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Abstract 
Recent advances in deep learning enable using chemical structures and phenotypic profiles to 
accurately predict assay results for compounds virtually, reducing the time and cost of screens 
in the drug discovery process. The relative strength of high-throughput data sources - chemical 
structures, images (Cell Painting), and gene expression profiles (L1000) - has been unknown. 
Here we compare their ability to predict the activity of compounds structurally different from 
those used in training, using a sparse dataset of 16,979 chemicals tested in 376 assays for a 
total of 542,648 readouts. Deep learning-based feature extraction from chemical structures 
provided a remarkable ability to predict assay activity for structures dissimilar to those used for 
training. Image-based profiling performed even better, but requires wet lab experimentation. It 
outperformed gene expression profiling, and at lower cost. Furthermore, the three profiling 
modalities are complementary, and together can predict a wide range of diverse bioactivity, 
including cell-based and biochemical assays. Our study shows that, for many assays, predicting 
compound activity from phenotypic profiles and chemical structures is an accurate and efficient 
way to identify potential treatments in the early stages of the drug discovery process. 
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Introduction 
Drug discovery is very expensive and slow. To identify a promising treatment for specific disease 
conditions, the theoretical landscape of possible chemical structures is prohibitively large to test 
in physical experiments. Pharmaceutical companies synthesize and test many millions of 
compounds, yet even these represent a small fraction of possible structures. Furthermore, 
although complex phenotypic assay systems have proven extremely valuable for identifying 
useful drugs for diseases where an appropriate protein target is unknown 1–3, their reliance on 
expensive or limited-supply biological materials, such as antibodies or human primary cells, often 
hinders their scalability. 
 
What if computational models could predict the results of hundreds of expensive assays across 
millions of compounds at a fraction of the cost? How might this transform drug discovery? 
Predictive modeling shows some promise. Most attempts so far have used various 
representations of chemical structure alone to predict assay activity; this requires no laboratory 
experiments for the compounds to be predicted (neither to synthesize nor test them), so this is 
dramatically cheaper than physical screens and enables a huge search space. Graph 
convolutional architectures in particular have substantially advanced the state of the art in recent 
years 4–15, and were recently used to discover a novel antibiotic 16. As impressive as these 
capabilities are, chemical structures do not seem to contain enough information to predict all 
assay readouts - their performance may depend heavily on the quantity, quality, and diversity of 
the given training data. Augmenting graph convolutional approaches with automatically 
computable descriptor sets was recently shown to improve performance in limited-data settings 
15. However, the realm of such descriptors is somewhat limited.  
 
Considerable improvements might come from augmenting chemical structure-based features with 
experimental information associated with each small molecule, ideally information available in a 
single inexpensive, scalable assay that could be run on millions of compounds once, then used 
to predict assay results virtually for hundreds of individual assays. Most profiling techniques, such 
as those measuring a subset of the proteome or metabolome, are not scalable to millions of 
compounds. One exception is transcriptomic profiling by the L1000 assay 17, which has shown 
success for mechanism of action (MOA) prediction 18, but is untested for predicting assay 
outcomes.  
 
Image-based profiling is an even less expensive high-throughput profiling technique 19 that has 
recently shown great success in compound activity prediction. In a landmark study, Simm et al. 
20 successfully repurposed images from a compound library screen to train models to predict 
unrelated assays; their prospective tests yielded up to 250-fold increased hit rates while also 
improving structural diversity of the active compounds. More recently, Hofmarcher et al. 21 and 
Way et al. 22 used Cell Painting 23, an unbiased image-based profiling protocol, to predict assay 
outcomes using machine learning, obtaining excellent results as well. Other studies have also 
looked at combinations of profiling methodologies, such as the work of Trapotsi et al. 24 who aimed 
to combine imaging and chemical structures to complete assay readouts in a sparse matrix and 
Lapins and Spjuth 18 who combined L1000 and Cell Painting for MOA prediction.  
 
