is to develop a computational model that can account for when53

episodic encoding and retrieval take place in naturalistic situations; the model is meant to capture54

key features of cortical-hippocampal interactions, as described below. We formalize the task of55

event processing by assuming that events involve sequences of states drawn from some underly-56

ing event schema, and that the agent’s goal is to predict upcoming states. We then seek to identify57

policies for episodic encoding and retrieval by optimizing a neural networkmodel on the event pro-58

cessing task. We analyze how the optimal policy changes under different environmental regimes,59

and how well this policy captures human behavioral and neuroimaging data. To the extent that60

they match, the model can be viewed as providing a resource-rational account of those findings61

(i.e., an explanation of how these encoding and retrieval policies arise as a joint adaptation to the62

constraints imposed by the human cognitive architecture and the constraints imposed by the task63

environment; Griffiths et al. 2015; Lieder and Griffiths 2019; see also Anderson and Schooler 2000;64

Gershman 2021).65

Overall, we find that the best-performing policies are selective in when encoding and retrieval66

take place, and that the types of selectivity identified by the model line up well with types of selec-67

tivity identified empirically. The key intuition behind these effects is that – while retrieving episodic68

memories can help us to predict upcoming states – there are risks to episodic retrieval: If you69

retrieve an irrelevant memory, you could make confident, wrong predictions that have negative70

consequences. The selective encoding and retrieval policies identified by the model help it to mit-71

igate these risks while retaining the benefits of episodic memory. In the sections that follow, we72

describe our cortical-hippocampal model, howwe applied it to the tasks of interest, and the results73

of our simulations.74

A neural network model of cortical-hippocampal interaction75

Our modeling work leverages recent advances in memory-augmented neural networks (Graves76

et al., 2016; Ritter et al., 2018), deep reinforcement learning (Mnih et al., 2016; Sutton and Barto,77

2018), and meta-learning (Wang et al., 2018; Botvinick et al., 2019) – these advances (collectively)78

make it possible for neural network models to learn to use episodic memory in the service of predic-79

tion.80

Our model (Figure 1A) has two parts, which are meant to correspond to cortex and hippocam-81

pus, and which collectively implement three key memory systems (working memory, semantic82

memory, and episodic memory). The cortical part of the model incorporates a Long-Short-Term83

Memory module (LSTM; Hochreiter and Schmidhuber 1997), which is a recurrent neural network84

(RNN) with gating mechanisms. In addition to the LSTM module, the cortical network also incor-85

porates a nonlinear decision layer (to assist with mapping inputs to next-state predictions) and an86

episodic memory (EM) gating layer, the function of which is described below. The LSTM module87

gives the cortical network the ability to actively maintain and integrate information over time. For88

terminological convenience, wewill refer to this activemaintenance ability in the paper as “working89
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Figure 1. Cortical-hippocampal Model. A) At a given moment, the cortical part of the model (shown in gray)
observes the current state and predicts the upcoming state. It incorporates a Long Short Term Memory
(LSTM; Hochreiter and Schmidhuber, 1997) network, which integrates information over time; the LSTM feeds
into a non-linear decision layer. The LSTM and decision layers also project to an episodic memory (EM) gating
layer that determines when episodic memories are retrieved (see part C of figure). The entire cortical network
is trained by an advantage actor critic (A2C) objective (Mnih et al., 2016) to optimize next-state prediction. B)
Episodic memory encoding involves copying the current hidden state and appending it to the list of memories
stored in the episodic memory system (shown in blue), which is meant to correspond to hippocampus. C)
Episodic memory retrieval is implemented using a leaky competing accumulator model (LCA; Usher and
McClelland, 2001) – each memory receives excitation proportional to its similarity to the current hidden state,
and different memories compete with each other via lateral inhibition. The EM gate (whose value is set by the
EM gate layer of the cortical network) scales the level of excitation coming into the network. After a fixed
number of time steps, an activation-weighted sum of all memories is added back to the cell state of the LSTM.

memory”. However, we should emphasize that – contrary to classic views of working memory (e.g.,90

Baddeley 2000) – our model does not have a working memory buffer that is set apart from other91

parts of the model that do stimulus processing; rather, active maintenance and integration are92

accomplished via recurrent activity in the parts of the model that are doing stimulus processing.93

In this respect, the architecture of our model fits with the process memory framework set forth by94

Hasson et al. (2015). In addition to this active maintenance ability, the connection weights of the95

cortical network gradually extract regularities from the environment over time; this gradual learn-96

ing of regularities can be viewed as an implementation of semantic memory (Rumelhart et al.,97

1987;McClelland and Rogers, 2003; Rogers and McClelland, 2004; Saxe et al., 2019).98

The cortical network is also connected to an episodic memory module (meant to simulate hip-99

pocampus) that stores snapshots of cortical activity patterns (Figure 1B) and reinstates these pat-100

terns to the cortical network; see the next section for more information on the model’s encoding101

policy (i.e., when it stores snapshots). Episodic memory retrieval (Figure 1C) is implemented via a102

leaky competing accumulator process (LCA; Usher and McClelland 2001; Polyn et al. 2009). In the103

LCA, memories compete to be retrieved according to how well they match the current state of the104

cortical network, and the output of this competitive retrieval process is added back into the corti-105

cal network. Crucially, the degree to which memories are activated during the retrieval process is106

multiplicatively gated by the EM gate layer of the cortical network – this gives the cortical network107

the ability to shape when episodic retrieval occurs (for more details on how EMworks in themodel,108

see the Episodic retrieval section in the Methods).109

The entire cortical network (composed of the LSTM, decision, and EM gate layers) is trained110

via a reinforcement learning algorithm to optimize prediction of the next state given the current111

state as input; the trainable nature of the EM gate allows the network to learn a policy for when112

episodic memory retrieval should occur, in order to optimize next-state prediction. Specifically, we113

used a meta-learning procedure (Wang et al., 2018) whereby the model was trained repeatedly on114

all conditions of interest with modifiable cortical weights (meta-training), before being evaluated in115

these conditions with cortical weights frozen (meta-testing). This procedure captures the idea that116

cortical weights only change gradually (McClelland et al., 1995), and thus are unlikely to bemodified117

enough by one experience to support recall of unique aspects of that experience; as such, memory118

for these unique details depends critically on that information being held in working memory or119

episodic memory (for more details, see the Model training and testing section in the Methods).120
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Duringmeta-training, themodel is rewarded for correct next-state predictions andpunished for121

incorrect next-state predictions; we also gave the model the option of saying “don’t know” (instead122

of predicting a specific next state), in which case it receives zero reward. In the real world, there are123

often different costs associated with making commission errors (wrong predictions) and omission124

errors (not making a prediction). Having the “don’t know” option gives the model the freedom125

to choose whether it should make a specific prediction (thereby incurring the risk of making a126

commission error and receiving a penalty) or whether it should express uncertainty to avoid a127

possible penalty. Intuitively, this choice should depend on the environment. For example, if the128

penalty formisprediction is zero, themodel shouldmake a prediction even if it has high uncertainty129

about the upcoming state. In contrast, if the penalty for misprediction is high, the model should130

only make a prediction if it is certain about what would happen next. Practically speaking, the131

consequence of including the “don’t know” option is to induce the model to wait longer to retrieve132

episodic memories (see results below and also Appendix 5).133

Modeling the contribution of episodic memory to naturalistic event under-134

standing135

Our initial modeling target was a recent study by Chen et al. (2016), which explored the role of136

episodic memory in naturalistic event understanding. In this study, participants viewed an episode137

from the Twilight Zone television series. This episode was divided into two parts (part 1 and part 2).138

Participants in the recentmemory (RM) condition viewed the twoparts back-to-back; participants in139

the distant memory (DM) condition had a one-day gap in between the two parts of this TV episode;140

participants in the no memory (NM) condition only watched the second part (Chen et al., 2016). In141

the RM condition, participants can build up a situationmodel – i.e., a representation of the relevant142

features of the ongoing situation (Richmond and Zacks, 2017; Stawarczyk et al., 2019; Zacks, 2020;143

Ranganath and Ritchey, 2012) – during the first part of the movie and actively maintain it over144

time; all of that information is still actively represented at the start of part 2. By contrast, in the145

DM condition, a day has passed between part 1 and part 2, so participants are no longer actively146

maintaining the relevant situation model at the start of part 2.147

Taken together, these conditions can be viewed as manipulating the availability of relevant148

episodic memories and also the demand for episodic retrieval. In the NM condition, at the start149

of part 2, participants have gaps in their situation model (because they did not view part 1) and150

thus there is a strong demand to fill those gaps, to better understand what is going on; however,151

they do not have any relevant episodic memories available to fill those gaps. In the DM condition,152

because of the one-day delay, participants also have gaps in their representation of the situation153

in working memory that need to be filled with information from part 1; however, unlike the NM154

participants, DM participants can meet this demand by retrieving information about part 1 that155

was stored in episodic memory. In the RM condition, like the DM condition, participants have rel-156

evant information about part 1 available in episodic memory (participants’ experience in part 1 of157

the DM and RM conditions was identical, so presumably they stored the same episodic memories158

during part 1), but there is less of a demand to retrieve these episodic memories in the RM con-159

dition (because these participants were not interrupted, and thus these participants should have160

fewer gaps in their understanding of the situation). The comparison of the RM and DM conditions161

is thus a relatively pure manipulation of demand for episodic memory retrieval. If episodic mem-162

ory retrieval is sensitive to the need to retrieve (i.e., whether there are gaps to fill in), then more163

retrieval should take place in the DM condition, but if episodic memory retrieval is automatic, re-164

trieval should occur at similar levels in the RM and DM conditions. The results of the Chen et al.165

(2016) study strongly support the former (“demand-sensitive”) view of episodic retrieval. During166

the first twominutes of part 2, the researchers found strong hippocampal-cortical activity coupling167

measured using inter-subject functional connectivity (ISFC; Simony et al. 2016) for DM participants,168

while the level of coupling was much weaker for participants in the RM and NM conditions (Chen169
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Figure 2. A situation-dependent event processing task. A) An event is a sequence of states, sampled from
an event schema and conditioned on a situation. An event schema is a graph where each node is a state. A
situation is a collection of features (e.g., Day, Weather, Homework) set to particular values (e.g., Day =
weekday). The features of the current situation control how the event unfolds (e.g., the value of the Day
feature controls which Barista state is observed). At each time point, the network observes the value of a
randomly selected feature of the current situation, and responds to a query about what will happen next. B)
We created three task conditions to simulate the design used by Chen et al. (2016): recent memory (RM),
distant memory (DM), and no memory (NM); see text for details. C) Decoded contents of the model’s working
memory for an example trial from the DM condition. Green boxes indicate time points where the value of a
particular situation feature was observed. The color of a square indicates whether the correct (i.e., observed)
value of that feature can be decoded from the model’s working memory state (white = accurate decoding;
black = inaccurate decoding). See text for additional explanation.

et al., 2016). Notably, cortical regions that had a strong coupling with the hippocampus (in the170

DM condition) largely overlapped with the default mode network (DMN), which is believed to ac-171

tively maintain a situationmodel (Stawarczyk et al., 2019). These results fit with the idea that more172

information is being communicated between hippocampus and cortex in the DM (“high episodic173

memory demand”) condition than in the RM (“low episodic memory demand”) condition and the174

NM condition (where there are no relevant episodicmemories to retrieve). This “demand sensitive”175

view of episodic memory implies that cortex can be strategic in how it calls upon the hippocampus176

to support event understanding, and it underlines the importance of the aforementioned goal of177

characterizing the policy for when retrieval should occur.178

Training environment179

To simulate the task of event processing, we define an event as a sequence of states, sampled from180

an underlying graph that represents the event schema. Figure 2A shows a “coffee shop visit” event181

schema graph with three time points; each time point has two possible states. Each instance of an182

event (here, each visit to the coffee shop) is associated with a situation – a collection of features set183

to particular values; importantly, the features of the current situation determine the transitions184

between states within the event. For example, in Figure 2A, the value of the Weather situation185

feature (sunny or rainy) determines which of the Mood states is visited (happy or angry). At each186

time point, the model observes the value of a randomly selected feature of the current situation187

and responds to a query about which state will be visited next. In the example shown in Figure188

