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Abstract
Recent advances in deep learning enable using chemical structures and phenotypic profiles to
accurately predict assay results for compounds virtually, reducing the time and cost of screens
in the drug-discovery process. We evaluate the relative strength of three high-throughput data
sources—chemical structures, images (Cell Painting), and gene-expression profiles (L1000)—to
predict compound activity using a sparse historical collection of 16,186 compounds tested in
314 assays for a total of 679,819 readouts. All three data modalities can predict compound
activity with high accuracy in 7-8% of assays tested; replacing million-compound physical
screens with computationally prioritized smaller screens throughout the pharmaceutical industry
could yield major savings. Furthermore, the three profiling modalities are complementary, and in
combination they can predict 18% of assays with high accuracy, and up to 59% if lower
accuracy is acceptable for some screening projects. Our study shows that, for many assays,
predicting compound activity from phenotypic profiles and chemical structures could accelerate
the early stages of the drug-discovery process.
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Introduction
Drug discovery is very expensive and slow. To identify a promising treatment for specific disease
conditions, the theoretical landscape of possible chemical structures is prohibitively large to test
in physical experiments. Pharmaceutical companies synthesize and test many millions of
compounds, yet even these represent a small fraction of possible structures. Furthermore,
although complex phenotypic assay systems have proven extremely valuable for identifying
useful drugs for diseases where an appropriate protein target is unknown 1–3, their reliance on
expensive or limited-supply biological materials, such as antibodies or human primary cells,
often hinders their scalability.

What if computational models could predict the results of hundreds of expensive assays across
millions of compounds at a fraction of the cost? Predictive modeling shows some promise. Most
attempts so far have used various representations of chemical structure alone to predict assay
activity; this requires no laboratory experiments for the compounds to be predicted (neither to
synthesize nor test them), so this is dramatically cheaper than physical screens and enables a
huge search space. Deep learning in particular has substantially advanced the state of the art in
recent years 4–16, and was recently used to discover a novel antibiotic 17. As impressive as these
capabilities are, chemical structures alone do not seem to contain enough information to predict
all assay readouts — their performance may be limited by the lack of experimental information
revealing how living organisms respond to these treatments.

Considerable improvements might come from augmenting chemical structure-based features
with experimental information associated with each small molecule, ideally information available
in inexpensive, scalable assays that could be run on millions of compounds once, then used to
predict assay results virtually for hundreds of other individual assays. Most profiling techniques,
such as those measuring a subset of the proteome or metabolome, are not scalable to millions
of compounds. One exception is transcriptomic profiling by the L1000 assay 18, which has
shown success for mechanism of action (MOA) prediction 19, but is untested for predicting assay
outcomes.

Image-based profiling is an even less expensive high-throughput profiling technique 20 that has
shown great success in compound activity prediction. Cell morphology has been shown to be
scalable to annotate compound libraries in real time by determining bioactivity, looking for
changes with respect to untreated cells 21. In a novel study, Simm et al. 22 successfully
repurposed images from a compound library screen to train machine learning models to predict
unrelated assays; their prospective tests yielded up to 250-fold increased hit rates while also
improving structural diversity of the active compounds. More recently, Cell Painting 23,24 and
machine learning have been used to predict the outcomes of other assays as well 25,26.

The complementarity and integration of profiling methodologies and chemical structures to
predict compound bioactivity holds promise to improve performance, and has been studied in
various ways. The relationships between chemical structures and phenotypic profiles (cell
morphology and transcriptional profiles) has been investigated to identify rules that connect
structural features with bioactivity patterns in high-dimensional profiling data 27. Other studies
have looked at combinations of profiles, such as integrating imaging and chemical structures to
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complete assay readouts in a sparse matrix 28 or combining L1000 and Cell Painting for MOA
prediction 19.

In this work, we aim to evaluate the predictive power of chemical structures, cell morphology
profiles, and transcriptional profiles, to determine assay outcomes computationally at large
scale. This study does not aim to make predictions in specific assays, which may result in
anecdotal success, but rather aims to assess the potential of computational models to support
experimental designs in future projects. Our goal is to train machine learning models that predict
compound bioactivity taking as input high-dimensional encodings of chemical structures
combined with two different types of experimentally-produced phenotypic profiles, imaging (Cell
Painting assay) and gene expression (L1000 assay) (Figure 1). Our hypothesis is that data
representations of compounds and their experimental effects in cells have complementary
strengths to predict assay readouts accurately, and that they can be integrated productively to
improve compound prioritization in drug-discovery projects.

Figure 1. Overview of the workflow and data. A) Workflow of the methodology for predicting diverse
assays from perturbation experiments (more details in Supplementary Figures 1 and 2). B)  Types of

assay readouts targeted for prediction, which include a total of seven categories (Supplementary Figure
14). C) Structure of the input and output data for assay prediction. D) Similarity of assays according to the

Jaccard similarity between sets of positive hits. Most assays have independent activity (Supplementary
Figure 12). E) UMAP visualizations of all compounds in the three feature spaces evaluated in this study
(Supplementary Figure 9). F) Distribution of assay readouts for assays in the horizontal axis sorted by
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readout counts. The available examples follow a long tail distribution and the ratio of positive hits to
negatives (hit rate) is 2.5%

Results

Chemical structure, morphology, and gene expression profiles
provide complementary information for prediction
We first selected 314 assays performed at the Broad Institute for more than a decade (Figure 1);
the assays were not selected based on any metadata and thus are representative of the activity
of an academic screening center. Then, we extracted experiment-derived profiles for 16,186
compounds, including gene-expression profiles (GE) from the L1000 assay 29,30 and
image-based morphological profiles (MO) from the Cell Painting assay 30,31. We also computed
chemical structure profiles (CS) using graph convolutional nets 16 (Figure 1 and Methods).
Finally, assay predictors were trained using 5-fold cross-validation using scaffold-based splits
(Methods and Supplementary Figures 1 and 9) to quantitatively evaluate the ability of the three
data modalities to independently identify hits in the set of held-out compounds.

