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Abstract 8 
 9 
Acceleration methods in fMRI aim to reconstruct high fidelity images from undersampled k-space, allowing fMRI 10 
datasets to achieve higher temporal resolution, reduced physiological noise aliasing, and increased statistical 11 
degrees of freedom. While low levels of acceleration are typically part of standard fMRI protocols through parallel 12 
imaging, there exists the potential for approaches that allow much greater acceleration. One such existing approach 13 
is k-t FASTER, which exploits the inherent low-rank nature of fMRI. In this paper, we present a reformulated 14 
version of k-t FASTER which includes additional L2 constraints within a low-rank framework.  15 
 16 
We evaluated the effect of three different constraints against existing low-rank approaches to fMRI reconstruction: 17 
Tikhonov constraints, low-resolution priors, and temporal subspace smoothness. The different approaches are 18 
separately tested for robustness to undersampling and thermal noise levels, in both retrospectively and 19 
prospectively-undersampled finger-tapping task fMRI data. Reconstruction quality is evaluated by accurate 20 
reconstruction of low-rank subspaces and activation maps.  21 
 22 
The use of L2 constraints were found to achieve consistently improved results, producing high fidelity 23 
reconstructions of statistical parameter maps at higher acceleration factors and lower SNR values than existing 24 
methods, but at a cost of longer computation time. In particular, the Tikhonov constraint proved very robust across 25 
all tested datasets, and the temporal subspace smoothness constraint provided the best reconstruction scores in the 26 
prospectively-undersampled dataset. These results demonstrate that regularized low-rank reconstruction of fMRI 27 
data can recover functional information at high acceleration factors without the use of any model-based spatial 28 
constraints. 29 
 30 
 31 

Highlights  32 

• We introduce an alternate implementation of low-rank fMRI reconstruction by using alternating 33 
minimization, which allows for easy integration of the subspace-specific L2 constraints 34 

• We use the alternating minimization approach to accelerate FMRI by exploiting coil sensitivity, low-rank 35 
structures, and additional L2 constraints 36 

• We found Tikhonov and Temporal Subspace Smoothness constraints show improved performance over 37 
other methods for R=15-30 38 

• Tikhonov Constraints were the most robust of the constrained-subspace methods, with the shortest 39 
reconstruction time 40 

• Temporal Subspace Smoothness produced the highest reconstruction scores in the prospectively under-41 
sampled data 42 

  43 
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1. Introduction  44 
 45 