2A, the agent first observes that Day = weekday, and then is asked to predict the upcoming Barista189

state (will the barista be Bob or Eve). Then it observes that Homework = paper and is asked to190
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predict the upcoming Mood state (will the barista be happy or angry). Finally, it observes that the191

Weather = sunny and is asked to predict the upcoming Coffee state (will the drink be latte ormocha).192

Both observations and queries are represented by one-hot vectors. In our simulations, the length193

of the event graph is 16 and the number of states for each time point is 4. This means the number194

of unique ways in which an event can unfold (depending on the features of the current situation)195

is 416 – far too many to memorize. As such, learning an effective representation of the event graph196

(i.e., which states can occur at which time points, and how the state transitions depend on the197

values of the situation features) is essential for predicting which state will come next. In our model,198

this information is learned during the meta-training phase and stored in the cortical network’s199

weights (i.e., the model’s semantic memory). As a terminological point, in this paper we use the200

term situation to refer to the “ground truth” of the feature-value pairings for the current event, and201

we use situation model to refer to the model’s internal representation of the current situation in202

working memory (i.e., in the LSTM cell state).203

Figure 2B shows the way we simulated the three conditions from Chen et al. (2016). In each204

of the conditions, the agent processes three events. Importantly, for all of the conditions, we im-205

posed (by hand) an encoding policy where the model stored an episodic memory (reflecting the206

current contents of workingmemory – i.e., the LSTM cell state) on the final time point of each event.207

This encoding policy was based on previous findings suggesting that episodic encoding takes place208

selectively at the end of an event (Ben-Yakov and Dudai, 2011; Ben-Yakov et al., 2013; Baldassano209

et al., 2017; Ben-Yakov and Henson, 2018; Reagh et al., 2020); we critically examine this assump-210

tion in the Benefits of selectively encoding at the end of an event section below. In both the RM and211

DM conditions, the agent first processes a distractor event (i.e., event a1), and then processes two212

related events that are controlled by the same situation (i.e., event b1 and b2). These two related213

events capture the two-part movie in the study by Chen et al. (2016), in the sense that knowing214

information from the first event (b1) will make the second event (b2) more predictable. Note that,215

at the start of movie part 2 (b2), models in both the RM and DM conditions have access to a lure216

episodic memory that was formed during the distractor event (a1), and also a target episodic mem-217

ory that was formed during movie part 1 (b1). The main difference is that, in the DM condition, the218

workingmemory state is flushed between part 1 and part 2 (by resetting the cell state of the LSTM),219

whereas the flush does not occur in the RM condition; this flush in the DM condition is meant to220

capture the effects of the one-day delay between parts one and two in the study by Chen et al.221

(2016). Finally, in the NM condition, the agent processes three events from three different situa-222

tions. Therefore, duringmovie part 2, the agent has no information in workingmemory or episodic223

memory pertaining to part 1. Themodel was trained (repeatedly) to predict upcoming states on all224

three trial types before being tested on each of these trial types (see the Model training and testing225

section in the Methods).226

To summarize, the task environment used in our simulations captures how understanding of227

naturalistic events and narratives depends on memory: It is necessary to remember observations228

from the past (possibly from a large number of time points ago) in order to optimally predict the229

future. For example, in the Twilight Zone episode used by Chen et al. (2016), learning that the230

servants are robots early in the episode helps the viewer predict how one character will react231

when another character suggests killing all of the servants; similarly, in the model, learning that232

the weather is sunny during event b1 will help the model predict that the barista will be happy233

during event b2. The model is incentivized to routinely hold observations in working memory,234

because information that is observed early in an event can sometimes be used to answer queries235

that are posed later in that same event, or possibly across events (in the RM condition). This should236

lead to a dynamic where the amount of information held in working memory builds within an237

event (i.e., with each successive observation, themodel builds amore “complete” representation in238

workingmemory of the features of the current situation). Episodic memory is incentivized because239

of the working memory “flush” in the DM condition between events b1 and b2 – information that is240

relevant to b2 is observed during b1 but flushed from working memory, so the only way to benefit241
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from this information is to store it in episodic memory (at the end of b1) and then retrieve it from242

episodic memory at the start of b2 (for additional discussion of how episodic memory can help to243

bridge interruptions, see classic work by Ericsson and Kintsch 1995).244

Figure 2C illustrates these points by showing the decoded contents of the model’s working245

memory for an example DM trial. To generate this figure, a linear classifier (logistic regression with246

L2 penalty) was used to decode whether the correct (i.e., observed) value of each situation feature247

was represented in the working memory state of the model (i.e., the LSTM cell state) at each time248

point during the trial; see the Decoding the working memory state section in the Methods for more249

details. We found that, once a feature was observed (indicated by a green box in the figure), this250

feature typically was decodable until the end of the event, which confirms that observed features251

tend to be actively maintained in the working memory state of the agent. The figure makes it clear252

how, because of this tendency tomaintain information over time, themodel’s representation of the253

situation becomes more complete over time within part 1 of the event. The model then stores an254

episodic memory snapshot on the final time point in part 1 (indicated by the blue arrow). Between255

part 1 and part 2, the model’s working memory state is flushed; then, early in part 2, the model256

retrieves the stored episodic memory snapshot (indicated by the red arrow), which results in many257

features of the situation becoming decodable before they are actually observed during part 2.258

We acknowledge that our event-processing simulations incorporate several major simplifica-259

tions. For example, we are modeling the first part of the movie as a single event when, in the Chen260

et al. (2016) study, each half of the Twilight Zone episode clearly contains multiple events. We also261

are assuming that the rate of key situation features being revealed is linear (one per time point)262

and that feature values stay stable within events. Our goal here was to come up with the simplest263

possible framework that allowed us to meaningfully engage with questions about encoding and264

retrieval policies for episodic memory. In the Discussion, we talk about ways that the model could265

be extended to more fully address the complexity of real-world events.266

The learned retrieval policy is sensitive to uncertainty267

Figure 3A shows the trained model’s prediction performance during movie part 2, with the penalty268

value for incorrect prediction set to 2. In the recent memory (RM) condition, prediction accuracy269

is at ceiling starting from the beginning of part 2 – all situation feature values for the ongoing270

situation were observed during the first part of the sequence, and the model is able to hold on271

to these features in working memory. In the distant memory (DM) condition, prediction accuracy272

starts out much lower, but after a few time points the accuracy is almost at ceiling. In the no273

memory condition (NM), prediction accuracy increases linearly, reflecting the fact that the model274

is able to observe more situation features as the event unfolds. The fact that prediction accuracy275

is better in the DM condition than in the NM condition suggests that the model is using episodic276

memory to support prediction in the DM condition.277

Wewereparticularly interested inwhether themodel’s learned retrieval policywould bedemand-278

sensitive (i.e., would themodel bemore prone to retrieve from episodicmemory if there were gaps279

in its situation model, leading it to be uncertain about the upcoming state). To answer this ques-280

tion, we visualized the activation levels of the target and lure memories during part 2, for each281

of the three conditions (Figure 3B). Across the three conditions, we found much higher levels of282

memory activation in the DM condition than the other two conditions. Importantly, the finding (in283

the model) of greater memory activation in the DM condition than the RM condition qualitatively284

captures the finding from Chen et al. (2016) that the putative fMRI signature of episodic retrieval285

(hippocampal-cortical coupling) was stronger in theDM condition than the RM condition. Note that,286

in our simulation, the set of available episodic memories in the RM and the DM condition is the287

same. The main difference is that, in the RM condition, the network has a fully-specified situation288

model actively maintained in its working memory (the recurrent activity of the LSTM) during part289

2, which is sufficient for the network to predict the upcoming state. In contrast, at the beginning290

of the DM condition, the network’s ongoing situation model is empty – the values for all features291
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Figure 3. The learned episodic retrieval policy is selective. Panels A, B, and C show the model’s behavioral performance, memory activation,
and episodic memory gate (EM gate) value during part 2, across the recent memory (RM), distant memory (DM), and no memory (NM)
conditions, when the penalty for incorrect prediction is set to 2 at test. These results show that recall is much stronger in the DM condition
(where episodic retrieval is needed to fill in gaps and resolve uncertainty) compared to the RM condition. D) shows that, in the DM condition, the
EM gate value is lower if the model has recently (i.e., in the current event) observed the feature that controls the upcoming state transition. E)
shows how the average recall time is delayed when the penalty for making incorrect predictions is higher. F) illustrates the definition of the
schema strength for a given time point. G) shows how the average EM gate value changes as a function of schema strength (penalty level = 2).
The errorbars indicate 1SE across 15 models.
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are unknown. Overall, this result suggests that the learned retrieval policy is demand-sensitive (for292

simulations of other, related findings from this study, see Appendix 6).293

To gain further insight into the model’s retrieval policy, we examined the EM gate values in294

the three conditions (Figure 3C). We found that the model sets the EM gate to a higher (more295

“open”) value in the DM and NM conditions (where there are gaps in the model’s understanding of296

the ongoing situation, causing it to be uncertain about what was coming next), and it suppresses297

episodic retrieval in the RM condition (where there are no gaps). Likewise, within the DM condi-298

tion, the model sets the EM gate to a higher value when the feature controlling the next transition299

has not been recently observed (i.e., the feature is not in working memory, causing the model to300

be uncertain about what was coming next) vs. if the relevant feature has been recently observed301

and is therefore active in working memory (Figure 3D). The same principle also explains why, for302

later time points in part 2, the EM gate is set to a lower value in the DM condition than the NM303

condition (Figure 3C) – in the DM condition, episodic retrieval that occurs on earlier time points304

makes the model more certain on later time points, reducing the demand for episodic retrieval305

and (consequently) leading to lower EM gate values.306

The fact that the model learned a demand-sensitive retrieval policy can be explained in terms307

of a simple cost-benefit analysis: When the model is unsure about what will happen next, the308

potential benefits of episodic retrieval are high. In the absence of episodic retrieval, the model309

will have to guess or say “don’t know”, but if it consults episodic memory, the model could end up310

recalling the feature of the situation that controls the upcoming state transition, allowing it tomake311

a correct prediction. By contrast, when the feature of the situation that controls the transition is312

already inworkingmemory (and consequently themodel is able tomake a specific prediction about313

what will happen next), there is less of a benefit associated with episodic retrieval – the only way314

that episodic retrieval will help is if the model is holding the wrong feature in working memory and315

the episodic memory overwrites it. Furthermore, in this scenario, there is also a potential cost to316

retrieving from episodic memory: Lures are always present, and if the model recalls a lure this can317

overwrite the correct information inworkingmemory. Since the potential costs of episodic retrieval318

outweigh the benefits of episodic retrieval in the “high certainty” scenario, themodel learns a policy319

of waiting to retrieve until it is uncertain about what will happen next.320

Importantly, the model’s ability to adjust its policy when it is uncertain is predicated on there321

being a reliable “neural correlate of certainty” in the model, which can be used as the basis for this322

differential responding; we investigated this and found that the norm of activity in the decision323

layer is lower when the model is uncertain vs. certain (for more details, see Appendix 1). This (im-324

plicit) neural correlate of certainty exists regardless of whether the model is trained to explicitly325

signal uncertainty via the “don’t know” response. In other simulations (reported in Appendix 5), we326

found that a version of the model without the “don’t know” option can still leverage this implicit327

neural correlate of certainty to show demand-sensitive retrieval (i.e., more episodic retrieval in328

the DM condition than the RM condition); the main effect of including the “don’t know” option is329

to make the model more patient overall, by reducing the cost associated with waiting to retrieve330

from episodic memory.331

The effect of penalty on retrieval policy332

A key question is how the model’s policy for prediction and episodic retrieval adapts to different333

environmental regimes. Toward this end, we explored what happens when we vary the penalty on334

false recall from 0 to 4 during model meta-testing – that is, can the model flexibly adjust its policy335

based on the current penalty? (note that the penalty was uniformly sampled from the 0-4 range336

during meta-training). If learning a selective retrieval policy is driven by the need to manage the337

costs of false recall, then it stands to reason that varying these costs should affect themodel’s policy.338