We found that all three profile types (CS, GE, and MO) can predict a subset of diverse assays
with high accuracy, revealing a lack of major overlap among the assays predicted by each
profiling modality alone (Figure 2B). This indicates significant complementarity, that is, each
profiling modality captures different biologically relevant information. In fact, only three of the
314 assays (<1%) “overlapped” - that is, were accurately predicted using any of the three
profiling modalities alone. Chemical structure shares eight well-predicted assays in common
with morphology, and none with gene expression, indicating that gene expression captures
more independent activity. In fact, gene-expression profiles predicted 14 assays that are not
captured by chemical structures or morphology alone, the largest number of unique predictors
among all modalities (Figure 2B).

Morphology is able to predict the largest number of assays individually (26 vs 22 for CS and 21
for GE) (Figure 2C)., although with AUROC thresholds below 0.8, chemical structure predicts
more assays than the other two modalities (Figure 2A). We use the count of predictors with
AUROC > 0.9 as our primary evaluation metric, following past studies of assay prediction 17,19,22,
because it is an indicator of independent bioactivity that is encoded in each profiling modality
with a high accuracy threshold. Ideally, profiling modalities would capture sufficient information
to accurately predict as many assays as possible; in practice data modalities are limited by the
type of bioactivity that they can characterize. The results in Figure 2 reveal the extent to which
profiling modalities capture specific bioactivity and confirm that they are indeed mostly different
from each other.
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Figure 2. Number of assays that can be accurately predicted using single profiling modalities. All
reported numbers are the median result of the five-fold cross-validation experiments run in the dataset.
Detailed results of each partition are reported in Supplementary Figure 4 and Supplementary Table 1.  A)
Performance of individual modalities measured as the number of assays (vertical axis) predicted with
AUROC above a certain threshold (horizontal axis). With higher AUROC thresholds, the number of
assays that can be predicted decreases for all profiling modalities. We define accurate assays as those
with AUROC greater than 0.9 (dashed vertical line in blue). B) The Venn diagrams on the right show the
number of accurate assays (median AUROC > 0.9) that are in common or unique to each profiling
technique. The bar plot shows the distribution of assay types correctly predicted by single profiling
modalities. C) Number of assays well predicted (median AUROC > 0.9) by each individual modality (same
as in Figure 3B).

Combining phenotypic profiles with chemical structures improves
assay prediction ability
Ideally, combining modalities should leverage their strengths and predict more assays jointly, by
productively integrating data. Morphology and gene-expression profiles require wet lab
experimentation, whereas chemical structures are always available, even for theoretical
compounds, with the only cost being computing their fingerprints. Therefore, we took CS as a
baseline and explored the value of adding phenotypic profiles to it.

We first integrated data from different profiling methods using late data fusion and evaluated the
performance of combined predictors using the same 5-fold cross validation protocol described
for individual profiling modalities. We found that adding morphological profiles to chemical
structures yields 27 well-predicted assays (CS+MO) as compared to 22 assays for CS alone
(Figure 3C).  By contrast, adding gene expression profiles to chemical structures by late data
fusion did not increase the number of well-predicted assays as compared to CS alone (21 vs 22
respectively, Figure 3C). This adds evidence that the information provided by GE is more
independent from other bioactivity signals. For both phenotypic profiling modalities, early fusion
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(concatenation of features before prediction) performed worse than late fusion (integration of
probabilities after separate predictions, see Methods), yielding fewer predictors with AUROC >
0.9 for all combinations of data types (Supplementary Figure 8 and Supplementary Table 1).
The results represent an opportunity for enhancing computational fusion strategies (see
Methods - Data fusion).

Next, we counted the number of unique assays predicted by any of the individual profiling
modalities using a retrospective assessment, which estimates the performance of an ideal data
fusion method that perfectly synergizes all modalities. Note that this retrospective assessment is
not blind, and simulates a decision maker that chooses the best predictor for an assay after
looking at their performance in the hold-out set. It is used here to report the total number of
assays that can be successfully predicted using one or another strategy. For example, we found
that using the best profiling modality from a given pair can predict around 40 assays (Figure 3D,
row “Single”). We use the ★ symbol to denote choosing the best between profiling modalities in
retrospect, and the + symbol to denote combining modalities by data fusion.

In retrospect, there are five unique assays that are well predicted using fused CS+MO that could
not be captured by either modality alone, indicating complementarity to improve performance for
these five assays. Adding them to the list of assays that can be predicted using the single best
from CS★MO would yield 42 well-predicted assays total (Figure 3C, row “Plus fusion”),
resulting in potential to predict almost twice the assays compared to CS alone (22).
Improvements when adding MO to CS were consistently found across other evaluation metrics
(AUROC > 0.7 in Supplementary Figure 3 and Supplementary Table 1) and when adding
morphological profiles to all other data types and combinations (Figure 3D).

At an AUROC > 0.9, the 42 unique assays that are well predicted with CS★MO represent 13%
of the total. An AUROC closer to 0.7 could be acceptable to improve performance and find
useful hits in real world projects 17,22; we found that for assays with a low baseline hit rate, this
accuracy level may be sufficient to increase the ability to identify useful compounds in the
screen (Supplementary Figure 3). If a cutoff of AUROC > 0.7 was found to be acceptable, 52%
of assays would be well predicted with CS★MO (164 out of 314, Supplementary Figure 3).