Here, we test the hypothesis that computational models can powerfully predict assay outcomes 
at large scale when trained on advanced chemical structure representations combined with two 
different types of experimentally-produced phenotypic profiles, imaging (Cell Painting assay) and 
gene expression (L1000 assay) (Figure 1). 
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Figure 1. Overview of the workflow and data. A) Workflow of the methodology for predicting diverse 
assays from perturbation experiments. B) Structure of the data used in this study. C) Types of assay 

readouts targeted for prediction. 
 
 

Results 

Assay predictors trained with phenotypic profiles can improve hit 
rates 
We extracted experiment-derived profiles from two high-dimensional assays for each of 16,979 
compounds, including gene expression data (GE) from the L1000 assay 25,26 and image-based 
morphological profiles (MO) from the Cell Painting assay 26,27 (see Figure 1B and Methods). We 
also computed a chemical structure profile (CS) using Chemprop 15. We trained predictors using 
a subset of the data (13,582 of the compounds), for each kind of profile individually and in 
combinations (using late data fusion, see Methods).  
 
We evaluated each predictor for its ability to predict quantitative outcomes for 3,397 held-out 
compounds in 376 assays performed at the Broad Institute for more than a decade; the assays 
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were not selected based on any metadata and thus are representative of the activity of an 
academic screening center. We report the mean Area Under the Receiver Operating 
Characteristic Curve (AUC) and the number of assays with AUC > 0.9 (termed “well predicted”). 
We chose the latter as our primary metric, as in past studies of assay prediction 20, because it 
best matches the real-world use case where a subset of predicted compounds will be chosen and 
tested in an experiment. Predictors meeting AUC > 0.9 in our experiments produce on average a 
25-fold enrichment of hits (compounds with the desired activity) for assays with a  baseline hit 
rate below 1%, although we note that assays with AUC between 0.7 and 0.9 can in some cases 
show sufficient predictive ability to be useful (Supplementary Figure 1), and thus we report the 
number of assays with AUC > 0.7 as well. 
 
It is important to note that we aimed here to test the ability of each data type to predict assays for 
chemical structures that are distinct relative to training data. This is because there is little practical 
value to screen for additional, similar structures (scaffolds) to compounds already known to have 
activity; in drug discovery, any compounds with positive activity undergo medicinal chemistry 
where small variations in structure are synthesized and tested to optimize the molecule. In other 
words, biological assay outcomes are the primary goal and chemical dissimilarity is a secondary 
goal. We therefore took care that similar classes of structures were not included in both the 
training and held-out set to test whether methods (see Methods). 

Morphological profiles are the best individual modality for assay 
prediction 
Taking each data type individually, morphological profiling was able to accurately predict the 
highest number of different assays, 67 out of 376 attempted (Figure 2A). For comparison, in a 
prior study, morphology information alone was found to accurately predict 66 of 209 assays 21, 
though the experiments are not directly comparable because the sets of assays likely differ in 
their characteristics, and the data partitions for training / validation may not be based on scaffold 
diversity as in our study. 
 
By contrast, chemical structures could predict 43 assays and gene expression profiles 23 
assays. We strongly note that chemical structures would perform better without our imposed 
limitation to find structures different from those already known to be hits in each assay, as 
described in the prior section; it is remarkable that chemical structure information performs so 
well to find new structures. 

Chemical structure, morphology, and gene expression profiles 
provide complementary information for prediction 
We found a lack of major overlap among assays predicted by each profiling modality alone 
(Figure 2B). This indicates significant complementarity, that is, each profiling modality captures 
different biologically relevant information. In fact, only three of the 376 assays (<1%) 
“overlapped” - that is, were accurately predicted using any of the three profiling modalities 
alone. The two best-performing modalities, chemical structure and morphology, only have 18 
well-predicted assays in common. Taken independently, the three profiling modalities can 
identify a total of 107 unique assays, far higher than the best individual modality (MO, at 67). 
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Ideally, a combined strategy should recover all of those and more, by productively integrating 
the data, as we explore next. 
 