fMRI is a non-invasive, whole-brain functional imaging technique that suffers from a trade-off between temporal 46 
and spatial resolution. Acceleration aims to increase the temporal resolution without loss of spatial resolution 47 
through higher sampling efficiency in conjunction with advanced image reconstruction that leverages additional 48 
information and/or constraints. By providing increased temporal degrees of freedom in a given scan duration, 49 
acceleration can: improve sensitivity to temporal features of the haemodynamic response; reduce physiological 50 
noise aliasing; and improve statistical power. Depending on the application, the increased sampling efficiency 51 
garnered from acceleration could also be used to reduce scan times, or to increase the spatial resolution. 52 
 53 
Various acceleration techniques have been widely adopted for fMRI. Parallel imaging methods rely on the spatial 54 
variation of sensitivity profiles of multi-channel receiver coils, which provide additional spatial information in 55 
image reconstruction. This can occur in the image domain (e.g. SENSE [1]) or in the sampling domain (e.g. GRAPPA 56 
[2]). Simultaneous multi-slice imaging [3], [4] extends these in-plane techniques to accelerate across slices without 57 
reduction factor SNR penalties, increasing the achievable temporal resolution. Parallel imaging is conventionally a 58 
timepoint-by-timepoint approach that does not leverage any temporal information during reconstruction.  59 
 60 
Methods which do jointly consider k-space and time are known as k-t methods and can be broadly separated into 61 
three categories: methods which make a strong assumption about the spatiotemporal structure [5]–[8], methods 62 
which make a strong assumption about sparsity within a pre-defined basis set (compressed sensing approaches) 63 
[9]–[13], and methods which assume the data fits a globally low-rank model [14], [15]. There are also approaches 64 
which combine these methods [13], [16]–[20]. By focusing on redundancies or structural features in k-t space, k-t 65 
methods have the potential for much greater degrees of acceleration than time-independent methods due to the 66 
extra dimension of shared information.  67 
 68 
Compressed sensing approaches use L1 constraints methods to promote sparsity in reconstruction. These 69 
approaches have proven very effective in other fields of dynamic MRI reconstruction, but have had relatively limited 70 
adoption in fMRI, likely due to difficulty finding suitable sparse representations for the relatively subtle BOLD 71 
signals. While initial exploratory work in compressed sensing reconstruction for fMRI focused on spatial-domain 72 
sparse transformations [10], [11], most recent work incorporating sparsity assumptions have focused instead on 73 
sparsifying the temporal domain [21], [22]. Low rank + Sparse (L+S) methods [19], [20], are a recent set of 74 
combined approaches that aim to isolate the functional information in the sparse component of the reconstruction 75 
[23], [24] while capturing the non-sparse background in the low-rank component. The result of this approach is that 76 
the rank in the L component is kept very low and that the majority of the important BOLD information is in the S 77 
component, with PEAR [25] a notable recent example that explored the idea of capturing more BOLD information 78 
in the L component. 79 
 80 
An alternative to sparse modelling of the BOLD signals is a conceptually simpler approach based on a regularized 81 
globally low-rank model of the fMRI data. There is a correspondence between the approaches that use training data 82 
to estimate a sparse or low-dimensional basis [13], [26] and low-rank models, since low-rank models by definition 83 
have few non-trivial components (i.e. the singular value distribution is sparse). However, low-rank models do not 84 
require prior knowledge of the sparse bases, and instead estimate the spatio-temporal basis representations for the 85 
data. The inherent low-rank nature of fMRI [15], which can be understood as the combination of a few spatially 86 
coherent temporal processes (i.e. activation maps that identify voxels with a common time-series), forms one such 87 
exploitable structure in a k-t representation of the data.  In analysis of fMRI data, for example, a dimensionality 88 
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reduction is often applied as a pre-processing step [27], which explicitly enforces a low-rank representation of the 89 
system prior to resting-state analysis methods such as independent component analysis (ICA) [28]–[30]. Various 90 
noise sources (e.g. thermal noise, physiological noise, etc.), motion, and image artefacts make the system only 91 
approximately low rank, although some confounds can also be estimated as low-rank processes [31]. 92 
 93 
Globally, low-rank methods can be used to represent space-time data as a spatial subspace paired with a temporal 94 
subspace and associated weighting factors. The Partially Separable Functions method (k-t PSF) [14], [32] is a data-95 
driven approach that first identifies a temporal subspace from fully-sampled low spatial resolution and high 96 
temporal resolution training data, and then uses this to reconstruct a high resolution spatial subspace from under-97 
sampled data. An alternative rank-constrained approach is k-t FASTER (fMRI Accelerated in Space- Time via 98 
Truncation of Effective Rank [15], [33]), which jointly identifies the subspaces that best describe the acquired data. 99 
Importantly, the only constraint imposed by k-t FASTER is that of fixed rank. The rank constraint alone is enough 100 
to achieve modest acceleration factors [15], but rank-constrained methods may also be combined with coil 101 
sensitivity information and non-Cartesian sampling [33] for increased acceleration.  102 
 103 
In addition to the rank and coil sensitivity constraints, other information may also be incorporated into the 104 
reconstruction. Tikhonov regularization prevents overfitting on the temporal and spatial components, and serves as 105 
a way to penalize the energy content of the reconstruction. Radial k-space trajectories have a higher sampling 106 
density in central k-space than peripheral k-space, and so reweighting the low-resolution k-space could allow the 107 
reconstruction to be more strongly constrained in the densely sampled centre of k-space. The importance of central 108 
k-space more generally in MRI reconstruction has previously been used in approaches such as keyhole [8], k-t 109 
SPARSE [9], and k-t PCA [16]. Temporal regularization of some form has previously been incorporated into fMRI 110 
reconstruction in approaches like Dual TRACER [34] and temporal smoothness for simultaneous multi-slice EPI 111 
[35]. With a temporally varying sampling scheme, such as golden angle radial sampling (e.g. TURBINE [36]), 112 
enforcing temporal smoothness can be an effective way to reduce aliasing artefacts with a fractional penalty to the 113 
resulting temporal degrees of freedom. 114 
 115 
In this paper, we explore extensions to the k-t FASTER approach that are formulated within an alternating 116 
minimization framework that incorporates L2-based regularization in addition to the previous fixed-rank 117 
constraints. We explore specific L2 constraints that correspond to Tikhonov regularization, low-resolution priors, 118 
and temporal subspace smoothness. Using L2-based constraints allows for interpretations of the constraints as 119 
Gaussian priors, and they are robust and relatively simple to implement. We compare the proposed approaches to 120 
unconstrained k-t FASTER and k-t PSF reconstructions of retrospectively and prospectively under-sampled 121 
datasets, which can be conceived of as special cases within this regularization framework. We evaluate these 122 
different methods with regards to the accuracy of the spatial and temporal components, and the sensitivity and 123 
specificity of statistical parameter maps (activation). 124 
 125 
 126 
 127 
 128 
 129 
 130 
 131 
 132 
 133 
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2. Material and methods  134 
 135 
2.1 Theory 136 
 137 
2.1.1 Reformulation of k-t FASTER 138 
The original k-t FASTER methodology used an iterative hard threshold + matrix shrinking approach [15] to enforce 139 
a fixed low-rank constraint on the reconstructed image time series. To enable us to easily introduce additional 140 
constraints on the spatial and temporal subspaces, we reformulate this low-rank optimization as a matrix 141 
factorization problem: 142 