Our first finding is that adjusting the penalty at test affects the model’s tendency to give “don’t339

know” responses: When the penalty is zero, the model makes specific next-state predictions (i.e., it340

refrains from using the “don’t know” response) even when it can not reliably predict the next state,341
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leading to many errors. In contrast, when the penalty is high, the model makes more “don’t know”342

responses (in the DM condition, the model responds “don’t know” 15.8% of the time when penalty343

is set to 4, vs. 0.3% of the time when penalty is set to 0). This strategy is rational – when the penalty344

is zero, the expected reward is larger for randomly guessing an answer than for saying “don’t know”,345

but when the penalty is set to four, the expected reward is larger for saying “don’t know” than for346

random guessing. We also found that, when the model is tested in an environment where the347

penalty is high, it waits longer to retrieve from episodic memory, relative to when the penalty at348

training is lower (Figure 3E). This delay in recall can be explained in terms of a speed-accuracy349

trade-off. Waiting longer to retrieve from episodic memory allows the model to observe more350

features, which helps to disambiguate the present situation from other, related situations and351

thereby reduces false recall. However, waiting longer also carries an opportunity cost – the model352

has to forego all of the rewards it would have received (from correct prediction) if it had recalled353

the correct memory earlier. When the penalty is low, the benefits of retrieving early (in terms of354

increased correct prediction) outweigh the costs (in terms of increased incorrect prediction due to355

false recall), but when the penalty is high, the costs outweigh the benefits, so the model is more356

cautious and it waits to observe more features to be sure that the memory it (eventually) recalls is357

the right one.358

The effect of schema regularity on the learned policy359

Next, we examined the effect of schema regularity on the agent’s retrieval policy. In the simulations360

preceding this one, we imposed a form of schematic structure by teaching the model about which361

states could be visited at which time points (i.e., the “columns” of Figure 2A). However, within a362

particular time point, the marginal probabilities of the states that were “allowed” at that time point363

were equated – put another way, none of the states were more prototypical than any of the other364

states. In this simulation, we also allowed for some states to bemore prototypical (i.e., occur more365

often) than other states that could occur at that time point. We say that a time point is schematic366

if there is one state that happens with higher probability, compared to other states. Consider the367

example illustrated in Figure 3F: If the probability of Bob being angry is much greater than the368

probability of him being happy, then we say that this is a highly schematic time point. In contrast,369

if Bob is equally likely to be happy or angry, then the schema strength is low. Intuitively, when370

there is a strong schema, there is less of a need to rely on episodic memory – in the limiting case, if371

the schematic state occurs in every sequence, the model will learn to predict this state every time372

and there is no need to consult episodic memory.373

To explore the effects of schema strength, we ran simulations where half of the time points374

were schematic. For the other half of the time points (non-schematic time points), all of the states375

associated with that time point were equally probable (given that there were four possible states at376

each time point, the probability of each state was .25). Schematic and non-schematic time points377

were arranged in an alternating fashion (for half of the models, even time points were schematic378

and odd time points were non-schematic, and the opposite was true for the other half of the mod-379

els). For schematic time points, we manipulated the strength of schematic regularity in the envi-380

ronment by manipulating the probability of the “prototypical” state. We varied schema strength381

values from 0.25 (baseline) to 0.95 in steps of 0.10.382

The results of this analysis when penalty was set to 2 at test are shown in Figure 3G, which383

plots the EM gate value during part 2 as a function of schema strength. The first thing to note384

about these results is that, for high levels of schema strength, episodic retrieval is suppressed for385

schematic time points (i.e., time points with a prototypical state) and elevated for non-schematic386

time points (i.e., time points where there was not a prototypical state). The former finding (sup-387

pression of retrieval at time points where there is a strong prototype) fits with the intuition, noted388

above, that high-schema-strength states are almost fully predictable without episodic memory,389

and thus there is no need to retrieve from episodic memory. The latter finding (enhanced retrieval390

at non-schematic time points, when schema strength is high overall) can be explained in terms391
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of the idea that schema-congruent features tend to be shared by both target and lure memories392

and thus are not diagnostic of which memory is the target; in this situation, the only way to distin-393

guish between targets and lures is to recall non-schematic features, which is why the model tries394

extra-hard to retrieve them from episodic memory.395

Interestingly, the model shows the opposite pattern of effects when schema strength = .55 or396

.65: Episodic retrieval is enhanced for schematic time points and suppressed for non-schematic397

time points. This reversal can be explained as follows: When schema strength = .55 or .65, the398

model has started to build up a tendency to guess the schema-congruent (prototypical) state, but399

it is also going to be wrong about 1/3 of the time when it guesses the schema-congruent state,400

incurring a substantial penalty. To counteract this tendency to make wrong guesses, the model401

needs to try extra-hard to retrieve the actual feature value for schematic time points (which is why402

the EM gate value increases for these time points) – and if the model is doing more retrieval in403

response to schematic states, it needs to do somewhat less retrieval in response to non-schematic404

states (which is why the EMgate value goes down for these features). As schema strength increases405

beyond .65, the model will be wrong less often when it guesses the schema-congruent state, so406

there is less of a need to counteract wrong guesses with episodic retrieval – this makes it safe407

for the model to reduce the EM gate value for schematic time points at higher levels of schema408

strength (as described above).409

Other factors that affect the learned retrieval policy410

In addition to the simulations described above, we also ran simulations exploring the effects of411

between-event similarity and familiarity on the learned retrieval policy. With regard to similarity: We412

found that themodel is more cautious about retrieving from episodicmemory if trained in environ-413

ments where memories are highly similar (because the risk of false recall is higher) – see Appendix414

2 for details. With regard to familiarity: When we provided the model with a familiarity signal that415

is informative about whether a situation was previously encountered, we found that the model416

learns to exploit this information by retrieving more from episodic memory when the familiarity417

signal is high and retrieving less from episodic memory when the familiarity signal is low. This418

result provides a resource-rational account of experimental findings showing that familiar stimuli419

shift the hippocampus into a “retrieval mode” where it is more likely to (subsequently) retrieve420

episodic memories (Duncan et al., 2012; Duncan and Shohamy, 2016; Duncan et al., 2019; Patil421

and Duncan, 2018; Hasselmo and Wyble, 1997) – see Appendix 3 for details.422

Benefits of selective encoding423

Above, we showed that the model learned selective retrieval policies (e.g., avoiding retrieval from424

episodicmemory early on during part 2, or when certain about upcoming states) in order to reduce425

the risk of recalling irrelevant memories. Here, we shift our focus to the complementary question426

of encoding policy: When is the best time to store episodic memories? In the simulations reported427

below, we show that a selective encoding policy can benefit performance, by reducing interference428

at retrieval later on. Note that ourmodel is presently not capable of learning an encoding policy on429

its own (seeDiscussion), but we can explore the benefits of selective encoding by imposing different430

encoding policies by hand and seeing how they affect performance.431

Benefits of selectively encoding at the end of an event432

The simulations presented thus far assumed that episodic memories are selectively encoded at433

the ends of events. This assumption was based on findings from several recent fMRI studies that434

measured hippocampal activity during perception of events and related this to later memory for435

the events. These studies found that the hippocampal response tends to peak at event bound-436

aries (Ben-Yakov and Dudai, 2011; Ben-Yakov et al., 2013; Baldassano et al., 2017; Ben-Yakov and437

Henson, 2018; Reagh et al., 2020); this boundary-locked response predicts subsequent memory438

performance for the just-completed event (Ben-Yakov and Dudai, 2011; Baldassano et al., 2017;439
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Figure 4. The advantage of selectively encoding episodic memories at the end of an event. A) Prediction performance is better for models
that selectively encode at the end of each event, compared to models that encode at the end of each event and also midway through each event.
B) The model performs worse with midway-encoded memories because midway-encoded target memories are activated more strongly than
end-encoded target memories, thereby blocking recall of the (more informative) end-encoded target memories, and also because
midway-encoded lure memories are more strongly activated than end-encoded lure memories (see text for additional discussion). C) The cosine
similarity between working memory states during part 2 and memories formed midway through part 1 (in orange) or at the end of part 1 (in
blue). The result indicates that the midway-encoded memory will dominate the end-encoded memory for most time points. D) The
time-point-to-time-point cosine similarity matrix between working memory states from part 1 versus part 2 in the no memory (NM) condition
(part C depicts the orange and blue rows from this matrix). E) PCA plot of working memory states as a function of time, for a large number of
events. The plot shows that differences in time within events are represented much more strongly than differences across events. The errorbars
indicate 1SE across 15 models.
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Reagh et al., 2020), leading researchers to conclude that it is a neural signature of episodic encod-440

ing of the just-completed event.441

While these results suggest that the end of an event may be a particularly important time for442

episodic encoding, existing studies do not provide a computational account of why this should443

be the case. This “why” question can be broken into two parts: First, why might it be beneficial444

to encode at the end of an event, and second, why might it be harmful to encode at other times445

within the event? Answering the first question (regarding benefits of encoding at the end of an446

event) is relatively straightforward. Several researchers have argued that information about the447

current situation builds up in working memory within an event, and then is “flushed out” at event448

boundaries (Radvansky et al. 2011; Richmond and Zacks 2017; for neural evidence in support of449

this dynamic, see Ezzyat and Davachi 2011; Chien and Honey 2020; Ezzyat and Davachi 2021). This450

dynamic (which is illustrated in the model in Figure 2C) means that the model’s representation of451

the features of an event will be most complete right before the end of the event, making this a452

particularly advantageous time to take an episodic memory snapshot of the situation model.453

While it is clear why encoding at the end of an event is useful, it is less clear why encoding454

at other times might be harmful; naively, one might think that storing more episodic snapshots455

during an event would lead to bettermemory for the event. To answer this question, we compared456

models that selectively encode episodic memories at the end of each event to models that encode457

episodicmemories both at the endof each event and alsomidway through each event. If selectively458

encoding at the end of an event yields better performance, this would provide a resource-rational459

justification for the empirical findings reviewed above.460

Our simulation shows that in the DM condition, during part 2, models that encode an addi-461

tional episodic memory midway through each event performed worse (Figure 4A). This decrease462

in performance can be explained in terms of several related factors. First, as shown in Figure 4B,463

when midway memories are also stored, midway memories of the target event are recalled more464

strongly than memories formed at the end of the target event.465

This advantage occurs because the model’s hidden state strongly encodes temporal context:466

WM states stored at similar times within an event tend to be more similar than WM states stored467

at different times (this illustrated by Figure 4E, which shows that time informationwithin an event is468

more strongly represented than differences across events). This strong temporal encoding makes469

sense, given that the model needs to know where it is in the sequence in order to predict which470

observations will come next (for a review of evidence for this kind of temporal coding in the brain,471

see Eichenbaum 2014). One consequence of this time coding is that – early on in part 2 of the472

event (when the benefits of episodic retrieval are the largest) – the temporal context represented473

in working memory will be a better match for memories encoded midway through the event than474

memories encoded at the end of the event (Figure 4C and D). This temporal context match pro-475

vides a competitive advantage for the midway memory over the endpoint memory, resulting in476

the midway memory blocking the endpoint memory from coming strongly to mind. The second477

key point is that the midway memory is less informative (i.e., it contains fewer features of the sit-478

uation, because it was stored before the full set of features was observed). As such, recalling the479

midway target memory confers less of a benefit on future prediction than recalling the endpoint480

memory would have provided – this is the main reason why prediction is worse in the midway con-481

dition. The third key point is that, because midway memories contain less information, they are482

more confusable across events (i.e., it is harder to determine which event the memory pertains to).483