 
Figure 2. Number of assays that can be accurately predicted using single profiling modalities. A) 
Performance of individual modalities measured as the number of assays (y axis) predicted with AUC 
above a certain threshold (x axis). When a higher AUC threshold is needed, the number of assays that 
can be predicted decreases for all profiling modalities. We define accurate assays as those with AUC 
greater than 0.9 (dashed vertical line in blue). B) The Venn diagrams on the right show the number of 
accurate assays (AUC > 0.9) that are in common or unique to each profiling technique. The bar plot 
shows the distribution of assay types correctly predicted by single profiling modalities. All metrics and 
counts are measured in the holdout set using cross validation. C) Number of assays well predicted (AUC 
> 0.9) by each individual modality. 
 

Adding morphological profiles to chemical structure information 
improves assay prediction ability 
To understand how many assays can be predicted across data modalities, we counted the 
number of unique assays predicted by any of the individual profiling modalities following a 
retrospective assessment (Figure 3C, row “Single”). Given that all three modalities showed 
some amount of non-overlap with the others, having more modalities would always produce an 
increased number of well-predicted assays, as compared to having fewer. 
 
Morphology and gene expression profiles require wet lab experimentation, whereas chemical 
structures are always available, even for theoretical compounds, with the only cost being 
computing their profiles. Therefore we took CS as a baseline and explored the value of adding 
other kinds of profiles to it. In retrospection, adding MO to CS indicates potential to predict more 
than double the number of unique assays compared to CS alone (92 vs 43; Figure 3C, row 
“Single” vs Figure 2C)). 
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Training assay predictors from each profiling modality separately then choosing the most-
predictive modality for each assay is simplistic and does not leverage their strengths and 
complementarity. We therefore sought an improved strategy to integrate data from different 
profiling methods. In practice, data fusion strategies have to balance trade-offs between 
preserving accuracy and introducing noise from the various data sources (Supplementary 
Figure 2). We therefore carried out an analysis to combine results from modalities in alternate 
ways. Compared to early data fusion, we found that late data fusion (see Methods) provided 
better performance, yielding more predictors with AUC > 0.9 for all combinations of data types 
(Supplementary Table 1).  
 
Using late data fusion (Figure 3B, row “# AUC > 0.9”), we found that adding morphological 
profiles to chemical structures yields 71 well-predicted assays (CS+MO) as compared to 43 
assays for CS alone. In retrospection, there are 24 unique assays that are well predicted using 
CS or MO alone that could not be captured by the data fusion model. Adding them to the list 
would yield 95 well-predicted assays total (Figure 3C, row “Plus fusion”), indicating potential to 
predict more than twice the assays compared to CS alone (43). Improvements when adding 
morphology profiles to chemical structures were consistently found across other evaluation 
metrics (mean AUC in Figure 3B and AUC > 0.7 in Supplementary Figure 4 and Supplementary 
Table 1) and when adding morphological profiles to all other data types and combinations 
(Figure 3C).  
 
Obtaining morphological profiles requires physical experiments, whereas chemical structure-
based predictions can be carried out completely virtually. Nevertheless, we conclude the 
biological information encoded in the inexpensive Cell Painting assay makes it worthwhile to 
profile the large compound libraries in both pharmaceutical companies and academia. Running 
this single assay costs about the same as a typical screening assay but would reduce the 
number of subsequent physical screens needed (at a cost of millions of dollars each in a 
pharmaceutical setting).  
 