The performance of CS★GE also increased the number of assays that CS can predict alone
from 22 to 40. There is only one assay that is well predicted using fused CS+GE, which results
in 41 unique assays well predicted by both modalities in retrospect. Gene expression also yields
similar results when combined with morphology, yielding 40 assays with GE★MO, and
predicting four additional assays jointly when using data fusion (GE+MO) for a total of 44 unique
assays together.
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Figure 3. Number of assays that can be accurately predicted using combinations of profiling modalities.
Accurate predictors are defined as models with accuracy greater than 0.9 AUROC. We considered all four
modality combinations using late data fusion in this analysis: CS+MO (chemical structures and
morphology), CS+GE (chemical structures and gene expression), GE+MO (gene expression and
morphology), and CS+GE+MO (all three modalities). A) The Venn diagram shows the number of
accurately predicted assays that are in common or unique to fused data modalities. The bar plots in the
center show the distribution of assay types correctly predicted by the fused models. All counts are the
median of results in the holdout set of a five fold cross-validation experiment. B) Performance of individual
modalities (same as in Figure 2C). C) The number of accurate assay predictors (AUROC > 0.9) obtained
for combinations of modalities (columns) using late data fusion following predictive cross-validation
experiments. D) Retrospective performance of predictors. These counts indicate how many assays can
be predicted with high accuracy (AUROC > 0.9), whether by single or fused modalities. “Single” is the
number of assays reaching AUROC > 0.9 with any one of the specified modalities, i.e., take the best
single-modality predictor for an assay in a retrospective way. This count corresponds to the simple union
of circles in the Venn diagram in Figure 2B, i.e., no data fusion is involved. “Plus fusion” is the same,
except that it displays the number of assays that reach AUROC > 0.9 with any individual or data-fused
combination. This count corresponds to the union of circles in the Venn diagram in Figure 2B plus the
number of additional assays that reach AUROC > 0.9 when the modalities are fused. For example, the
last column counts an assay if its AUROC > 0.9 for any of the following: CS alone, GE alone, MO alone,
data-fused CS+GE, data-fused GE+MO, data-fused CS+MO, and data-fused CS+GE+MO. “Increase”
indicates the relative increase in the number of assays that can be accurately predicted when using data
fusion (calculated from the two rows above it).

Complementarity across all three profiling types
We had hypothesized that data fusion of all three modalities would provide the best assay
prediction ability than any individual or subset. However, data-fused CS+GE+MO yielded 24
well-predicted assays (Figure 3C), fewer than could be obtained by data-fused CS+MO (27
assays), which itself was not far from MO alone (26 assays). All of these fall short of the 51
unique assays that, in retrospect, could be identified by taking the single best of any of the three
data types CS★MO★GE (Figure 3D). This highlights the need for designing improved
strategies for data fusion; early fusion did not improve the situation (Supplementary Figure 8
and Supplementary Table 1).
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Likewise, considering the best single, pairwise and all-fused predictors and their combinations,
the three data modalities have the potential to accurately predict 55 assays jointly at 0.9
AUROC, not a dramatic improvement compared to 51 unique assays that, in retrospect, could
be identified by taking the single best of any of the three data types using CS★MO★GE (Figure
3D). Nevertheless, 55 assays represents 18% of the 314 assays considered in this study. With a
threshold of 0.7 AUROC (Supplementary Figure 3), the three modalities can predict 123 assays
using data fusion (39% of all 314), and with their retrospective combinations the list grows to
186 assays (59% of all 314). We therefore conclude that if all modalities are available, they are
all useful to increase predictive ability.

Models can predict a diversity of assay types
The morphological and gene-expression profiles used for model training derive from cell-based
profiling assays. They can correctly predict compound activity for mammalian cell-based assays,
which were the most frequent in this study (Figure 1B, Supplementary Figure 14), but also other
assay types, such as bacterial and biochemical (Figure 2B, 3A, Supplementary Figure 14). Still,
cell-based assays were the best-predicted by the phenotypic profiles as well as by chemical
structures: from 168 cell-based assays, 14, 14 and 17 are accurately predicted by CS, GE and
MO respectively (8%, 8%, 10%); by contrast, from 72 biochemical assays, 3, 3 and 4 were
predicted by CS, GE and MO respectively (4%, 4%, 5%).

We nevertheless conclude that well predicted assays include diverse assay types, i.e.,
phenotypic profiling strategies are not constrained to predict cell-based assays only, even
though both profiling methods are cell-based assays themselves. Each modality predicted
assays in 4-5 of the 9 assay categories when used alone (Figure 2B). When MO is combined
with CS, they can predict assays in 6 out of the 9 assay categories included in this study (Figure
3A).

As noted above, only a few assays benefit from combining information of various profiling
modalities. We examined four assays with increased fused accuracy more closely (Figure 4).
The Ras selective lethality assay, a cell-based assay, can be predicted with a maximum AUROC
of 0.76 using MO alone, but when the three modalities are combined with data fusion, the
performance increases to AUROC 0.88. Similarly, the Beta Cell Apoptosis Screen assay
reaches an accuracy of 0.88 using MO alone, but when CS is added, performance increases to
0.93 AUROC. These examples indicate that fusing information from various modalities can
improve predictive performance, but the fusion result may depend on several factors such as
the diversity and availability of training examples and the biology measured by the specific
assay.
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Figure 4. Prediction accuracy of assays where prediction accuracy benefits from fusion. The plots are
Receiver Operating Characteristic (ROC) curves and the area under the curve (AUROC) is reported for
each curve with the corresponding color. Four assays were selected for panels A and B, in order from left
to right: Ras Selective Lethality (cell-based), Antifungal Drug Resistance (fungal), Clostridium Difficile
Toxin (bacterial), Beta Cell Apoptosis Screen (cell-based). A) Performance of predictors when using a
single profiling method. B) Performance of predictors when using combinations of profiling methods.

Assay predictors trained with phenotypic profiles can improve hit
rates
Predictive modeling using machine learning to reuse phenotypic profiles in a large library of
compounds can enable virtual screening to identify candidate hits without physically running the
assays. Here, we compare the empirical hit rate of testing a large subset of candidate
compounds physically in the lab, vs the hit rate of testing only the top predicted candidates
obtained with a computational model (Supplementary Figure 6). The ratio between these two hit
rates is what we term folds of improvement, a factor indicating the expected experimental
efficiency if the computational model identifies relevant compounds to follow up with.