	143 
𝑋, 𝑇 = 	𝑎𝑟𝑔𝑚𝑖𝑛!,#(	‖E(	X	 ∗ 	T′)	– 	d‖$$	)	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	𝑟𝑎𝑛𝑘(𝑋) = 𝑟𝑎𝑛𝑘(𝑇) = 𝑟													(1) 144 

 145 
Equation 1 uses the following variables - E: sampling and multi-coil encoding function; d: multi-coil under-sampled 146 
k-t fMRI data; X: spatial components of decomposition; T: temporal components (T’ = Hermitian adjoint of T); 147 
‖ ‖$: L2 norm, and r: rank constraint. For non-Cartesian sampling, E will contain an NUFFT operator [37]. The 148 
rank constraint will also apply to equations 2-5, but will be omitted for. 149 
 150 
To solve the non-convex low-rank reconstruction, a minimization approach is used which alternately optimizes two 151 
convex subproblems [38]. These subproblems solve for either the spatial (X) or temporal (T) components, 152 
respectively, while the other variable is fixed. The spatial dimensions are vectorized, such that the product X*T’ 153 
forms a 2D space-time low-rank matrix that is our estimate of the fMRI time-series, and the 3D image volumes are a 154 
re-formatting of the 1D spatial vector. The decomposed matrices X and T form a low-rank decomposition, with the 155 
low-rank structure encoded in the dimensionality of the matrices, and X and T are not forced to be 156 
orthogonal. Pseudocode is included in Appendix A, and full implementation details are included in Appendix B. 157 
 158 
2.1.2 Soft Constrained-Subspace Approaches 159 
 160 
The alternating minimization approach allows us to easily add additional subspace-specific constraints into Eq. 1, 161 
with the relative balance of low rank and additional constraints controlled by regularization parameters (λ). The 162 
original k-t FASTER approach can be reformulated by setting λ=0 in all the following equations. Formulations with 163 
non-zero and non-infinity λ will be referred to as softly constrained. Figure 1 contains schematics which 164 
demonstrate the various approaches. 165 
 166 
Tikhonov 167 
The most straightforward constrained-subspace approach derives from methods used for collaborative filtering 168 
[39], which often uses Tikhonov regularization on the two component matrices (X and T). L2-regularization terms 169 
are included to serve as energy minimization terms for each variable, which prevent matrix entries from becoming 170 
too large: 171 
 172 