At an AUC > 0.9, the 95 unique assays that are well predicted with CS+MO in retrospection 
represent 25% of the total. It is currently debated whether an AUC closer to 0.7 would be 
acceptable; we found that for assays with a low baseline hit rate, this accuracy level may be 
sufficient to dramatically increase the ability to identify useful compounds in the screen 
(Supplementary Figure 1). If a cutoff of AUC > 0.7 was found to be acceptable, 67% of assays 
would be well predicted with CS+MO (253 out of 376, Supplementary Figure 4). This is 
remarkable given that the imaging assay uses only six dyes for cell structure components in a 
single cell type (U2OS), captured at a single time point and concentration of drug exposure. 
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Figure 3. Number of assays that can be accurately predicted using combinations of profiling modalities. 
Accurate predictors are defined as models with accuracy greater than 0.9 AUC. We considered all four 
modality combinations using late data fusion in this analysis: CS+MO (chemical structures and 
morphology), CS+GE (chemical structures and gene expression), GE+MO (gene expression and 
morphology), and CS+GE+MO (all three modalities).  A) The Venn diagram shows the number of accurate 
assays that are in common or unique to fused data modalities. The bar plots in the center show the 
distribution of assay types correctly predicted by the fused models. All counts are measured in the holdout 
set. B) The number of accurate assay predictors (AUC > 0.9) obtained for combinations of modalities 
(columns) using late data fusion following predictive cross-validation experiments. C) Retrospective 
performance of predictors. These counts indicate how many assays can be predicted with high accuracy 
(AUC > 0.9), whether by single or fused modalities. “Single” is the number of assays reaching AUC > 0.9 
with any one of the specified modalities, i.e., take the best single-modality predictor for an assay. This count 
corresponds to the simple union of circles in the Venn diagram in Figure 2B, i.e., no data fusion is involved. 
“Plus fusion” is the same, except that it displays the number of assays that reach AUC > 0.9 with any 
individual or data-fused combination. This count corresponds to the union of circles in the Venn diagram in 
Figure 2B plus the number of additional assays that reach AUC > 0.9 when the modalities are fused. For 
example, the last column counts an assay if its AUC > 0.9 for any of the following: CS alone, GE alone, MO 
alone, data-fused CS+GE, data-fused GE+MO, data-fused CS+MO, and data-fused CS+GE+MO. 
“Increase” indicates the relative increase in the number of assays that can be accurately predicted when 
using data fusion (calculated from the two rows above it). 

Adding gene expression profiles to chemical structure information 
improves assay prediction ability in some cases 
Gene expression profiles were the weakest profile type when tested individually: chemical 
structures alone were twice as powerful and morphological profiles alone were three times as 
powerful (23 well-predicted assays for GE compared to 43 for CS and 67 for MO; Figure 2C). In 
retrospection, the unique assays predicted by either CS or GE amounts to 62 in total (Figure 
3C): GE would add 19 unique assays to CS’s 43 well-predicted assays, a 50% improvement. 
Surprisingly, adding gene expression profiles to chemical structures by late data fusion actually 
worsened performance, yielding only 32 well-predicted assays as compared to 43 for CS alone 
(Figure 3B). This worsening was quite consistent across other evaluation metrics when adding 
gene expression profiles to all other profiling modalities and combinations by data fusion (Figure 
3 and Supplementary Table 1 / Supplementary Figure 4). 
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Nevertheless, data fusion did yield some additional well-predicted assays in retrospection; 
adding the unique assays well predicted by CS alone and GE alone to those well predicted by 
the data fusion of CS+GE would add two assays, bringing the total to 64. Therefore, comparing 
the profiling methods, MO would yield 2.5 times as many additional unique assays when added 
to CS (95 assays total) as compared to GE being added to CS (64 assays total), that is, MO 
would add 52 whereas GE would add 21. MO is also more cost-effective, making it the better 
choice when planning a single profiling experiment. 

Complementarity across all three profiling types 
We had hypothesized that data fusion of all three modalities would provide the best assay 
prediction ability than any individual or subset. However, data-fused CS+GE+MO yielded 62 
well-predicted assays, fewer than could be obtained by data-fused CS+MO (71 assays), which 
itself was not far from MO alone (67 assays). All of these fall short of the 92 unique assays that, 
in retrospection, could be identified by taking the single best of just two of the data types, CS 
alone + MO alone. This highlights the need for designing improved strategies for data fusion. 
 
In combining all three profiling modalities, therefore, we trained predictors using all possible 
individual modalities as well as pairwise data-fused combinations, plus a data fusion of all three 
modalities. In retrospection, taking the best (single or fused) of all three modalities would predict 
115 unique assays, as compared to CS+MO and GE+MO, which would predict 95 and 91 
assays respectively. We therefore conclude that if all modalities are available, they are all useful 
to increase predictive ability. We also conclude that morphological profiles are more valuable 
than gene expression profiles in this context, keeping in mind the caveat that the particular 
assays here were Cell Painting for morphology and L1000 for gene expression. 
 