As a result, midway lures tend to become more active at retrieval than endpoint lures (Figure 4B) –484

this lure retrieval acts to further reduce prediction accuracy.485

A possible alternative explanation of the negative effects of midway encoding is that midway486

encoding was introduced when we tested the model’s performance but was not present during487

meta-training (i.e., when the model acquired its retrieval policy); as such, midway encoding can be488

viewed as “out of distribution” andmay be harmful for this reason. To address this concern, we also489

ran a version of the model where memories were stored both midway and at the end of an event490
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during meta-training, and it was still true that endpoint-only encoding led to better performance491

thanmidway-plus-endpoint encoding; this result shows thatmidway encoding is intrinsically harm-492

ful, and it is not just a matter of it being out-of-distribution.493

To summarize the results from this simulation, the model does better when we force it to wait494

until the end of an event to take a snapshot; this occurs because midway target memories block495

recall of more informative endpoint target memories, and also because there is more false recall496

of midway lures than endpoint lures. This model result provides a resource-rational justification497

for the results cited above showing preferential encoding-related hippocampal activity at the end498

of events (Ben-Yakov and Dudai, 2011; Ben-Yakov et al., 2013; Baldassano et al., 2017; Ben-Yakov499

and Henson, 2018; Reagh et al., 2020).500

Discussion501

Most of what we know about episodic memory has, by design, come from experiments where502

performance depends primarily on episodic memory (as opposed to other memory systems), and503

participants are given clear instructions about when episodic memories should be stored and re-504

trieved (e.g., learning and recalling lists of random word pairs); likewise, most computational mod-505

els of human memory have focused on explaining findings from these kinds of experiments (for a506

review, see Norman et al. 2008). However, as noted in the Introduction, real-world memory does507

not adhere to these constraints: In naturalistic learning situations, participants are typically not508

given any instructions about how episodic memory should be used to support performance, and509

– even when participants are given instructions about what to remember – performance usually510

depends on a complex mix of memory systems, with contributions from both working memory511

and semantic memory in addition to episodic memory.512

The goal of the present work was to gain some theoretical traction on when episodic memo-513

ries should be stored and retrieved to optimize performance in these more complex situations.514

Towards this end, we optimized a neural network model that learned its own policy for when to con-515

sult episodic memory (via an adjustable gate) in order to maximize reward, and we also (by hand)516

explored the effects of different episodic memory encoding policies on network performance. Our517

approach is built on the principle of resource rationality, whereby human cognition is viewed as518

an approximately-optimal solution to the learning challenges posed by the environment, subject519

to constraints imposed by our cognitive architecture (Griffiths et al., 2015; Lieder and Griffiths,520

2019); according to this principle, the approximately-optimal solutions obtained by our model can521

be viewed as hypotheses about (and explanations of) how humans use episodic memory in com-522

plex, real-world tasks.523

In the simulations presented here, we identified several ways in which selective policies for524

episodic memory retrieval and encoding can benefit performance. With regard to retrieval, we525

showed that the model learns to avoid episodic retrieval in situations where the risks of retrieval526

(i.e., retrieving the wrong memory, leading to incorrect predictions) outweigh the benefits (i.e., re-527

trieving the correct memory, leading to increased correct predictions). For example, when there528

is high certainty about what will be observed next (due to the relevant information being main-529

tained in working memory or semantic memory), the marginal benefits of retrieving from episodic530

memory are too small to outweigh the risks of retrieving the wrong memory. Another example531

is when too little information has been observed to pinpoint the relevant memory – in this case,532

the potential benefits of retrieving are high, but the risks of retrieving the wrong memory are also533

high, leading the model to defer retrieving until more information has been observed. With re-534

gard to encoding, we showed that waiting until the end of an event to encode a memory for that535

event boosts subsequent prediction performance – this performance boost comes from reducing536

“clutter” (interference) from other memories, thereby making it easier to retrieve the sought-after537

memory. These modeling results explain a wide range of existing behavioral and neuroimaging re-538

sults, and also lead to new, testable predictions. With regard to existing results: Themodel provides539

a resource-rational account of findings from Chen et al. (2016) showing the demand-sensitivity of540
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episodic retrieval, as well as results showing that episodic encoding is modulated by event bound-541

aries (Ben-Yakov and Dudai, 2011; Ben-Yakov et al., 2013; Baldassano et al., 2017; Ben-Yakov and542

Henson, 2018; Reagh et al., 2020). Appendix 3 also shows how the model explains effects of famil-543

iarity on retrieval policy (Duncan et al., 2012; Duncan and Shohamy, 2016; Duncan et al., 2019; Patil544

andDuncan, 2018;Hasselmo andWyble, 1997). With regard to novel predictions: Ourmodelmakes545

predictions about how episodic retrieval will be modulated by certainty (Figure 3B, C, D), penalty546

(Figure 3E), schema strength (Figure 3G), and similarity (Figure 1) – all of these predicted relation-547

ships could be tested in experiments that measure hippocampal-cortical information transfer, ei-548

ther using measures like hippocampal-cortical inter-subject functional connectivity in fMRI (e.g.,549

Chen et al. 2016; Chang et al. 2021) or time-lagged mutual information in ECoG (e.g.,Michelmann550

et al. 2021).551

More broadly, the simulations presented here show how the model can be used to explore in-552

teractions between three distinct memory systems: semantic memory (instantiated in the weights553

in cortex), working memory (instantiated in the gating policy learned by the cortical LSTM module,554

allowing for activation at one time point in cortex to influence activation at subsequent time points),555

and episodic memory. In the past, modelers have focused on these memory systems in isolation556

(see, e.g., Norman et al. 2008), in part because of a desire to understand the detailed workings557

of the systems, but also because of technical limitations: Until very recently, the technology did558

not exist to automatically optimize the performance of networks containing episodic memory, so559

researchers interested in simulating interactions between episodic memory and these other sys-560

tems were put in the position of having to do time-consuming (and frustrating) hand-optimization561

of themodels. Here, we leverage recent progress in the artificial intelligence literature onmemory-562

augmented neural networks (Graves et al., 2016; Pritzel et al., 2017; Ritter et al., 2018; Wayne563

et al., 2018) that makes it possible to automatically optimize the use of episodic memory and its564

interactions with other memory systems. This technical advance has opened up a new frontier in565

the cognitive modeling of memory (Collins, 2019), making it possible to address both “naturalistic566

memory” scenarios and controlled experiments that involve interactions between prior knowledge567

(semantic memory), active maintenance (working memory), and episodic memory.568

Relation to other models569

Memory-augmented neural networks with a differentiable neural dictionary570

Conceptually, the episodic memory system used in our model is similar to recently-described571

memory-augmented neural networks with a differentiable neural dictionary (DND) (Pritzel et al.,572

2017; Ritter et al., 2018; Ritter, 2019). In these models, the data structure of the episodic memory573

system is dictionary-like: Each memory is a key-value pair. The keys define the similarity metric574

across all memories, and the values represent the content of these memories. For example, one575

can use the LSTM cell state patterns as the keys and use the final output of the network as the576

values (Pritzel et al., 2017); note that, in our model, the cell state of the cortical network serves as577

both the key and the value. The work by Ritter et al. (2018) is particularly relevant as it was the first578

paper (to our knowledge) to use the DND for cognitive modeling and – as such – served as a major579

inspiration for the work presented here (see also Botvinick et al. 2019). The way that our model580

uses the DND mechanism is quite similar to how it was used in Ritter et al. (2018); in particular,581

we took from the Ritter et al. (2018) paper the idea that the cortical network learns to control a582

“gate” on episodic retrieval via reinforcement learning. However, there are also some meaningful583

differences between our model and the model used by Ritter et al. (2018).584

The most salient difference regards the placement of the EM gate: In our model, the gate con-585

trols the flow of information into the episodic memory module (pre-gating), but in the Ritter model586

the gate controls the flow of information out of the episodic memory module (post-gating). Practi-587

cally speaking, the main consequence of having the gate on the output side is that the gate can be588

controlled based on information coming out of the hippocampus, in addition to all of the cortical589

regions that are used to control the gate in our pre-gating model. While this is a major difference,590
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we found that our key simulation results qualitatively replicate in a version of the model that uses591

post-gating, indicating that the selective encoding and retrieval principles discussed here do not592

depend on the exact placement of the gate (see Appendix 5 for simulation results and more discus-593

sion of these points).594

Another difference is that our model’s computation of which memories are retrieved (given a595

particular retrieval cue, assuming that the “gate” on retrieval is open) is more complex. Ritter et al.596

(2018) used a one-nearest-neighbormatching algorithm during recall, whereby the storedmemory597

with the highest match to the cue is selected for retrieval (assuming that the gate is open). By598

contrast, memory activation in our model is computed using a competitive evidence accumulation599

process, in line with prior cognitive models of retrieval (e.g., Polyn et al. 2009; Sederberg et al.600

2008). While we did not explore the effects of varying the level of competition in our simulations,601

having this as an adjustable parameter opens the door to future work where the model learns a602

policy for setting competition in order to optimize performance (just as it presently learns a policy603

for setting the EM gate).604

A third structural difference between our model and the Ritter et al. (2018) model is our addi-605

tion of the “don’t know” output unit, which (when selected) allows the model to avoid both reward606

and punishment. As discussed above, the primary effect of incorporating this “don’t know” action607

is to make the model more patient (i.e., more likely to wait to retrieve from episodic memory), by608

giving it a way to avoid incurring penalties if it decides to wait to retrieve (for more details, see609

Appendix 5).610

Apart from the structural differences noted above, the main difference between our model-611

ing work and the work done by Ritter et al. (2018) relates to the application domain (i.e., which612

cognitive phenomena were simulated). Our modeling work in this paper focused on how episodic613

memory can support incidental prediction of upcoming states, when there is no explicit demand614

for a decision. By contrast, Ritter et al. (2018) focused on how episodic memory can be used to615

support performance in classic decision-making tasks, such as bandit tasks andmaze learning, that616

have been extensively explored in the reinforcement learning literature.617

The structured event memory (SEM) model618

Another highly relevant model is the structured event memory (SEM)model developed by Franklin619

et al. (2020). Like our model, SEM uses RNNs to represent its knowledge of schemas (i.e., how620

events typically unfold). Also, like our model, SEM records episodic memory traces as it processes621

events. However, there are several key differences between our model and SEM. First, whereas622

our model uses a single RNN to represent a single (contextually parameterized) schema, SEM uses623

multiple RNNs that each represent a distinct schema for how events can unfold. Building on prior624

work onnonparametric Bayesian inference (Anderson, 1991;Aldous, 1985; Pitman, 2006) and latent625

cause modeling (Gershman et al., 2010, 2015), SEM contains specialized computational machinery626

that allows it to determine which of its stored schemas (each with its own RNN) is relevant at a627

particular moment, and also when it is appropriate to instantiate a new schema (with its own, new628

RNN) to learn about ongoing events. This inference machinery allows SEM to infer when event629

boundaries (i.e., switches in the relevant schema) have occurred; the Franklin et al. (2020) paper630

leverages this to account for data on how people segment events. Our model lacks this inference631

machinery, sowe need to impose event boundaries by fiat, as opposed to having themodel identify632

them on their own.633

Another major difference between the models relates to how episodic memory is used. A key634

focus of ourmodeling work in this paper is on how episodic memory can support online prediction.635

By contrast, in SEM, episodic memory is not used at all for online prediction – online prediction is636

based purely on the weights of the RNNs (i.e., semantic memory) and the activation patterns in the637

RNNs (i.e., working memory). The sole use of episodic memory in the Franklin et al. (2020) paper638

is to support reconstruction of previously-experienced events. Specifically, in SEM, each time point639

leaves behind a noisy episodic trace; the Franklin et al. (2020) paper shows howBayesian inference640
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can combine these noisy stored episodic memory traces with stored knowledge about how events641

typically unfold (in the RNNs) to reconstruct an event. Effectively, SEM uses knowledge in the RNNs642

to “de-noise” and fill in gaps in the stored episodic traces. The Franklin et al. (2020) paper uses this643

process to account for several findings relating to human reconstructive memory.644