𝑋, 𝑇 = 	𝑎𝑟𝑔𝑚𝑖𝑛!,#(	‖E(	X	 ∗ 	T′)	– 	d‖$$ 	+		λ%‖	X	‖$$	+		λ&	‖	T	‖$$)	(2) 173 
  174 
Low-Resolution Priors 175 
For data acquired using trajectories with non-uniform sampling densities that sample the centre of k-space each TR, 176 
one can formulate a L2 regularization corresponding to Low-Resolution Priors (LRP).  In uniform radial sampling 177 
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drawn from multiple spokes (TRs) within a plane, a central window of radius '_)*+
,

 fulfils the Nyquist sampling 178 

criteria in the azimuthal direction. Additionally, these low spatial frequencies represent the net balance of temporal 179 
processes at the ultimate temporal resolution, but without capturing detailed spatial features. This central window 180 
can be more strongly weighted during a final reconstruction to accurately capture these high temporal resolution 181 
processes. 182 
 183 
The LRP constraints (Xprior and Tprior) are created by windowing the full k-space dataset with a Tukey window 184 

(FWHM:	-∗'_)*+
$,

) and then reconstructing X and T using Equation 1, albeit with d referring to windowed k-space 185 

data, analogous to the estimation of the temporal subspace from training data in the k-t PSF approach. The final 186 
reconstruction is then weighted by the LRPs along with the full unwindowed sampled data (Equation 3). 187 
 188 

𝑋, 𝑇 = 	𝑎𝑟𝑔𝑚𝑖𝑛!,# @	‖E(	X	 ∗ 	T′)	– 	d‖$$ +		λ%A	X		–	X/0120A$
$	+		λ&	A	T		–	T/0120A$

$
B	 (3) 189 

 190 
The previously proposed k-t PSF method represents a special case of the more general LRP framework. This method 191 
reconstructs the spatial coefficients against a temporal basis (or prior) estimated from low-resolution training data. 192 
k-t PSF can be formulated in the Eq. 3 framework by setting λX=0 and λT =∞. The temporal subspace is constrained 193 
to be identical to this predetermined basis, which is labelled Tprior: 194 
 195 

𝑋 = 	𝑎𝑟𝑔𝑚𝑖𝑛!(	‖E(	X	 ∗ T′	)– 	d‖$$);				196 
	𝑇 = T/0120	(4) 197 

Temporal Subspace Smoothness 198 
The aim of a temporal subspace smoothness term is to preserve the relatively smooth BOLD response (particularly 199 
at high acceleration) and reduce the magnitude of high temporal frequency under-sampling artefacts. Trajectories 200 
with a sampling point-spread function that changes every frame (e.g. golden angle radial trajectories) can result in 201 
high temporal frequency under-sampling artefacts, and so are well suited to this approach. The reconstruction is 202 
governed by equation 5. ∇ is a finite difference operator acting on the temporal dimension of each temporal process, 203 
and λ∇ is the corresponding weighting parameter: 204 