We found that predictors meeting AUROC > 0.9 in our experiments produce on average a 50 to
70-fold improvement in hit rate (i.e., compounds with the desired activity, see Supplementary
Figure 7) for assays with a baseline hit rate below 1%. A baseline hit rate below 1% means that
hits are rare for such assays, i.e., in order to find a hit we need to test at least 100 compounds
randomly selected from the library. Assays with low hit rates are common in real world screens,
and therefore, more expensive to run in practice. With computational predictions improving hit
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rates by 50 fold, the speed and return of investment could be potentially very high. We also note
that for assays with higher baseline hit rates (e.g. 10% to 50%), the machine learning models
can reach the theoretical maximum fold of improvement by accurately predicting all the hits in
the top of the list (Supplementary Figure 7). We conclude that when assay predictors are
accurate enough, they can significantly accelerate compound screening and reduce the
resources required to identify useful hits.

Discussion
Predicting bioactivity of compounds could become a powerful strategy for drug discovery in light
of ever-improving computational methods (particularly, deep learning) and ever-increasing rich
data sources (particularly, from profiling assays). Here, we used the Chemprop software for
learning predictors from chemical structures, and to combine the molecular fingerprint with
phenotypic profiles obtained from images (Cell Painting) and gene expression (L1000). We
conducted this study using baseline feature representations, and arguably, the results could be
improved in future research by using alternative chemical structure embeddings 32–34, learned
image features 25,35, or latent spaces for gene expression 36.

We discovered that all three profile modalities—chemical structure, morphology, and gene
expression—offer independently useful information about perturbed cell states that enables
predicting different assays. Chemical structure is always readily available for a given compound.
The two profiling modalities that require physical experimentation bring different strengths to the
assay prediction problem, and if available, they can be leveraged to run virtual screens to
prioritize compound candidates in drug-discovery projects.

In retrospect, we found that data fusion strategies increased the number of well-predicted
assays by only 3-10%, depending on the subset of modalities tested, as compared to simply
using each profiling modality independently for prediction. We believe this argues for further
research on how best to integrate disparate profiling modalities, capturing the strengths of each
individually as well as the complementarity of their combinations. Nevertheless, using late data
fusion to combine each subset of available modalities does offer some improvement versus
each individually and is likely worthwhile given its ease of implementation.

Given the low cost of carrying out Cell Painting, it is practical in many settings to profile an entire
institution’s compound library. Then, a modest-sized library of a few thousand compounds would
be tested in each new assay of interest, providing sufficient data to assess whether an accurate
predictor could be trained on these data, using CS alone, MO alone, or a data-fused
combination of CS+MO. Taking into account the baseline hit rate for the assay, researchers
could decide whether the predictor will increase the hit rate sufficiently to warrant a virtual
screen against a large compound library for which morphological profiles are already available
(within an institution, or publicly available profiles 37), followed by cherry picking a small set of
predicted hits and testing them for actual activity in the assay.
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Although we suggest a few thousand compounds for the training set based on the data shown
in Supplementary Figure 5, it remains to be fully evaluated how many training points are needed
to achieve strong predictivity — in fact, it is likely that the number and structural diversity of hits
in the training set more strongly influences predictivity than the total number of assay data
points. Nevertheless, in most academic and industry screening centers, preparing a training/test
set of ~17,000 compounds, as we used here, is practical. It also remains to be determined what
else needs to be evaluated to help decide if an assay is likely to be predictable, which may
require additional knowledge of the target and assay type, and characterizing correlations
between the bioactivity of interest and profiling modalities, as well as the assay activity
distribution.

Based on our results, and depending on whether an AUROC of 0.9 or 0.7 is the threshold for
accuracy needed given the baseline hit rate of the assay, 18-59% of assays should be
predictable using a combination of chemical structures, morphology and gene expression,
saving the time and expense of screening these assays against a full compound library.
Especially considering potential improvements in data integration techniques and deep learning
for feature extraction, this strategy will be fruitful to accelerate the discovery of useful chemical
matter.

Methods

Profiling datasets
For this study, we used a compound library of over 30,000 compounds screened in
high-throughput 30. Of these compounds, about 10,000 came from the Molecular Libraries Small
Molecules Repository, another 2,200 were drugs and small molecules, and the remaining
18,000 were novel compounds derived from diversity oriented synthesis. U2OS cells were
plated in 384-well plates and treated with these compounds in 5 replicates, using DMSO as a
negative control. The Cell Painting and L1000 platforms were used to generate morphological
and transcriptional profiling data, respectively, as previously described 30.

Assay readouts
On the assay side, we collected a list of 529 assays from drug discovery projects conducted at
the Broad Institute at different scales, and we kept those where at least a subset of the small
molecules in the compound library described above was tested. We kept assays that had a
non-empty subset of hits identified for training and evaluation. We prepared assay performance
profiles following a double sigmoid normalization procedure to ensure that all readouts are
scaled in the same range 38. Then, we computed the Jaccard similarity of hits between pairs of
assays to estimate the common set of compounds detected by them, and then removed assays
that measure redundant compound activity (Supplementary Figure 12). That resulted in a final
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list of 314 assays with their corresponding readout results (Supplementary Figure 11), and the
compound-assay matrix had 13.4% of known entries (86.6% sparsity).

Training / Test splits
The total number of compounds in the library that had the three types of information required to
conduct the experiments in our project (Cell Painting images, L1000 profiles, and assay
readouts) was 16,979. From this set of compounds we removed frequent hitters, defined as
compounds that are positive hits in at least 10% of the assays (hits in 31 assays or more), which
removed 24 compounds from the list. We also applied all pan-assay interference (PAINS) filters
39 implemented in RDKit, which removed 786 compounds, resulting in 16,186 compounds in the
final dataset.

We aimed to evaluate the ability of each data modality to predict assays for chemical structures
that are distinct relative to training data. This is because there is little practical value to screen
for additional, similar structures (scaffolds) to compounds already known to have activity; in drug
discovery, any compounds with positive activity undergo medicinal chemistry where small
variations in structure are synthesized and tested to optimize the molecule. We therefore report
results using cross-validation partitions that ensure that similar classes of structures are not
included in both the training and hold-out sets, given that this scheme corresponds to the most
practical, real world scenario (Supplementary Figure 9).