Future directions and limitations645

On the modeling side, our work can be extended in several different ways. As noted above, our646

model and SEM have complementary strengths: SEM is capable of storing multiple schemas and647

doing event segmentation, whereas our model only stores a single schema and we impose event648

boundaries by hand; our model is capable of using episodic memory to support online prediction,649

whereas SEM is not. It is easy to see how these complementary strengths could be combined into650

a single model: By adding SEM’s ability to do multi-schema inference to our model, we would be651

able to simulate both event segmentation and the role of episodic memory in predicting upcoming652

states, and we would also be able to explore interactions between these processes (e.g., using653

episodic memory to predict could affect when prediction errors occur, which – in turn – could654

affect how events are segmented; Zacks et al. 2007, 2011).655

Another limitation of the current model is that the encoding policy is not learned. In our sim-656

ulations, we trained models with different (pre-specified) encoding policies and compared their657

performance. Going forward, we would like to develop models that learn when to encode through658

experience, instead of imposing encoding policies by hand. Our results show that selective encod-659

ing can yield better performance than encoding everything, so – in principle – selective encoding660

policies should be learnable with RL. The main challenge in learning encoding policies is the long661

temporal gapbetween the decision to encode (or not) and learning the consequences of that choice662

for retrieval. Moreover, a high-quality encoding policy, taken on its own, generally does not lead to663

high reward when the retrieval policy is bad; that is, encoding policy and retrieval policy have to be664

learned in a highly coordinated fashion. Recent technical advances in RL (e.g., algorithms that do665

credit assignment across long temporal gaps; Raposo et al. 2021) may make it easier to address666

these challenges going forward.667

A benefit of being able to learn encoding policies in response to different task demands is that668

the model could discover other factors that it could use to modulate encoding – for example, sur-669

prise. Numerous studies have found improved memory for surprising events (e.g., Greve et al.670

2017, 2019; Quent et al. 2021a; Kafkas and Montaldi 2018; Frank et al. 2020; Rouhani et al. 2018,671

2020; Chen et al. 2015a; Pine et al. 2018; Antony et al. 2021; for reviews, see Frank and Kafkas672

2021; Quent et al. 2021b) – these behavioral results converge with a large body of literature show-673

ing increased hippocampal engagement in response to prediction error (e.g., Axmacher et al. 2010;674

Chen et al. 2015a; Long et al. 2016; Kumaran and Maguire 2007, 2006, 2007; Duncan et al. 2012;675

Davidow et al. 2016; Kafkas and Montaldi 2015; Frank et al. 2021; for reviews, see Frank and676

Kafkas 2021; Quent et al. 2021b), and also with a recent fMRI study showing that prediction error677

biases hippocampal dynamics towards encoding (Bein et al., 2020). Given that studies have found678

a strong relationship between surprise and event segmentation (e.g., Zacks et al. 2007, 2011; for a679

recent example see Antony et al. 2021), it seems possible that increased episodic encoding at the680

ends of events could be driven by peaks in surprise that occur at event boundaries. However, there681

are complications to this view; in particular, some recent work has argued that not all event bound-682

aries are surprising (Schapiro et al., 2013) – in light of this, more research is needed to explore the683

relationship between these effects.684

In addition to surprise, recentwork by Sherman and Turk-Browne (2020) suggests that predictive685

certainty may play a role in shaping encoding policy: They found that stimuli that trigger strong686

predictions (i.e., high certainty about upcoming events) are encoded less well. In keeping with this687

point, Bonasia et al. (2018) found that, during episodic encoding, events that were more typical688

(and thus were associated with more predictive certainty, and less surprise) were associated with689

lower levels of medial temporal lobe (MTL) activation. Intuitively, it makes sense to focus episodic690
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encoding on time periods where there is high surprise and low predictive certainty – if events in a691

sequence are unsurprising and associated with high predictive certainty, this means that existing692

(cortical) schemas are sufficient to reconstruct that event, and no new learning is necessary (or, if693

learning is required, it is possible that cortex could handle this “schema-consistent” learning on its694

own;McClelland 2013;McClelland et al. 2020). Conversely, if events in a sequence do not follow a695

schema (leading to uncertainty) or violate that schema (leading to surprise), the only way to predict696

those events later will be to store them in episodic memory. Future work can explore whether a697

model that represents surprise and certainty (either implicitly or explicitly) can learn to leverage698

one or both of these factors when deciding when to encode; our present model is a good place to699

start in this regard, as we have already demonstrated the model’s ability to factor certainty into its700

retrieval policy.701

Another major simplification in the model’s encoding policy is that it stores each episodic mem-702

ory as a distinct entity (see Figure 1B). Old memories are never overwritten or updated. However,703

a growing literature on memory reconsolidation suggests that memory reminders can result in704

participants accessing an existing memory and then updating that memory, rather than forming705

a new memory outright (Dudai and Eisenberg, 2004; Dudai, 2009; Hardt et al., 2010; Wang and706

Morris, 2010). In the future, we would like to develop models that decide whether to encode a707

new episodic memory (pattern separate) or update an old memory (pattern complete). We could708

implement this by having the model try to retrieve before it encodes a new memory; if it succeeds709

in retrieving a stored memory above a certain threshold level of activation, the model could up-710

date that memory rather than creating a new memory. In future work, we plan to implement this711

mechanism and use it to simulate memory reconsolidation data.712

Going forward, we also hope to explore more biologically-realistic episodic memory models713

(e.g., Schapiro et al. 2017; Norman and O’Reilly 2003; Ketz et al. 2013). Using a more biologically-714

realistic hippocampus could affect the model’s predictions (e.g., if memory traces were allowed to715

interfere with each other during storage – currently they only interfere at retrieval) and it would716

also improve our ability to connect the model to neural data on hippocampal codes and how they717

change with learning (e.g., Duncan and Schlichting 2018; Brunec et al. 2020; Ritvo et al. 2019; Fav-718

ila et al. 2016; Chanales et al. 2017; Schlichting et al. 2015; Whittington et al. 2020; Stachenfeld719

et al. 2017; Hulbert and Norman 2015; Kim et al. 2017; Schapiro et al. 2016, 2012). Similarly, using720

a more biologically-detailed cortical model (separated into distinct cortical sub-regions) could help721

us to connect to data on how different cortical regions interact with hippocampus during event pro-722

cessing (e.g., Ranganath and Ritchey 2012; Cooper et al. 2020; Ritchey and Cooper 2020; Barnett723

et al. 2020; Gilboa and Marlatte 2017; van Kesteren et al. 2012; Preston and Eichenbaum 2013).724

We have opted to start with the simplified episodic memory system described in this paper both725

for reasons of scientific parsimony and also for practical reasons – adding additional neurobiolog-726

ical details would make the model run too slowly (the current model takes on the order of hours727

to run on standard computers; adding more complexity would shift this to days or weeks).728

Just as our model contains some key simplifications, the environment used in the event pro-729

cessing task is relatively simple and do not capture the full richness of naturalistic events. Some730

recent studies have explored event graphs with more realistic structure (e.g., Elman and McRae,731

2019). The fact that our model can presently only handle one schema substantially limits the com-732

plexity of the sequences it can process; adding the ability to handlemultiple schemas (as discussed733

above) will help to address this limitation. Also, natural events unfold over multiple timescales. For734

example, going to the parking lot is an event that involves finding the key, getting to the elevator,735

etc., but this can be viewed as part of a higher-level event, such as going to an airport. In our simu-736

lation, events only have one timescale. In general, introducing additional hierarchical structure to737

the stimuli would enrich the task demands and lead to interesting modeling challenges. For now,738

we have avoided more complex task environments for computational tractability reasons, but –739

as computational resources continue to grow – we hope to be able to investigate richer and more740

realistic task environments going forward. At the same time, we also plan to use the model to741
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address selective retrieval and encoding effects in list-learning studies (e.g., the aforementioned742

studies showing that surprise boosts encoding; for reviews, see Frank and Kafkas 2021; Quent743

et al. 2021b).744

Another limitation of the model is that the policies explored here (having to do with when745

episodic memory snapshots are stored and retrieved) do not encompass the full range of ways746

in which the use of episodic memory can be optimized. For example, in addition to questions747

about when to encode and retrieve, one can consider optimizations of what is stored in memory748

and how memory is cued. These kinds of optimizations are evident in mnemonic techniques like749

the method of loci (Yates, 1966), which involve considerable recoding of to-be-learned information750

(to maximize distinctiveness of stored memories) and also structured cuing strategies (to ensure751

that these distinctive memory traces can be found after they are stored). We think that the kinds752

of policies explored in this paper (e.g., retrieving more when uncertain, encoding more at the end753

of an event) fall more on the “automatic” end of the spectrum, as evidenced by the fact that they754

require no special training and are deployed even in incidental learning situations (e.g., while peo-755

ple are watching a movie, without specifically trying to remember it; Chen et al. 2016; Baldassano756

et al. 2017). As such, these policies seem very different from more complex and deliberate kinds757

of mnemonic strategies like method of loci that require special training. However, we think that it758

is best to view our “simple” policies and more complex strategies as falling on a continuum. While759

the policies we discuss may be deployed automatically in adults, our simulations show that at760

least some of these policies (e.g., modulating episodic retrieval based on predictive certainty) can761

be learned through experience, and indeed these strategies might not (yet) be automatic in young762

children. Furthermore, in principle, there is nothing stopping amodel like ours from learningmore763

elaborate strategies given the right kinds of experience and a rich enough action space. Expanding764

the space of “memory use policies” for our model and exploring how these can be learned is an765

important future direction for this work (for a resource-rational approach to memory search, see766

Zhang et al. 2021).767

Lastly, although we have focused on cognitive modeling in this paper, we think that some of768

our results have implications for machine learning more broadly. For example, most memory-769

augmented neural networks used in machine learning encode at each time point (Graves et al.,770

2014, 2016; Ritter et al., 2018; Pritzel et al., 2017). Our results provide initial evidence that taking771

episodic “snapshots” too frequently can actually harm performance. Future work can explore the772

circumstances under which more selective encoding and retrieval policies might lead to improved773

performance on machine learning benchmarks. Based on our simulations, we expect that these774

selective policies will be most useful when there is a substantial risk of recalling lure memories775

that lead to incorrect predictions, and a substantial cost associated with making these incorrect776

predictions.777

Summary778

Themodeling work presented here builds on a wide range of research showing that episodic mem-779

ory is a resource that the brain can flexibly draw upon to solve tasks (see, e.g., Shohamy and Turk-780

Browne 2013; Palombo et al. 2015, 2019; Bakkour et al. 2019; Biderman et al. 2020). This view781

implies that, in addition to studying episodic memory using tasks that probe this system in isola-782

tion, it is also valuable to study howepisodicmemory is used inmore complex situations, in concert783

with working memory and semantic memory, to solve tasks andmake predictions. To engage with784

findings of these sort, we have leveraged advances in AI that make it possible for models to learn785

how to use episodic memory – our simulations provide a way of predicting how episodic memory786

should be deployed to obtain rewards, as a function of the properties of the learning environment.787

While our understanding of thesemore complex situations is still at an early stage, our hope is that788

this model (and others like it, such as the model by Ritter et al. 2018) can spur a virtuous cycle of789

predictions, experiments, and model revision that will bring us to a richer understanding of how790

the brain uses episodic memory.791
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Methods792

Episodic retrieval793

Episodic retrieval in our model is content-based. The retrieval process returns a weighted average794

of all episodic memories, where the weight of each memory is equal to its activation; to calculate795

the activation for each memory, the model executes an evidence accumulation process using a796

leaky competing accumulator (LCA; Usher and McClelland 2001), which has been used in other797

memory models (e.g., Sederberg et al. 2008; Polyn et al. 2009). The evidence for a given episodic798

memory is the cosine similarity between that memory and the current cortical pattern (the cell799

state of the LSTM). Hence, memories that are similar to the current cortical pattern will have a800

larger influence on the pattern that gets reinstated. This conceptualization of episodic memory is801

similar to an attractor network (Hopfield, 1982; Rolls, 2010) – each episodic memory serves as an802

attractor in the space of LSTM cell states, and retrieval moves the LSTM cell state towards those803

episodic memories.804

The evidence accumulation process is governed by the episodic memory gate (EM gate) and805

the level of competition across memories (Figure 1C), which are stored separately from each other806

(Figure 1B). The EM gate is controlled by the cortical network (Figure 1A, C). The EM gate, in turn,807

controls whether episodic retrieval happens – a higher EM gate value increases the activation of808

all memories, and setting the EM gate value to zero turns off episodic retrieval completely (see809

Appendix 4 for discussion of other ways that gating can be configured). The level of competition810

(i.e., lateral inhibition) adjusts the contrast of activations across all memories; making the level of811

competition higher or lower interpolates between one-winner-take-all recall versus recalling an812

average of multiple memories. In all of our simulations, we set the level of competition to be well813

above zero (0.8, to be exact), given the overwhelming evidence that episodic retrieval is competitive814