Models can predict a diversity of assay types 
The morphological and gene expression profiles used for model training derive from cell-based 
profiling assays. We find that they can correctly predict compound activity for mammalian cell-
based assays, which were the most frequent in this study (Figure 1C), but also a variety of other 
assay types, such as bacterial and biochemical (Figure 2B, 3A). We obtained assay type 
annotations for 176 assays in 7 categories, and obtained diverse results: from 85 cell-based 
assays, 11, 2 and 16 are accurately predicted by CS, GE and MO respectively (12%, 2%, 18%). 
From 53 biochemical assays, 0, 2 and 3 were predicted by CS, GE and MO respectively (0%, 
3%, 5%). These results suggest that the subset of well predicted assays include diverse assay 
types, i.e., phenotypic profiling strategies are not constrained to predict cell-based assays only. 
The results also indicate, together with those shown in Figure 2B, that MO captures the widest 
range of assay types among all predictors. 
 
Interestingly, most assays can be predicted with a single profiling modality, while some others 
benefit from combining experimental evidence of various profiling modalities. For example, MO 
accurately predicts two bacterial assays, and fusing CS+MO predicts four (out of 22 available). 
We examined four assays with increased fused accuracy more closely (Figure 4). The Fibroblast 
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growth factor 22 (FGF-22) assay, a biochemical assay, can be predicted with an AUC of 0.83 and 
0.86 using MO and CS respectively, but when both are combined using data fusion the prediction 
accuracy increases significantly to 0.97 (Figure 4). The other assays showed less dramatic 
improvement in AUC when combining data modalities by data fusion. 
 

 
 

Figure 4. Prediction accuracy of example assays of diverse types. The plots are Receiver Operating 
Characteristic (ROC) curves and the Area Under the Curve (AUC) is reported for each curve with the 

corresponding color. Four assays were selected for panels A and B, in order from left to right: 
Cryptococcus Neoformans (bacterial), FGF-22 (biochemical), Clostridium difficile Toxin (bacterial), 
Interleukin 10 (cell-based). A) Performance of predictors when using a single profiling method. B) 

Performance of predictors when using combinations of profiling methods. 
 

Discussion 
Predicting bioactivity of compounds could become a powerful strategy for drug discovery in light 
of ever-improving computational methods (particularly, deep learning) and ever-increasing rich 
data sources (particularly, from profiling assays). Here, we used Chemprop, state-of-the-art 
software for learning predictors from chemical structures, to combine the molecule fingerprint 
with phenotypic profiles obtained from images (Cell Painting) and gene expression (L1000).  
 
We discovered that all three profile modalities—chemical structure, morphology, and gene 
expression—offer independently useful information about perturbed cell states that enables 
predicting different assays. Chemical structure is always readily available for a given compound. 
Of the two profiling modalities that require physical experimentation, morphology was 
significantly more powerful in providing information about cell state than gene expression, at 
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least using this data set and profiling assay types: Cell Painting and L1000. This finding is 
consistent with prior studies for other applications 18,26. 
 
In retrospection, we found that data fusion strategies increased the number of well-predicted 
assays by only 3-10%, depending on the subset of modalities tested, as compared to simply 
using each profiling modality independently for prediction. We believe this argues for further 
research on how best to integrate disparate profiling modalities, capturing the strengths of each 
individually as well as the complementarity of their combinations. Nevertheless, using late data 
fusion to combine each subset of available modalities does offer some improvement versus 
each individually and is likely a worthwhile exercise given its ease of implementation. Our set of 
assays lacked sufficient metadata to assess the characteristics of the assays that were only 
captured by fusion; this would be interesting to explore. 
 