We used 5-fold cross-validation using Bemis-Murcko clustering 40,41, and assigned clusters to
training or test in each fold accordingly. The main experimental design for the results reported in
the main text is illustrated in the Supplementary Figure 1. The distribution of chemical structure
similarity according to the Tanimoto coefficient metric on Morgan fingerprints (radius=2) is
reported in Supplementary Table 10 for each of the 5 cross-validation groups. As additional
control tests, we run 5-fold cross-validation experiments following the same design as above but
splitting the data according to k-means clusters in the morphology feature space and in the
gene-expression space (Supplementary Figure 9 and Supplementary Table 2), as well as a
control experiment with fully random splits (Supplementary Table 2).

The control splits based on randomized data as well as the MO and GE modalities were used to
check for and identify potential biases in the data. These splits do not have practical
applications in the lab, and were used as computational simulations to test the alternative
hypothesis that predictors have a disadvantage when the training data are drawn from a
distribution that follows similarities in CS, MO or GE. The results in the Supplementary Table 2
indicate that there is no major change in performance when using CS, GE or random splits;
however, MO splits reduced performance significantly for all data modalities. This process
revealed the need to correct for batch effects in MO data to minimize the influence of technical
artifacts. All results presented in the main text were obtained from MO data that has been batch
corrected (see Image-based morphological profiles below).
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Representation of chemical structures (CS) using Chemprop
We used the Chemprop software (http://chemprop.csail.mit.edu/) to train directed-message
passing neural networks for learning chemical structure embeddings. The software reconstructs
a molecular graph of chemicals from their SMILES string representation, where atoms are
nodes and bonds are edges. From this graph, a model applies a series of message passing
steps to aggregate information from neighboring atoms and bonds to create a better
representation of the molecule. For more details about the model and the software, we refer the
reader to prior work 16,17,42. In addition to learning representations for chemical structures, we
used Chemprop to run all the machine learning models evaluated in this work to base all the
experiments on the same computational framework. Also, we evaluated the predictive models
for CS using learned features as well as Morgan fingerprints computed with the RDKit software
(radius=2), and we found that both yield comparable results in our main experiments
(Supplementary Table 2, columns CS-GC [Graph Convolutions] and CS-MF [Morgan
Fingerprints]).

The representation of chemical structures is learned from the set of ~13,000 training examples,
unlike morphological or gene-expression features, which were obtained without learning
methods (hand-engineered features). The scaffold split used in our experiments may pose an
apparent disadvantage to the learning of chemical structure representations because it may not
learn to represent important chemical features in new scaffolds. Previous research by Yang et
al. 16 has shown that Chemprop can generalize to new scaffolds accurately. In addition, the
chemicals may also generate new phenotypes in the morphological and gene-expression
space, which are not seen by the models during training, resulting in a fair comparison of
representation power among all modalities. We tested the effect of creating partitions with other
modalities other than scaffolds from chemical structures, and we discuss these results in the
Train / Test splits subsection above as well as in Supplementary Table 2 and Supplementary
Figure 9.

Image-based morphological (MO) profiles from the Cell Painting
assay
The Cell Painting assay 23,24,27,30 captures fluorescence images of cells using six dyes to label
eight major cell compartments. The five-channel, high-resolution images are processed using
the CellProfiler software (https://cellprofiler.org/) to segment the cells and compute a set of
1,700+ morphological features at the single-cell level. These features are aggregated into well-
and treatment-level profiles that capture the central statistics of the response of cells to the
treatment.
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Before computing treatment-level profiles, we used the Typical Variation Normalization (TVN) 43

transform to correct for batch effects using well-level profiles (see Supplementary Figure 9).
TVN is calculated using DMSO control wells from all plates to compute a sphering transform
that reduces the data to a white noise distribution by inverting all the non-zero eigenvalues of
the matrix. This transformation is later used to project all treatment wells in a new space, where
controls have a neutral representation and treatments may have phenotypic variations
highlighted. This transform minimizes batch effects by obtaining a feature space where the
technical variations sampled from controls are neutralized to enhance the biological signal.

After applying the TVN transform at the well-level profiles, we aggregate them into
treatment-level profiles to conduct our assay prediction experiments. Supplementary Figure 8
shows UMAP plots of the morphology data before and after the TVN transformation. In our
study, we used treatment-level profiles in all experiments. For more details about Cell Painting
24, CellProfiler 44, and the profiling steps 45, see the corresponding references.

Gene-expression (GE) profiles from the L1000 assay
The L1000 assay measures transcriptional activity of perturbed populations of cells at
high-throughput. These profiles contain mRNA levels for 978 landmark genes that capture
approximately 80% of the transcriptional variance 18. The assay was used to measure gene
expression in U2OS cells treated with the set of compounds in our library. Both the profiles and
the tools to process this information are available at https://clue.io/ .

Predictive model
Model architecture: The predictive model is a feedforward, fully connected neural network with
three layers and ReLU activation functions. This simple architecture takes as input compound
features (or phenotypic profiles) and produces as output the hit probabilities for all assays (see
Supplementary Figure 8). When the representation of chemical structures is learned, additional
layers are created before the predictive model to compute the message passing graph
convolutions. These extra layers and their computation follow the default configuration of
Chemprop models 16 and are only used for chemical structures.

Loss and training: The model architecture described above is trained in a multi-task manner 5,
allocating a binary output for each assay. We used the logistic regression loss function on each
assay output and the total loss is the sum over all assays. During training, the model computes
this loss for each assay output independently using the available readouts. If the assay readout
is not available for some compounds in the mini-batch, these outputs are ignored and not taken
into account to calculate gradients. This setup facilitates learning predictive models with sparse
assay readouts. We use a mini-batch size of 50 compounds with a sparse matrix of 314 labels,
and no explicit class balancing was applied during training.
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Hyperparameter optimization: The hyperparameters of the network are optimized on the
training data for each feature grouping and for each cross-validation round. These parameters
are: number of fully connected layers (choice between 1, 2 or 3), dropout rate for all layers
(between 0 and 1), and hidden layer dimensionality (if applicable, between 100 and 2,500). The
best parameters are identified by further splitting the training set in three parts, with proportions
80% for training, 10% for validation and 10% for reporting hyperparameter optimization
performance. Then, these parameters are used to train a final model that is used to make
predictions in the hold-out partition of the corresponding cross-validation set.