(Anderson and Reder, 1999; Norman and O’Reilly, 2003; Norman, 2010).815

Note that, instead of optimizing the LCA parameters to fit empirical results (e.g., as in the work816

by Polyn et al. 2009), we use a neural network that learns to control the level of the EM gate value.817

As described below, in theModel training and testing section, themodel’s goal is tomaximize reward818

by making correct predictions and avoiding incorrect predictions; the network learns a policy for819

setting the EM gate value that maximizes the reward it receives. We made several simplifications820

to the original LCA – in our model, the LCA 1) has no leak; 2) has no noise; and 3) uses the same821

EM gate value and competition value for all accumulators.822

Episodic retrieval - Detail823

At time t, assume the model has nmemories. The model first computes the evidence for all of the824

memories. The evidence for the i-th memory, mi, is the cosine similarity between the current LSTM825

cell state pattern ct and that episodic memory – which is a previously saved LSTM cell state pattern.826

We denote the evidence for the i-th memory as xi:827

xi = cosine
(

ct, mi
)

The xi, for all i, are the input to the evidence accumulation (LCA) process used in our model; the828

evidence accumulation process has a timescale � that is faster than t, such that the accumulation829

process runs to completion within a single time point of the cortical model. The computation at830

time � (for � > 0) is governed by the following formula:831

wi
� = relu

(

�xi − �
∑

j≠i
wj
�

)

wi
� is the activation value for the i-th memory at time �. The activation for the i-th memory is832

positively related to its evidence, xi, and is multiplicatively modulated by �, the EM gate value. The833

i-th memory also receives inhibition from all of the other memories, where the level of inhibition834
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is modulated by the level of competition, �. Finally, the retrieved item at time t, denoted by �t, is a835

combination of all memories, weighted by their activation:836

�t =
n
∑

i=1
wimi

Model training and testing837

Model training838

Before themodel is used to simulate any particular experiment, it undergoes ameta-training phase839

that is meant to reflect the experience that a person has prior to the experiment. The goal of this840

meta-training phase is to let the model learn 1) the structure of the task – how situation features841

control the transition dynamics across states; and 2) a policy for retrieving episodic memories and842

for making next-state predictions that maximizes the reward it receives. For every epoch of meta-843

training, it is trained for all three conditions (recent memory, distant memory, and no memory).844

Themodel is trainedwith reinforcement learning. Specifically, themodel is rewarded/penalized845

if its prediction about the next state is correct/incorrect. The model also has the option of saying846

“don’t know” (implemented as a dedicated output unit) when it is uncertain about what will happen847

next; if the model says “don’t know”, the reward is zero. The model is trained with the advantage848

actor-critic (A2C) objective (Mnih et al., 2016). At time t, the model outputs its prediction about the849

next state, ŝt+1, and an estimate of the state value, vt. After every event (i.e., a sequence of states of850

length T ), it takes the following policy gradient step to adjust the connection weights for all layers,851

denoted by �:852

∇�J (�) = ∇
T
∑

t=0
log��

(

ŝt+1|st
) (

rt − vt
)

This objective makes rewarded actions (next-state predictions) more likely to occur; the above853

equation shows how this process is modulated by the level of reward prediction error – measured854

as the difference between the predicted value, vt, versus the reward at time t, denoted by rt. We855

also used entropy regularization on the network output (Grandvalet and Bengio, 2006;Mnih et al.,856

2016) to encourage exploration in the early phase of the training process.857

Weused the A2Cmethod (Mnih et al., 2016), as it is simple and has beenwidely used in cognitive858

modeling (Ritter et al., 2018; Wang et al., 2018). Notably, there is also evidence that an actor-859

critic style system is implemented in the cortex and basal ganglia (Takahashi et al., 2008). Since860

pure reinforcement learning is not data-efficient enough, we used supervised initialization during861

meta-training to help the model develop useful representations (Misra et al., 2017; Nagabandi862

et al., 2017). Specifically, the model is first trained for 600 epochs to predict the next state and863

to minimize the cross-entropy loss between the output and the target. During this supervised864

pre-training phase, the model is only trained on the recent memory condition and the episodic865

memory module is turned off, so this supervised pre-training does not influence the network’s866

retrieval policy. Additionally, the “don’t know” output unit is not trained during the supervised pre-867

training phase – we did this because we want the model to learn its own policy for saying “don’t868

know”, rather than having one imposed by us. Next, the model is switched to the advantage actor-869

critic (A2C) objective (Mnih et al., 2016) and trained for another 400 epochs, allowing all weights to870

be adjusted. The number of training epochs was picked to ensure the learning curves converge.871

Stimulus representation872

At time t, the model observes a situation feature, and then it gets a query about which state will be873

visited next. Specifically, the input vector at time t has four components (see Figure 5): 1) The874

observed situation feature (sticking with the example in Figure 2, this could be something like875

“weather”) is encoded as a T -dimensional one-hot vector. T is the total number of situation fea-876

tures, which (in most simulations) is the same as the number of time points in the event. The t-th877
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Figure 5. The stimulus representation for the event processing task. In the event processing task, situation
features are observed in different, random orders during part 1 and part 2, but queries about those features
are presented in the same order during part 1 and part 2. The green boxes in panel A indicate time points
where the model observed the value of the first feature (time point 13 during part 1, and time point 15 during
part 2). The yellow boxes indicate time points where the model was queried about the value of the first
feature (time point zero during both part 1 and part 2).

one-hot indicates the situation feature governing the transition at time t. 2) The value of the ob-878

served situation feature (e.g., learning that the weather is sunny) is encoded as a B-dimensional879

one-hot vector, where B is the number of possible next states at time t. 3) The queried situation880

feature is encoded as another T -dimensional one-hot vector (note that querying the model about881

the value of the feature that controls the next-state transition is equivalent to querying the model882

about the next state, given that there is a 1-to-1 mapping between feature values and states within883

a time point; see Figure 2A). 4) Finally, the model also receives the current penalty level for incor-884

rect predictions as a scalar input, which can change across trials. Overall, the input vector at time t885

is 2T +B+1 dimensional. At every time point, there is also a target vector of length B that specifies886

the value of the queried feature (i.e., the “correct answer” that the model is trying to predict). The887

model outputs a vector of length B + 1: The first B dimensions correspond to specific predictions888

about the next state, and the last output dimension corresponds to the “don’t know” response.889

In our simulation, the length of an event is 16 time points (i.e., T = 16), and the number of890

possible states at each time point is 4 (i.e., B = 4). Hence the chance level for next-state prediction891

is 1/4. Figure 5 illustrates the stimuli provided to the model for a single example trial. Note that892

the queries (about the next state) are always presented in the same order, so there is a diagonal893

on the queried feature matrix. This captures the sequential structure of events (e.g., ordering food894

always happens before eating the food). However, the order in which the situation features are895

observed is random. As a result, sometimes a feature is queried after it was observed, in which896

case the model can rely on its working memory to produce the correct prediction, and sometimes897

a feature is queried before it was observed, in which case themodel needs to use episodicmemory898

(if a relevant memory is available) to produce the correct prediction.899

As discussed above, the input vector specifies the level of penalty (for incorrect prediction) for900

the current trial. Duringmeta-training, the penalty value was randomly sampled on each trial from901

the range between 0 and 4. During meta-testing, we evaluated the model using a penalty value902

of 2 (the average of the penalty values used during training). To understand the effect of penalty903

on retrieval policy, we also compared the timing of recall in the model when the penalty during904

meta-testing was low (penalty = 0) vs. high (penalty = 4; Figure 3F).905
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In our simulations, during meta-training, the model only got to observe 70% of the features906

of the ongoing situation during part 1 of the sequence. This was operationalized by giving each907

feature a 30%probability of being removed during part 1; for time pointswhere the to-be-observed908

featurewas removed, themodel observed a zero vector instead. This “feature removal” during part909

1 of the sequence made the task more realistic, since – in general – past information does not fully910

inform what will happen in the future (during meta-testing, we did not remove any observations911

during part 1; thismakes the results graphs easier to interpret, but has no effect on the conclusions912

reported here).913

Finally, we wanted to make sure the model could adjust its retrieval time flexibly, instead of914

learning to always retrieve at a fixed time point (e.g., always retrieve at the third time point). There-915

fore, during training, we delayed the prediction demand by a random number of time points (from916

0 to 3). For example, if the amount of delay was 2 in a given trial, then the model observed 2917

situation features before it received the first query.918

Model testing919

During meta-testing (i.e., model evaluation; when simulating a particular experiment), the weights920

of the cortical part of themodel (i.e., all weights pertaining to the LSTM, decision layer, and EM gate)921

were frozen, but the model was allowed to form new episodic memories. In any given trial (where922

the model observed several events), new learning of information completely relied on working923

memory (i.e., model’s recurrent dynamics), episodic memory in the episodic module, and semantic924

memory encoded in the (frozen) cortical connection weights (instantiating the model’s knowledge925

of transitions between states and how these transitions are controlled by situation features). The926

results shown in all of the simulations were obtained by testing the model with new, randomly-927

generated events, after the initial meta-training phase. While it is theoretically possible that these928

test events could duplicate events that were encountered during meta-training, exact repeats will929

be very rare due to the combinatorics of the stimuli (as noted earlier, there are 416 possible se-930

quences of states within an event). For more information on model parameters, see Appendix 7.931

Decoding the working memory state932

In Figure 2C, we used a decoding approach to track what information the model was maintaining933

in working memory over time while it processes an event. This approach allowed us to assess the934

model’s ability to hold on to observed features after they were observed, and also to detect when935

features were retrieved from episodic memory and loaded back up into working memory. Our936

use of decoders here is analogous to the widespread use of multivariate pattern analysis (MVPA)937

methods to decode the internal states of participants from neuroimaging data (Haxby et al., 2001;938

Norman et al., 2006; Lewis-Peacock and Norman, 2014) – the only difference is that, here, we939

applied the decoder to the internal states of the model instead of applying it to brain data.940

Specifically, we trained classifiers on LSTM cell states during part 1 to decode the feature values941

over time. Each situation feature was given its own classifier (logistic regression with L2 penalty).942

For example, if “weather” was one of the situation features, we would train a dedicated “weather”943

classifier that takes the LSTM cell state and predicts the value of the weather feature for a given944

time point. To set up the targets for these classifiers for part 1, we labeled all time points before the945

model observed the feature value as “don’t know”. After a feature value was revealed, we labeled946

that time point and the following time points with the value of that feature (e.g., if the weather947

feature value was observed to be “rainy” on time point 4, then time point 4 and all of those that948

followed until the end of part 1 of the sequencewere labeledwith the value “rainy”). For part 2 data,949

we assumed all features were reinstated to the model’s working memory state after the EM gate950

value peaked. This labeling scheme assumes that 1) observed features are maintained in working951

memory and 2) episodic recall brings back previously encoded information. These assumptions952

can be tested by applying the classifier to held-out data. When decoding working memory states953

during part 1 of the sequence, we used a five-fold cross-validation procedure, and picked the regu-954
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larization parameter with an inner-loop cross-validation. All results were generated using held-out955

test sets. The average decoding accuracy was 91.58%. Note that, as mentioned above, there is no956

guarantee that features observed earlier in the sequence will be maintained in the model’s work-957

ing memory. As such, below-ceiling decoding accuracy could reflect either 1) failure to accurately958

decode the contents of workingmemory, or 2) the decoder accurately detecting a workingmemory959

failure (i.e., that the feature in question has “dropped out” of themodel’s workingmemory, despite960

having been observed earlier in the sequence).961
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Appendix 11295