We believe these findings support widespread adoption of morphological profiling early in the 
drug discovery and chemical biology process. Given the low cost of carrying out Cell Painting, it 
is practical in many settings to profile an entire institution’s chemical library. Then, a modest-
sized library of a few thousand compounds would be tested in each new assay of interest. 
Researchers would assess whether a sufficiently accurate predictor could be trained on this 
data, using CS alone, MO alone, or a data-fused combination of CS+MO. Taking into account 
the baseline hit rate for the assay, researchers could decide whether the predictor will increase 
the hit rate sufficiently to warrant a virtual screen against a large compound library for which 
morphological profiles are already available (within an institution, or publicly available profiles 
28), followed by cherry picking a small set of predicted hits and testing them for actual activity in 
the assay. Although we suggest a few thousand compounds for the training set based on the 
data shown in Supplementary Figure 3, it remains to be fully evaluated how many training points 
are needed to achieve strong predictivity - in fact, it is likely that the number and structural 
diversity of hits in the training set more strongly influences predictivity than the total number of 
assay data points. Nevertheless, in most academic and industry screening centers, preparing a 
training/test set of ~17,000 compounds, as we used here, is practical. 
 
Based on our results, and depending on whether an AUC of 0.7 or 0.9 is the lower threshold for 
accuracy needed given the baseline hit rate of the assay, 25-67% of assays should be 
predictable using a combination of chemical structures and morphology (CS+MO), saving the 
enormous expense of screening these assays against a full compound library. Especially 
considering potential improvements in data integration techniques and deep learning for image 
feature extraction, it is clear that this strategy will be fruitful and accelerate the discovery of 
useful chemical matter. 
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Methods 

Datasets 
For this study, we used a compound library of over 30,000 chemicals screened at high-
throughput 26. Of these compounds, about 10,000 came from the Molecular Libraries Small 
Molecules Repository, other 2,200 were drugs and small molecules, and the remaining 18,000 
were novel compounds derived from diversity oriented synthesis. U2OS cells were plated in 
384-well plates and treated with these chemicals in 5 replicates, using DMSO as a negative 
control. The Cell Painting and L1000 platforms were used to generate morphological and 
transcriptional profiling data, respectively, as previously described 26.  
 
On the assays side, we collected a list of more than 500 assays from drug discovery projects 
conducted at the Broad Institute at different scales, and we kept those where at least a subset 
of the chemicals in the compound library described above was tested. In addition, we kept 
assays that had at least 1 hit identified in the hold out set for evaluation. That resulted in a final 
list of 376 assays with their corresponding readout results, and the compound-assay matrix had 
8.5% of known entries (91.5% sparsity). We prepared assay performance profiles following a 
double sigmoid normalization procedure to ensure that all readouts are scaled in the same 
range 29.  
 
The total number of chemicals in the library that had the three types of information required to 
conduct the experiments in our project (Cell Painting images, L1000 profiles, and assay 
readouts) was 16,979. From this subset of chemicals, we created a training set with 13,582 
examples and a hold-out set for validations with 3,397 examples. This partition was created 
following a scaffold-based approach to minimize the similarity between chemicals in the training 
and hold out sets. 

Representation of chemical structures (CS) using Chemprop 
We used the Chemprop software (http://chemprop.csail.mit.edu/) to train directed-message 
passing neural networks for learning chemical structure embeddings. The software reconstructs 
a molecular graph of chemicals from their SMILES string representation, where atoms are 
nodes and bonds are edges. From this graph, a model applies a series of message passing 
steps to aggregate information from neighboring atoms and bonds to create a better 
representation of the molecule. For more details about the model and the software, we refer the 
reader to prior work 15,16,30. 
 
The representation of chemical structures is learned from the set of ~13,000 training examples, 
unlike morphological or gene expression features, which were obtained without learning 
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methods (hand-engineered features). The scaffold split used in our experiments may pose an 
apparent disadvantage to the learning of chemical structure representations because it may not 
learn to represent important chemical features in new scaffolds. However, previous research by 
Yang et al. 15 has shown that Chemprop can generalize to new scaffolds accurately. In addition, 
the chemicals may also generate new phenotypes in the morphological and gene expression 
space, which are not seen by the models during training, resulting in a fair comparison of 
representation power among all modalities. In any event, the goal of this work was to test the 
ability to identify chemical matter with structures that differ from already-known hit compounds 
for each assay. 

Image-based morphological (MO) profiles from the Cell Painting 
assay 
The Cell Painting assay captures fluorescence images of cells using six dyes to label eight 
major cell compartments. The five-channel, high-resolution images are processed using the 
CellProfiler software (https://cellprofiler.org/) to segment the cells and compute a set of 1,500+ 
morphological features at the single-cell level. These features are aggregated into well- and 
treatment-level profiles that capture the central statistics of the response of cells to the 
treatment. In our study, we used treatment level profiles in all experiments. For more details 
about Cell Painting 23, CellProfiler 31, and the profiling steps 32, see the corresponding 
references. 