Data fusion
The input to the neural network can be the features of one or all modalities used in our
experiments. To combine features from multiple data modalities, we used two strategies
(Supplementary Figure 8): A) early data fusion, where feature vectors from two or three
modalities are concatenated into a single vector. B) Late data fusion, where each modality is
used to train a separate model, and then the prediction scores for a new sample are aggregated
using the maximum operator. Our results show that, despite its simplicity, late data fusion works
best in practice (see Supplementary Table 2), but the results also suggest that more research
needs to be done to effectively combine multiple data modalities.

Combining disparate data modalities (sometimes called multimodal or multi-omic data
integration) is an unmet computational challenge especially when not all the assays can be
accurately predicted. Our results indicate that the three data modalities only predict a small
fraction of the assays in common (Figure 2B, only three assays are predicted by all modalities),
suggesting that in most cases, at least one of the data modalities will effectively introduce noise
for predicting a given assay. When one of the data modalities cannot signal the bioactivity of
interest, the noise-to-signal ratio in the feature space increases, making it more challenging for
predictive models to succeed. This explains why late fusion, which independently looks at each
modality, tends to produce better performance.

Performance metrics
To evaluate the performance of assay predictors we used the area under the receiving operating
characteristic (ROC) curve, also known as the AUROC metric, which has a baseline random
performance of 0.5. During the test phase, we run the model over all compounds in the test set
to obtain their hit probabilities for all assays. With these probabilities, we compute AUROC for
each assay using only the compounds that have ground truth annotations (either positive hits or
negative results), and we ignore the rest of the compounds that have no annotation for that
assay (unknown result or compound never tested).

We define a threshold of AUROC > 0.9 to identify assays that can be accurately predicted, and
with this threshold, our second performance metric is focused on counting how many assays,
from the list of 314 in our study, can be accurately predicted. For comparison, we also
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calculated Average Precision (AP) and area under the precision-recall curve (AUPRC) which
are reported in Supplementary Tables 1, 2 and 3.

In addition, we measured hit-rate improvement for individual assays as the ratio between the hit
rate obtained using the computational predictors and the hit rate observed in the lab (the
“baseline” hit rate):

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒

Predictor hit rates are calculated as the proportion of positive hits observed in the top 1% of the
ranked list of predictions, while baseline hit rates are calculated as the number of hits identified
in the complete set of compounds tested for that assay in the original experiment. For an
illustration of this performance metric see Supplementary Figure 6 and Supplementary Figure 7
for the results.

Data and code availability
The morphological and gene-expression profiles were originally created and published by
Wawer, M. J. et al. 30, and can be downloaded from:
http://www.broadinstitute.org/mlpcn/data/Broad.PNAS2014.ProfilingData.zip

The Cell Painting images were also made available by Bray et al. 31, and can be obtained from
the following link: http://gigadb.org/dataset/100351

The latest version of morphological profiles is also available in the following AWS S3 bucket:
https://registry.opendata.aws/cell-painting-image-collection/

The Chemprop software and source code used for training machine learning models can be
found in the following link: http://chemprop.csail.mit.edu/

The analysis code to reproduce the experiments reported in the paper can be found in the
following link: https://github.com/carpenterlab/puma_project

Anonymized assay data to reproduce the analysis in the paper will be made available soon.
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Supplementary Material

Experimental design

Supplementary Figure 1. Illustration of the experimental design in this study. A) Data
selection and filtering pipeline to construct the dataset used in this study. The process is linear
and the order of steps is followed one at a time. We first select 314 assays from more than 500
available (see Supplementary Figure 11 and 12), and with those targets fixed, we proceed to
clean the list of compounds with various other filters. B) We considered the problem of assay
prediction from three compound representations: features of the chemical structure, and
phenotypic features of the effect of compounds measured by imaging (Cell Painting) and gene
expression (L1000). We conducted a 5-fold cross-validation experiment splitting the compounds
in 5 groups according to scaffold similarity using the Bemis-Murcko clustering. The profiles for
compounds in each of these groups were separated together with the corresponding assay
readouts. The training of models and test of predictions is carried out independently for each
fold, and the results are aggregated to generate summarized statistics of the experimental
results.
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Supplementary Figure 2. Pipeline of cross-validation experiments. The models trained and
evaluated in our experiments are conducted following this protocol: for each split in the 5-fold
validation scheme, we take the training dataset and split it again in three parts: 80% for training,
10% for validation and 10% for testing. In this partition, we run hyperparameter search using
Bayesian optimization to calibrate the parameters described in the Methods section, subsection
Predictive model and data fusion. The Bayesian optimization model uses the 10% assigned for
validation to search better parameters at each iteration, and when the search is complete, a
final evaluation is performed on the 10% test set with a subset of the best candidates to identify
the hyperparameters with better out of sample generalization. These best hyperparameters are
used to train a final model with the entire training data in the original split, which is later
evaluated with the subset held out for test. The results out of this evaluation are reported in the
main text as well as in the rest of the manuscript.
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Additional results