The internal representation of the decision layer1296

1297

Appendix 1 Figure 1. How certainty is represented in the model’s activity patterns. Panels A and B
show the neural activity patterns from the decision layer in the distant memory (DM) condition,
projected onto the first two principal components. Each point corresponds to the pattern of neural
activity for a trial at a particular time point. We colored the points based on the output (i.e., “choice”)
of the model, which represents the model’s belief about which state will happen next. Patterns that
subsequently led to “don’t know” responses are colored in grey. Panel A shows an early time point
with substantial uncertainty (a large number of “don’t know” responses). Panel B shows the last time
point of this event, where the model has lower uncertainty. Panel C shows the average L2 norm of
states that led to “don’t know” responses (uncertain) versus states that led to specific next-state
predictions (certain); the errorbars indicate 1SE across 15 models. States corresponding to “don’t
know” responses are clustered in the center of the activation space, with a lower L2 norm.
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To explore how neural activity patterns in the decision layer differed as a function of
certainty, we plotted the activity patterns as a function of the action taken by the model
(i.e., whether it predicted one of the four upcoming states, or whether it used the “don’t
know” response). Figure 1 shows the results of this analysis: Uncertain states are approxi-
mately clustered near the center of the activation space (with a lower L2 norm) while other
responses are farther away, which indicates that uncertainty in our model is represented
by the absence of evidence towards any particular choice. Importantly, this difference in
activity patterns is not built-in to the model – it simply emerges during training.
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Appendix 21318

Effects of event similarity on retrieval policy1319

In this simulation, we studied how the similarity of event memories in the training environ-
ment affects retrieval policy. To manipulate memory similarity, we varied the proportion of
shared situation feature values across events during training. In the low-similarity condition,
the similarity between the distractor situation (i.e., situation A; see Figure 2 in the main text)
and the target situation was constrained to be less than 40%, so target memories and lures
were relatively easy to distinguish. In the high-similarity condition, the similarity between
the distractor situation and the target situation was constrained to fall between 35% and
90%. We used a rejection sampling approach to implement these similarity bounds – during
stimulus generation, we kept generating distractor situations until they fell within the sim-
ilarity bounds with respect to the target sequence. Otherwise, the simulation parameters
were the same as the parameters that were used in the main text.
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In the high-similarity condition, target and lure memories were more confusable, and
thus the risk of lure recall was higher. In light of this, we expected that the model would
adopt a more conservative retrieval policy (i.e., retrieving less) in the high-similarity condi-
tion. We also expected that this effect would be stronger when the penalty is high; when
the penalty is low, there is less of a cost for recalling the lure memory, and thus less of a
reason to refrain from episodic retrieval in the high-similarity condition.
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Appendix 2 Figure 1. Memory activation during part 2 (averaged over time) in the DM condition, for
models trained in low vs. high event-similarity environments and tested with penalty values that were
low (penalty = 0), moderate (penalty = 2), or high (penalty = 4). The model recalls less when similarity
is high (vs. low), and this effect is larger for higher penalty values. The errorbars indicate 1SE across
15 models.
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We compared the model’s behavior as a function of penalty and similarity. For the
penalty manipulation, each model was trained on a range of penalty values from 0 to 4,
then tested on low (0), moderate (2), and high (4) penalty values. Figure 1 shows the aver-
age level of memory activation in each of the conditions. As expected, memory activation is
lower in the high-similarity condition, especially when the penalty is high. Notably, increas-
ing penalty reduces memory activation in the high-similarity condition (where the risk of
false recall is high) but it does not have this effect in the low-similarity condition (where the
risk of false recall is low).
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Appendix 31352

Effects of familiarity on retrieval policy1353

Prior work has demonstrated that cortex is capable of computing a familiarity signal on its
own (i.e., without hippocampus) that discriminates between previously-encountered and
novel stimuli (Yonelinas, 2002; Norman and O’Reilly, 2003; Norman, 2010; Holdstock et al.,
2002). In this section, we study how this familiarity signal can support episodic retrieval pol-
icy. Relevant to this point, several recent studies have found that encountering a familiar
stimulus can temporarily shift the hippocampus into a “retrieval mode” where it is more
likely to retrieve episodic memories in response to available retrieval cues (Duncan et al.,
2012; Duncan and Shohamy, 2016; Duncan et al., 2019; Patil and Duncan, 2018; Hasselmo
and Wyble, 1997). Here, we assess whether our model can provide a resource-rational ac-
count of these “retrieval mode” findings.
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Intuitively, familiarity can guide episodic retrieval policy by providing an indication of
whether a relevant episodic memory is available. If an item is unfamiliar, this signals that it
is unlikely that relevant episodic memories exist, hence the expected benefit of retrieving
from episodic memory is low (if there are no relevant episodic memories, episodic retrieval
can only yield irrelevant memories, which lead to incorrect predictions); and if an item is
familiar, this signals that relevant episodic memories are likely to exist and hence the ben-
efits of retrieving from episodic memory are higher. These points suggest that the model
would benefit fromapolicywhereby it adopts amore liberal criterion for consulting episodic
memory when stimuli are familiar as opposed to novel.
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To test this, we ran simulations where we presented a “ground truth” familiarity signal
to the model during part 2 of the sequence. The familiarity signal was presented using an
additional, dedicated input unit (akin to how we present penalty information to the model).
Specifically, during part 2, if the ongoing situation had been observed before (as was the
case in the RM and DM conditions), the familiarity signal was set to one. In contrast, if the
ongoing situation was novel (as was the case in the NM condition), then the familiarity signal
was set to negative one. Before part 2, the familiarity signal was set to zero (an uninforma-
tive value). Other than these changes, the parameters of this simulation were the same
as the other simulations. The model was tested on penalty value of 2 – the average of the
training range. Note that our treatment of the familiarity signal here deliberately glosses
over the question of how this signal is generated, as this question is addressed in detail in
other models (e.g., Norman and O’Reilly 2003); our intent here is to understand the con-
sequences of having a familiarity signal (however it might be generated) for the model’s
episodic retrieval policy.
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Appendix 3 Figure 1. The familiarity signal can improve prediction. Next-state prediction
performance for models with (A) vs. without (B) access to the familiarity signal. With the familiarity
signal (A), the model shows 1) higher levels of correct prediction in the DM condition, and 2) a reduced
error rate in the NM condition. The errorbars indicate 1SE across 15 models.
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1393

Appendix 3 Figure 2. Episodic retrieval is modulated by familiarity. This figure shows the
memory activation and EM gate values over time for three conditions: 1) with the familiarity signal (A,
D), 2) without the familiarity signal (B, E), and 3) with a reversed (opposite) familiarity signal at test (C,
F). With the familiarity signal (A), the model shows higher levels of recall in the DM condition, and
suppresses recall even further in the NM condition, compared to the model without the familiarity
signal (B). This is due to the influence of the EM gate – the model with the familiarity signal retrieves
immediately in the DM condition, and turns off episodic retrieval almost completely in the NM
condition (D). Note also that levels of episodic retrieval in the RM condition stay low, even with the
familiarity signal (see text for discussion). Finally, parts C and F show that reversing the familiarity
signal at test suppresses recall in the DM condition and boosts recall in the NM condition. The
errorbars indicate 1SE across 15 models.
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Figures 1 and 2 illustrate prediction performance, memory activation, and EM gate val-
ues for models with and without the familiarity signal. When the model has access to a
veridical familiarity signal (+1 for RM and DM, -1 for NM), it opens the EM gate immediately
and strongly in the DM condition (Figure 2D - DM), leading to higher activation of both the
target memory and the lure (Figure 2A - DM) in the DM condition, relative to models with-
out the familiarity signal (Figure 2B - DM). Behaviorally, models with the familiarity signal
show both a higher correct prediction rate and a slightly higher error rate in the DM con-
dition, compared to models without the familiarity signal (Figure 1A vs. B - DM). This slight
increase in errors occurs because, when the model retrieves immediately from episodic
memory during part 2, the model (in some cases) has not yet made enough observations
to distinguish the target and the lure. In the NM condition, with the familiarity signal, the
model keeps the EM gate almost completely shut (Figure 2D - NM). Consequently, the level
of memory activation stays very low in the NM condition (Figure 2A - NM), which reduces the
error rate in the NM condition to zero (Figure 1A - NM). The RM condition is an interesting
case: Previously (see Figure 3 in the main text), we found that the model refrained from
episodic memory retrieval in the RM condition; we found that the same pattern is present
here, even when we make a familiarity signal available to the model: EM gate and memory
activation values are both very low (Figure 2A, D - RM), similar to models without access
to the familiarity signal (Figure 2B, E - RM). This shows that model does not always retrieve
from episodic memory when given a high familiarity signal – in this case, the presence of rel-
evant information in working memory (which suppresses episodic retrieval) “overrides” the
presence of the familiarity signal (which enhances episodic retrieval in the DM condition).
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Finally, we can trick the model into reversing its retrieval policy by reversing the famil-
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iarity signal at test (Figure 2C, F). In this condition, the (reversed) signal indicates that the
ongoing situation is novel (-1) in the RM and the DM condition, and the ongoing situation is
familiar (+1) in the NM condition. As a result, the model suppresses episodic retrieval in the
RM and DM conditions, and recalls lures in the NM condition.
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Overall, the results of this simulation show that our model is able to use a familiarity sig-
nal to inform its retrieval policy in the service of predicting upcoming states. Consistent with
empirical results (Duncan et al., 2012;Duncan and Shohamy, 2016;Duncan et al., 2019; Patil
and Duncan, 2018; Hasselmo and Wyble, 1997), we found that the model retrieves more
from episodic memory when the ongoing situation is familiar, unless the model has low
uncertainty about the upcoming state. These modeling results provide a resource-rational
account of why familiarity leads to enhanced episodic retrieval.
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Appendix 41440

Alternative configurations of episodic memory gating1441

In the simulations described in the main text, the EM gate controls the input into the EM
system. An alternative way of accomplishing gating is to place the gate after the EMmodule
(LCA), so it controls the flow of activation from the EM module back into the LSTM. Figure 1
illustrates the differences between these configurations; for convenience, we will use “post-
gating” to refer to the latter mechanism and “pre-gating” to refer to the mechanism used
in the simulations described in the main text. As noted in the Discussion, the primary con-
sequence of having the gate on the output side is that the gate can be controlled based on
information coming out of the hippocampus, in addition to all of the cortical regions that
are used to control the gate in our pre-gating model. The post-gating mechanism has been
more widely used in machine learning (Ritter et al., 2018; Ritter, 2019; Pritzel et al., 2017)
because it is more powerful – since the gating function has access to activated episodic
memories in the LCA, the model can close/open the gate depending on the properties of
these activated memories.
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Appendix 4 Figure 1. Unrolled network diagrams for the pre-gating (A) versus the post-gating (B)
models. The EM gate in the pre-gating model controls the degree to which stored memories are
activated within the LCA module, but does not control the degree to which the activated memories
are transmitted to the cortex. By contrast, the EM gate in the post-gating model controls the degree
to which activated memories in the LCA module are transmitted to the cortex, but it does not control
how these memory activations are computed in the first place.
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14611462