Gene expression (GE) profiles from the L1000 assay 
The L1000 assay measures transcriptional activity of perturbed populations of cells at high-
throughput. These profiles contain mRNA levels for 978 landmark genes that capture 
approximately 80% of the transcriptional variance 17. The assay was used to measure gene 
expression in U2OS cells treated with the set of compounds in our library. Both the profiles and 
the tools to process this information are available at https://clue.io/ . 

Predictive model and data fusion 
The predictive model is a feedforward, fully connected neural network which takes as input 
features and produces as output the hit probabilities for each compound for each assay. The 
hyperparameters are optimized on a validation set for each feature grouping. The model is 
trained in a multi-task manner, allocating a binary classifier for each assay. During training, the 
model computes gradients and backpropagates errors for each classifier independently using 
the available assay readouts. This setup facilitates learning predictive models with sparse assay 
readouts. 
 
The input to the neural network can be the features of one or all modalities used in our 
experiments. To combine features from multiple data modalities, we used two strategies: 1) 
early data fusion, where feature vectors from two or three modalities are concatenated into a 
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single vector. 2) Late data fusion, where each modality is used to train a separate model, and 
then the prediction scores for a new sample are aggregated using the maximum operator. Our 
results show that, despite its simplicity, late data fusion works best in practice (see 
Supplementary Table 1), but the results also suggest that more research needs to be done to 
effectively combine multiple data modalities. 

Performance metrics 
To evaluate the performance of assay predictors we used the Area Under the Receiving 
Operating Characteristic (ROC) curve, also known as the AUC metric. We define a threshold of 
AUC > 0.9 to identify assays that can be accurately predicted. With this threshold, our second 
performance metric is focused on counting how many assays, from the list of 376 in our study, 
can be accurately predicted. In addition, we measured hit-rate improvement for individual 
assays as the ratio between the hit rate obtained using the computational predictors and the hit 
rate observed in the lab (the “baseline” hit rate): 

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟	𝐻𝑖𝑡	𝑅𝑎𝑡𝑒
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒	𝐻𝑖𝑡	𝑅𝑎𝑡𝑒

 

Predictor hit rates are calculated as the proportion of hits observed in the top 1% of the ranked 
list of predictions, while baseline hit rates are calculated as the number of hits identified in the 
complete set of compounds tested for that assay in the original experiment. 
 

Data and code availability 
The morphological and gene expression profiles were originally created and published by 
Wawer, M. J. et al. 26, and can be downloaded from: 
http://www.broadinstitute.org/mlpcn/data/Broad.PNAS2014.ProfilingData.zip 
 
The Cell Painting images were also made available by Bray et al. 27, and can be obtained from 
the following link: http://gigadb.org/dataset/100351  
 
The latest version of morphological profiles is also available in the following AWS S3 bucket: 
https://registry.opendata.aws/cell-painting-image-collection/ 
 
The Chemprop software and source code used for training machine learning models can be 
found in the following link: http://chemprop.csail.mit.edu/ 
 
Anonymized assay data and code to reproduce the analysis in the paper will be made available 
soon. 
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Supplementary Material 
 