Supplementary Figure 3. Summary of the number of assays predicted with models that have
AUROC > 0.7, which is a lower performance threshold than the one used throughout our study.
The total number of acceptable assay predictors increases when the threshold is lower, and
chemical structures can yield more predictors that meet this level of performance. Importantly,
predictors that reach performance above 0.7 AUROC are also capable of improving hit rates in
many cases (see yellow points in Supplementary Figure 7). The row “Retrospective” in Table B
presents the number of assays with AUROC > 0.7 that would be predicted by any of the
modalities individually or their combinations.
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Supplementary Figure 4. Area under the curve (AUROC) performance of the three individual
modalities evaluated in our study: Chemical Structures (CS), Gene Expression (GE), and
Morphology (MO). A) Number of assays predicted by each modality at specific AUROC
thresholds. As the AUROC threshold is increased, the number of assays meeting the threshold
decreases for all modalities. The two thresholds discussed in this paper are highlighted in red
(0.7) and blue (0.9). CS outperforms MO and GE until about the 0.8 AUROC threshold, and at
higher thresholds MO takes over. B, C, D) Scatter plots of AUROC for pairs of modalities. Each
point in the plots represents an assay, the x coordinate indicates the AUROC obtained in one
modality, and the y axis represents the AUROC obtained in the other modality. Colors represent
the three individual modalities: CS (yellow), GE (blue) and MO (green). Points (assays) above or
below the diagonal (equal performance) are colored according to the modality that has the
highest AUROC. The two colored numbers inside the plot indicate the total number of assays
with higher AUROC with respect to the other modality in the same plot. The counts of points
indicate the number of assays where one modality is better than the other. Note that there are
many points far off the diagonal, indicating high AUROC in one modality but low in the other.
This indicates potential for complementary and fusion among the different data modalities.
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Supplementary Figure 5. The performance of predictive models is slightly correlated with the
number of available training examples; several assays can be predicted with high accuracy
(AUROC > 0.9) using only a few example hits (points above the purple line). The plots show on
the vertical axis the test set accuracy as a function of (A) the total number of example readouts,
and (B) the number of hits available for training. Plots in the bottom row show the same data
with log scale in the horizontal axis to highlight the trend with few examples. Each point is an
assay predictor and its color indicates what data modality was used for training it. Note that
assay prediction accuracy can vary from very low to very high with a small number of training
examples, indicating that performance depends on the specific activity measured by the assay.
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Folds of improvement

Supplementary Figure 6. Illustration of the “Folds of improvement” metric. The example
assumes a chemist testing a set of 300 candidate compounds where only 5 of them are positive
hits. The ratio of hits vs tested compounds is a rough estimate of the probability of finding a hit
by chance. A pre-trained computational predictor could rank the same compounds in silico from
high probability of being a hit to low probability. We simulate the case where the chemist only
selects the top 1% predictions for further wet lab testing, which is a reasonable cut off in real
world high-throughput screens with very large compound libraries. By estimating the ratio of hits
found in the top 1% subset that is actually tested in vitro, we then compute the folds of
improvement as the ratio of the hit rates in each approach. Folds of improvement can be
understood as the number of times that the experimental efficiency improves by using a
predictor to filter unlikely hits and bring promising candidates to the top of the list.
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Supplementary Figure 7. Improvement of hit rates for the assays in the dataset. Each plot
corresponds to the results in one split of the 5-fold cross-validation experiment (see
Supplementary Figure 1). The points in the plots represent one assay predictor that uses one of
the three data modalities (CS, GE or MO) or combinations of them. Assay predictors with
AUROC > 0.7 are displayed in yellow and predictors with AUROC > 0.9 are displayed in purple.
Assay predictors with AUROC < 0.7 are not shown. The horizontal axis represents the baseline
hit rate, i.e., the proportion of compounds found to be hits in the set of tested compounds for an
assay (see Supplementary Figure 6). The vertical axis presents the folds of improvement of
assay predictions obtained with a machine learning predictor as a function of the baseline hit
rate. Accurate predictors (AUROC > 0.9) often offer improvements up to the theoretical
maximum (100% divided by the assay’s baseline hit rate), and higher-fold improvements are
only possible for assays with a lower baseline hit rate, i.e. with rare hits.
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Data fusion

Supplementary Figure 8. Architecture of early and late data fusion models. The early data
fusion model takes the three data modalities as input by obtaining features from each and then
concatenating their representations. The architecture is a multilayer perceptron with three fully
connected layers, 2,000 input features and 314 output predictions. The late data fusion model
has one multilayer perceptron with three fully connected layers independently for each data
modality. The three feature vectors are analyzed separately to produce 314 output probabilities
in each case, which are later aggregated with a max-pooling operator to reduce them into a
single vector of 314 assay predictions.
Combining disparate data modalities is a computational challenge especially when not all the
assays can be accurately predicted. Our results indicate that the three data modalities only
predict a small fraction of the assays in common (Figure 2B, only three assays are predicted by
all modalities), suggesting that in many cases, at least one of the data modalities is effectively
introducing noise for predicting a given assay. When one of the data modalities cannot signal
the bioactivity of interest, the noise-to-signal ratio in the feature space increases, making it more
challenging for predictive models to succeed. This explains why late fusion, which
independently looks at each modality, tends to preserve better performance.

We expanded our discussion about data fusion, but we also limited the scope of our current
experiments to exploring simple approaches. In future research, we hope that the community or
our own team comes up with better methodologies to better model this problem.
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Supplementary Table 1. Overall performance of profiling modalities and their combinations
presented in the columns of the tables. Early fusion refers to concatenation of feature vectors
before training predictive models, while late fusion refers to keeping the maximum prediction of
individual models (see Supplementary Figure 8). The tables present four performance metrics in
the rows: Mean AUPRC, mean AUROC, number of assays predicted with AUROC > 0.7, and
number of assays predicted with AUROC > 0.9. For each experiment, we obtain the mean and
standard deviation of the metric. In the case of the mean value for all metrics, higher numbers
indicate better performance. Late fusion yields the largest number of predictors with AUROC >
0.9 overall, and also for all combinations of descriptors.