Since it is still unclear what kinds of episodic memory gating are implemented in the
brain (see below for further discussion), we experimented with both mechanisms. We fo-
cused on the pre-gating model in the main text since it involves fewer assumptions – criti-
cally, it does not assume that the gating mechanism has access to the content of memories
that are activated within the hippocampus. That said, the key results for the pre-gating
model, reported in the main text, qualitatively hold for the post-gating model (Figure 2). In
particular, the post-gating model also 1) retrieves much more from episodic memory in the
DM condition, compared to the other two conditions (Figure 2A, B, C); 2) retrieves more
when it is uncertain about the upcoming state (Figure 2D); 3) delays its recall time when
the penalty is higher (Figure 2E); 4) adjusts its EM gate value as a function of the schema
strength in a way that is similar to the pre-gating model (Figure 2F); and 5) shows the ef-
fect that midway-encoded memories hurt next-state prediction performance (Figure 2G, H
– note that this also holds true when midway-encoded memories are present during meta-
training). Importantly, while the aforementioned patterns replicate across the models, the
results are not exactly the same – the retrieval policy for the post-gatingmodel is oftenmore
flexible (i.e., it can adapt better to current conditions), since its EM gate can be controlled
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by the output of the EM module (in addition to the output of other cortical regions). For ex-
ample, in the post-gating model, the EM gate layer of the cortical network is able to detect
that relevant memories are not present in the NM condition, and it adapts to this by setting
the EM gate to a lower value in the NM condition than the DM condition (Figure 2C) – that
is, it learns to suppress retrieval when no memories are coming to mind. By contrast, the
pre-gating model actually shows the opposite pattern – here, the EM gate layer can not de-
tect the absence of relevant memories in the NM condition, but it can detect higher overall
levels of uncertainty in the NM condition than the DM condition, which leads it to set the
EM gate to a slightly higher value in the NM condition than the DM condition (see Figure 3C
in the main text).
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Appendix 4 Figure 2. The post-gating model qualitatively replicates key results obtained from the
pre-gating model (compare to Figure 3, 4 in the main text). See text in this appendix for discussion.
The errorbars indicate 1SE across 15 models.
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One exciting future direction is to experimentally investigate how episodic memory gat-
ing works in the brain. The pre-gating and post-gating models make different predictions
about the hippocampal activity: The post-gating model predicts that candidate episodic
memory traces should be activated in the hippocampus at each time point; sometimes
these activated traces are blocked (by the gate) from being transmitted to cortex, and some-
times they are allowed through. The pre-gating model predicts that activation of episodic
memory traces in the hippocampus will distributed more sparsely in time; on time points
when the gate is closed, no activation should be transmitted from cortex to hippocampus,
resulting in reduced activation of hippocampal memory traces (although there might be
activation of these traces via recurrence within the hippocampus). Putting these points to-
gether, the pre-gatingmodel appears to predict a large difference in hippocampal activation
patterns as a function of whether the gate is closed or open; by contrast, the post-gating
model appears to predict a smaller difference in hippocampal activation patterns as a func-
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tion of whether the gate is closed or open.
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However, this logic is complicated by the fact that the hippocampus is connected in a
recurrent “big loop” with cortex (Schapiro et al., 2017; Kumaran and Maguire, 2007; van
Strien et al., 2009; Koster et al., 2018) – in the post-gating model, even if the inputs to the
hippocampus are the same when the gate is open vs. closed, the outputs to cortex will be
different, which in turn will affect the inputs (from cortex) that hippocampus receives on
the next time point. Thus, we would eventually expect differences in hippocampal activa-
tion in these conditions, even in the post-gate model. This suggests that, while it may be
challenging to empirically tease apart the pre-gating and post-gating models, time-resolved
methods like ECoG that can (in principle) distinguish between the “initial wave” of activity hit-
ting the hippocampus after a stimulus and subsequent (recurrent) waves of activity would
be most useful for this purpose. We should also note that the pre-gating and post-gating
mechanisms are not mutually exclusive and it is possible that the brain deploys both of
them.
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Appendix 51521

Training the model without reinforcement learning1522

1523

Appendix 5 Figure 1. Results from a “no-RL” model that was trained in an entirely supervised
fashion, without reinforcement learning and without the option of giving a “don’t know” response –
compare to Figure 3 in the main text; see text in this appendix for discussion. The errorbars indicate
1SE across 15 models.
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In the simulations shown in the main text, we trained the model using reinforcement
learning (after supervised pre-training) and gave the model the option of responding “don’t
know”, in which case it received no penalty or reward (seeModel training and testing section
above for details). Here, in Figure 1, we report the results from amodel variant in which the
model was trained in an entirely supervised fashion, without the option of responding “don’t
know” – on each timepoint, themodelwas forced to predict the next state, andweightswere
adjusted based on the discrepancy between the predicted and actual states.
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There are two important observations to make based on the results in Figure 1. The first
observation is that the model is much less patient (i.e., it retrieves much earlier in part 2)
when we take away the option of giving a “don’t know” response. This impatience can be
seen by comparing the early time points of Figure 1C to the early time points of Figure 3C in
the main text – EM gate values are much higher at early time points in the no-RL model. It
can also be seen by comparing Figure 1E to Figure 3E in the main text – the average time-to-
recall is much lower in the no-RLmodel. These findings confirm our claim (made in themain
text) that the “don’t know” response makes the strategy of waiting to retrieve more viable,
by allowing the model to escape being penalized on trials when it is waiting to retrieve from
episodic memory.
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The second observation is that, even without the option of responding “don’t know”, the
learned retrieval policy of the no-RL model is still sensitive to certainty. This is shown in
Figure 1B and C: Just like the model in the main text, the no-RL model recalls less informa-
tion in the RM condition (when it is more certain about what will happen next) vs. the DM
condition. The lack of a difference in EM gate value between “recently observed” and “not
recently observed” features in Figure 1E suggests that the no-RL model might not be sensi-
tive to certainty, but this is an artifact of the no-RL model’s impatience – the EM gate value
is very high for early time points in both conditions, making it harder to observe a differ-
ence between conditions; in other simulations (not shown here) where we used a stronger
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penalty manipulation to disincentivize early retrieval, the difference in recall levels between
“recently observed” and “not recently observed” features was clearly visible in the no-RL
model, reaffirming its sensitivity to certainty.
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Taken together, the results from the no-RL model are very useful in clarifying what, ex-
actly, is gained from the use of RL training with a “don’t know” option. In particular: having a
“don’t know” response does not cause the model to have qualitatively distinct neural states
as a function of certainty – these differences (described in Appendix 1 above) exist regard-
less of “don’t know” training, and can be used by the no-RL model to modulate its retrieval
policy. Rather, the effect of RL training with the “don’t know” response is to make the model
more patient, by giving it the option of waiting without penalty when it is uncertain.
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Appendix 61565

Simulating inter-subject correlation results from Chen et al. (2016)1566

As discussed in the main text, Chen et al. (2016) found strong hippocampal-cortical activity
coupling measured using inter-subject functional connectivity (ISFC; Simony et al. 2016) for
DM participants, while the level of coupling was much weaker for participants in the RM
and NM conditions (Chen et al., 2016). Here, we address some additional findings from this
study that used temporal inter-subject correlation (ISC) as a dependent measure; temporal
ISC tracks the degree to which the fMRI time series in a particular brain region is correlated
across participants (Hasson et al. 2004; Chen et al. 2016; Nastase et al. 2019). Specifically,
Chen et al. (2016) found that – at the start of part 2 – temporal ISC in DMN regions was lower
between participants in the DM and RM conditions than between RM participants, suggest-
ing differences in how DM and RM participants were interpreting the story; however, this
gap in ISC decreased over the course of part 2, suggesting that these differences in inter-
pretation between DM and RM participants decrease over time (Figure 1B). Furthermore,
across participants, the degree to which the gap in ISC narrowed during the second half of
part 2 was correlated with the amount of hippocampal-cortical activity coupling at the start
of part 2 (Figure 1C; Chen et al. 2016). Taken together, these findings can be interpreted
as showing that hippocampus is consulted more (as evidenced by increased hippocampal-
cortical coupling) in the DM condition (where there are gaps in the situation model at the
start of part 2) than the RM condition (where the situation model is more complete); the
effect of this increased consultation of the hippocampus is to “fill in the gaps” and align the
interpretations of the DM and RM participants (as evidenced by DM-RM ISC rising to the
level of RM-RM ISC).
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To simulate these results, we trained 30 neural networks, then we assigned half of them
to the RM condition and half to theDMcondition. Next, we performed the temporal ISC anal-
ysis used in Chen et al. (2016) by treating hidden-unit activity patterns as multi-voxel brain
patterns. An important technical note is that running ISC across networks requires some
formof alignment (i.e., so the time series for corresponding parts of the networks can be cor-
related). Human fMRI data are approximately aligned across subjects, since brain anatomy
is highly similar across people. However, when many instances of the same neural network
architecture are trained on the same data, they tend to acquire different neural represen-
tations, even though they represent highly similar mathematical functions (Li et al., 2015;
Dauphin et al., 2014;Meng et al., 2018). That is, the same input can evoke uncorrelated neu-
ral responses across different networks, although they produce similar outputs. For our
purpose, this means that directly correlating hidden-layer activity patterns across neural
networks will underestimate the similarity of representations across networks. Therefore,
to simulate effects involving (human) inter-subject analyses, we need a way to align neural
networks.
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1603

Appendix 6 Figure 1. A) Illustration of how we computed inter-subject correlation (ISC) in the model
(see text for details). B and C show the empirical results from Chen et al. (2016) (reprinted with
permission) and D and E show model results. B) The sliding-window temporal inter-subject
correlation (ISC) over time, during part 2 of the movie. The recent memory ISC, or RM-RM ISC, was
computed as the average ISC value between two non-overlapping subgroups of the RM participants.
The distant memory ISC, or RM-DM ISC, was computed as the average ISC between one sub-group of
RM participants and the DM participants. Initially, the RM-DM ISC was lower than RM-RM ISC, but as
the movie unfolded, RM-DM ISC rose to the level of RM-RM ISC. C) For the DM participants, the level of
hippocampal-cortical inter-subject functional connectivity at the beginning of part 2 of the movie
(minutes 1-4) was correlated with the level of RM-DM ISC later on (minutes 5-10). D) Sliding window
temporal ISC in part 2 between the RM models (RM-RM) compared to ISC between the RM and DM
models (RM-DM). The convergence between RM-DM ISC and RM-RM ISC shows that activity dynamics
in the DM and the RM models become more similar over time (compare to part B of this figure). The
errorbars indicate 1SE across 15 models. E) The correlation in the model between memory activation
at time t and the change in ISC from time t to time t+ 1, for the first 10 time points in part 2. Each point
is a subject-subject pair across the two conditions. The 95% bootstrap distribution on the side shows
that the correlation between memory activation and the change in RM-DM ISC is significantly larger
than the correlation between memory activation and the change in RM-RM ISC (see text for details).
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To accomplish this goal, we used the shared response model (SRM) (Lu et al., 2018) – a
functional alignment procedure commonly used for multi-subject neuroimaging data (Chen
et al., 2015b; Haxby et al., 2011, 2020). Intuitively, this method applies rigid body transfor-
mation to align different network activities into a common space. Wehave previously shown
that neural networks with highly overlapping training experience can be aligned well with
SRM (Lu et al., 2018). Here, we used the Brain Imaging Analysis Kit (BrainIAK) implemen-
tation of SRM (Kumar et al., 2020a,b) to align our trained networks before computing ISC
(Figure 1A).
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Our simulation results qualitatively capture the findings from Chen et al. (2016). During
part 2, DM-RM ISC starts lower than RM-RM ISC, but as the event unfolds, they gradually
converge (Figure 1D). Moreover, in the DM condition, the level of memory activation at time
t is correlated with the increment in DM-RM ISC from time t to time t + 1 (Figure 1E). As a
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comparison point, in the RM condition (where the model is not relying on episodic retrieval
to fill in gaps in the situation model), memory activation does not correlate with the change
in (RM-RM) ISC. Collectively, these results establish that episodic retrieval accelerates the
convergence between model activations in the DM and RM conditions.
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More generally, this result shows that one can capture inter-subject results with compu-
tational models. Experiments using inter-subject analyses and natural stimuli are becoming
increasingly popular (Nastase et al., 2019; Sonkusare et al., 2019; Hamilton and Huth, 2018;
Nastase et al., 2020); our simulation results provide a proof-of-concept demonstration of
how computational models of memory can engage with this literature.
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Appendix 71644

Model parameters1645

We implemented the model in PyTorch (Paszke et al., 2017, 2019). The numbers of hidden
units for the LSTM layer and the decision layer were 194 and 128, respectively. The level
of competition in the LCA module was 0.8. The initial cell state of the LSTM was a random
vector ∼ isotropic Gaussian(0, .1).
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During the meta-training phase, we used the Adam optimizer (Kingma and Ba, 2014).
The initial learning rate was 7e-4. The learning rate decayed by 1/2 if the average prediction
accuracy minus mistakes stayed within 0.1% from the previous best loss for 30 consecutive
epochs. The minimal learning rate was 1e-8. We used orthogonal weight initialization with
gain of 1 (Saxe et al., 2014), and we used supervised initialization for 600 epochs to help the
model develop useful representations (Misra et al., 2017; Nagabandi et al., 2017). During
the supervised initialization phase, the model was trained to predict the upcoming state;
episodic memory and the “don’t know” unit were turned-off during this phase. After the su-
pervised initialization phase, the model was trained with A2C (Mnih et al., 2016) for another
400 epochs. We used entropy regularization with weight of 0.1 to encourage exploration.
For every epoch, the model was trained on 256 events.
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