 
Supplementary Figure 1. Improvement of hit rates for the assays in the dataset. Each point in 
the plot represents one assay being predicted with one of the three descriptors (CS, GE or MO) 
or combinations of them. Assay predictors with AUC > 0.7 are displayed in yellow and 
predictors with AUC > 0.9 are displayed in purple. Assay predictors with AUC < 0.7 are not 
shown. The x-axis represents the baseline hit rate, i.e., the proportion of compounds found to be 
hits in the set of tested compounds for an assay. Primary assays in real world scenarios usually 
have less than 1% baseline hit rates (green dashed line at 0.01); the assays in this dataset with 
baseline hit rates substantially higher than 1% are likely validation/confirmatory or secondary 
assays. The y-axis presents the folds of improvement of assay predictions obtained with a 
machine learning predictor as a function of the baseline hit rate. Accurate predictors (AUC > 
0.9) often offer improvements up to the theoretical maximum (100% divided by the assay’s 
baseline hit rate), and higher-fold improvements are only possible for assays with a lower 
baseline hit rate. 
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Supplementary Figure 2. Illustration of the impact of data fusion.  
Each plot shows the hit probability for all compounds in the holdout set produced by seven 
different predictors for one example assay: Clostridium difficile toxin. The x-axis lists ranked 
compounds and the y-axis shows probability scores. The points in the plots are each of the 
compounds in the holdout set ranked according to their probability of being a hit. Actual hit 
compounds are in red and non-hit compounds are in blue (red points maybe hidden behind blue 
points). Each plot represents a predictor based on the corresponding profiling modality or their 
combinations (CS: chemical structures, GE: gene expression, MO: morphology). A) Predictions 
made using single modalities. In this example, the CS predictor alone displays great confidence 
to rank hit compounds in the top of the list, dropping the probabilities quickly for other compounds. 
MO exhibits a smoother transition of highly ranked compounds and achieves the best AUC among 
single modalities. B) Predictions obtained with data fusion. The combination of CS+MO appears 
to capture the individual modalities’ strengths (high confidence and high AUC), improving the 
overall ranking even further (see Figure 2 in the main text). 
 

 
 
Supplementary Figure 3. The performance of predictive models is independent of the number 
of available training examples; some assays can be predicted with high accuracy (AUC > 0.9) 
using only a few example hits. The plots show on the y-axis the test set accuracy as a function of 
(A) the number of training examples, and (B) the hit rate in the training set. The trend lines (in 
blue) suggest that there is no correlation between the number of training examples (positives or 
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total) and the performance of assay predictors.  
 
 
 

 
Supplementary Figure 4. Summary of the number of assays predicted with models that have 
AUC > 0.7, which is a lower performance threshold than the one used throughout our study. The 
major trends identified and presented in Figures 2 and 3 (main text) hold with this lower threshold, 
except that the total number of acceptable assay predictors increases. Importantly, these 
predictors are also capable of improving hit rates in many cases (see yellow points in 
Supplementary Figure 1). The row “Retrospective” in Table B presents the number of assays with 
AUC > 0.7 that would be predicted by any of the modalities individually or their combinations. 
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Supplementary Figure 5. Area Under the Curve (AUC) performance of the three individual 
modalities evaluated in our study: Chemical Structures (CS), Gene Expression (GE), and 
Morphology (MO). A) Number of assays predicted by each modality at specific AUC thresholds. 
As the AUC threshold is increased, the number of assays meeting the threshold decreases for all 
modalities. The two thresholds discussed in this paper are highlighted in red (0.7) and blue (0.9). 
MO consistently outperformed CS and GE at all thresholds. B, C, D) Scatter plots of AUC for pairs 
of modalities. Each point in the plots represents an assay, the x coordinate indicates the AUC 
obtained in one modality, and the y axis represents the AUC obtained in the other modality. Colors 
represent the three individual modalities: CS (yellow), GE (blue) and MO (green). Points (assays) 
above or below the diagonal (equal performance) are colored according to the modality that has 
the highest AUC. The two colored numbers inside the plot indicate the total number of assays 
with higher AUC with respect to the other modality in the same plot. Note that there are many 
points far off the diagonal, indicating high AUC in one modality but low in the other. This indicates 
potential for complementary and fusion among the different data modalities. 
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Supplementary Table 1. Overall performance of profiling modalities and their combinations 
presented in the columns of the tables. Early fusion refers to concatenation of feature vectors 
before training predictive models, while late fusion refers to keeping the maximum prediction of 
individual models. The tables present three performance metrics: Mean AUC, number of assays 
predicted with AUC > 0.7, and number of assays predicted with AUC > 0.9. In the three cases, 
higher numbers indicate better performance, and the best result is in bold for each row. Late 
fusion yields the largest number of predictors with AUC > 0.9 overall, and also for all combinations 
of descriptors. 
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