Data modalities
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Supplementary Figure 9. Compound embeddings in three different feature spaces.
Visualization of the high-dimensional feature vectors of all compounds using UMAP projections
for the three data modalities used in this work. A) The morphology feature space originally was
grouped by technical variation (plate maps), which was corrected using the Typical Variation
Normalization (TVN) approach (see Methods) to report all experiments in the manuscript. The
color palette for the 94 plate maps is continuous and may have similar tones for consecutive
plates. B) Overview of the three feature spaces for all the 16,186 compounds included in the
evaluation. Note that chemical structures (CS), gene expression (GE), and morphology (MO), all
have very distinctive ways of organizing the signatures of compounds. While CS has many
diverse small clusters, GE presents a single cloud, and MO has a central cloud with some
medium clusters and branches. C) The same visualization as in B, but colored by clusters
obtained for cross-validation experiments (see Supplementary Table 2). We partitioned each
feature space using clustering to identify 5 groups for training and test splits. CS was split using
Bemis-Murcko clustering, which is based on scaffold similarity, while the corresponding UMAP
plot projects data points using the features of the full chemical structure (a different metric,
which explains why the colors don’t reveal scaffold clusters). GE and MO were split using
k-means clustering, with k=5 for cross-validation in simulated control experiments to determine
the influence of the data partition in the results (see Supplementary Table 2).
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Supplementary Table 2. Results of 5-fold cross-validation control experiments. The tables
present the mean results of 5-fold cross-validation experiments according to different data
partition policies (see Supplementary Figure 9). The scaffold-based splits reflect the real world
scenario more closely, while other split policies are useful as control experiments to identify
potential artifacts or biases in the data. For each data modality, we used two encoding versions
as follows: MO: original features and batch corrected (BC) features. GE: original features and
scaled (S) or renormalized features using the L1 norm. CS: graph convolutional (GC) features
and Morgan fingerprints (MF). We use as baseline the results of scaffold-based splits, which are
reported in the main text and were used to complete all the analysis in this work. Compared to
scaffold-based splits, gene expression and random splits yield slightly higher mean AUROC for
all other modalities, which confirms that separating training and test compounds randomly
makes the prediction problem easier while not being fully informative in a real setting.
Morphology splits decrease performance for all modalities, indicating that the k-means splitting
by morphology features (see Supplementary Figure 9) disrupts effective learning by bringing
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together most compounds of certain assays into only one fold. This can be explained partially by
the presence of technical artifacts and by real biological signal that could not be entirely
separated with the adopted batch correction method. Finally, the difference in performance
between graph convolutional representations of chemical structures and Morgan fingerprints is
minor across all experiments. Graph convolutions (CS-GC) have slightly better performance in
the real world setting, and comparable performance in other splits. We used GC across all the
reported experiments in the main manuscript.

Supplementary Figure 10. Distribution of compound similarities across training-test
splits. We computed the Tanimoto coefficient between Morgan fingerprints of all compounds in
the dataset and obtained the distribution of scores (B), which indicates that most compounds
are relatively equidistant to each other (consistent with Supplementary Figure 9C). After
scaffold-based splitting, this distribution is preserved in training and test partitions in all five folds
(A). No major distribution shift is observed with gene-expression splits (D), but two groups in the
morphology splits (split 2 and 4) show larger differences likely explained by confounded signal
between technical artifacts and biological effects (see Supplementary Table 2 and
Supplementary Figure 9).
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Assay data

Supplementary Figure 11. Distribution of assay readouts. The plot shows in the horizontal
axis assay identifiers sorted by readout count in decreasing order, and in the vertical axis the
count of available readouts for each assay. Readouts can be positive hits (red) or negatives
(blue). The circles in the plot indicate the readout count for specific assays in the distribution.
Assay readouts follow a long tail distribution, with more than half of the assays having less than
a few hundred readouts for training predictive models. Note that the ratio between hits and
negative compounds is very small in general (average hit ratio 2.5%).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2020.12.15.422887doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422887
http://creativecommons.org/licenses/by/4.0/


Supplementary Figure 12. Assay similarity. A) Matrix of assay similarities according to the
Jaccard similarity between the sets of positive hit compounds. This matrix presents all the
assays originally available for analysis (529). A subset of the assays had no positive hits, and
another subset shared a large number of active compounds. We discarded these two groups to
preserve a final set of mostly independent assays (shown in panel C). B) Illustration of the
Jaccard similarity J(A,B) between two assays A and B. Each assay has a set of positive hits
and we compute the ratio of the intersection (hits in common) over the union (count of all total
hits) as a metric of similarity between assays. Assays that have many hits in common are likely
measuring the same biological activity, and were excluded from our analysis.

Supplementary Figure 13. Groups of assays predicted by each modality. The matrix of
assay similarities is the same in the three cases: rows and columns are assays and the matrix
values are the Jaccard index between the set of hits from two assays. The matrices are
clustered in the rows and columns using hierarchical clustering to reveal groups of highly
correlated assays. The dendrograms indicate a fairly independent set of assays without major
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partitions or groupings. The only difference between the matrices is the coloring pattern of the
left-hand side bar that indicates whether an assay is correctly predicted by the corresponding
modality (chemical structures (CS), morphology (MO), and gene expression (GE)) in any of the
cross-validation partitions (non-black colors). This visualization is useful to reveal if the data
modalities have preference for making better predictions with certain groups of assays that may
have common biological activity. This result indicates that there are no major groups of
activation, although accurate predictors tend to be close to each other in the cluster map. The
dendrograms reveal a few small assay clusters in the top left of the matrices, and the
visualization indicates that only gene expression makes accurate predictions in one of these
groups, which may indicate that performance of GE in the experiment may be an overestimate.
The other assays are mostly independent from each other according to the Jaccard similarity
used in the matrix (see Supplementary Figure 12). We observe that the accuracy patterns in the
left of the matrices are mostly randomized, not localized around significant clusters, and they
are different from modality to modality.

Supplementary Figure 14. Distribution of assay types as the performance threshold is
decreased. The assays used in our study can be one of the seven types listed in the right hand
side of the figure. A) Distribution of assays according to their type. B) Distribution of assays that
can be predicted with a minimum accuracy of 0.7 AUROC by each of the three data modalities.
C) Distribution of assays that can be predicted with a minimum accuracy of 0.9 AUROC by each
of the three data modalities. These distributions show that none of the modalities has a strong
preference for one type of assay, and that they can predict a diverse array of biological activity.
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Supplementary Table 3.
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