𝑋, 𝑇 = 	𝑎𝑟𝑔𝑚𝑖𝑛!,#(	‖E(	X	 ∗ 	T′)	– 	d‖$$ +		λ∇‖	∇T	‖$$)	(5) 205 
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Figure 1: A schematic overview of a reconstruction with various constrained-subspace approaches. For the LRP, 206 
Xprior and Tprior are created using a windowed version of the under-sampled data according to only the rank 207 
constraints and coil sensitivity information. For Tikhonov, Xprior and Tprior are zero-filled. Xprior and Tprior are fed as a 208 
constraint into the final reconstruction, combining with the data consistency term on an unwindowed dataset to 209 
produce the final output. The temporal subspace smoothness schematic shows a finite difference matrix ∇ applied 210 
solely to the temporal component matrix T, before also being combined with the data consistency term. 211 
 212 
2.2 Experimental Details  213 
 214 
We evaluated the different reconstructions (Tikhonov-constrained, LRP-constrained, smoothness-constrained, k-t 215 
FASTER, and k-t PSF) with both retrospectively under-sampled data in various SNR regimes, and with 216 
prospectively under-sampled data. The reconstructions are evaluated based on how accurately the spatial, temporal, 217 
and functional information is captured across a range of acceleration factors. 218 
 219 
2.2.1 Data Acquisition 220 
 221 
In order to fulfil the non-uniform sampling requirements of the LRP constraints and the changing sampling PSF 222 
requirement of the smoothness constraints, all acquisitions in k-space followed the TURBINE trajectory [36], [40], 223 
a 3D hybrid radial-Cartesian EPI sequence which rotates an EPI blade around the phase encoding axis at constant 224 
azimuthal increments of the Golden Ratio angle (π/Φ ≈ 111.25o) [41]. This scheme provides a near-uniform radial 225 
sampling of k-space from any arbitrary post-hoc combination of consecutive blades, allowing for flexible degrees of 226 
acceleration (Figure 2) [42].  The under-sampling (or acceleration) factor R is defined here as the ratio of sampling 227 
lines required to fully sample k-space to the number of sampling lines acquired. In radial sampling, R=1 requires 228 
π/2 times more lines than Cartesian sampling.  229 

 230 
Figure 2: A demonstration of the flexibility of a golden angle sampling scheme, and of the k-space windowing 231 
required to create LRP constraints. EPI planes (left) is rotated by ≈ 111.25◦ around the phase-encoding axis. These 232 
rotated planes can then be flexibly combined. If many planes are used (top, blue) then a clean image is easily 233 
generated, but at the cost of temporal resolution. If fewer planes are used (middle, yellow) then more images are 234 
generated per second, but with an increased number of artefacts. The central part of under-sampled k-space 235 
satisfies the Nyquist criterion, even if the full extent of the under-sampled k-space does not. By windowing this 236 
central k-space (green, bottom), an accurate low-resolution depiction of the underlying data can be created. 237 
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 238 
All datasets were generated from a 30s/30s on/off finger-tapping task, and recreated 100x100 images with a 2mm 239 
isotropic voxel resolution. An SVD compressed the 32-coil channel to the 8 most dominant components for 240 
speed/memory purposes [43], [44]. All data were acquired on a 3T system (Prisma, Siemens Healthineers, Erlangen 241 
Germany) with informed consent in accordance with local ethics. 242 
 243 
Retrospectively Under-sampled Datasets  244 
“Retrospective dataset A” was created by retrospectively resampling each frame of a fully sampled dataset (300 245 
frames, TRframe=1s) in k-space with a TURBINE pattern. The original dataset is used as a comparative ground truth, 246 
and was acquired as a full volume through a TURBINE acquisition with 20 blades/frame (TRblade=50ms, 247 
TEblade=30ms), and a single axial slice with clear bilateral activation was chosen for reconstruction. No rank 248 
reduction was applied to the original data. The dataset was sampled from a magnitude-only ground truth, with no 249 
added noise or phase variation. The retrospective acceleration factors used are R=15.71, 31.42, 39.27, and 52.36 250 
(corresponding to 10, 5, 4, and 3 blades/frame respectively). 251 
 252 
“Retrospective dataset B” was created by adding complex Gaussian noise in k-t space to retrospective dataset A at 253 
R=31.42, to highlight the performance difference between the different approaches with additional thermal noise. 254 
Noise was added to form new noisy datasets with high (SNR=100), medium (50) and low (20) SNRs, with the 255 
original dataset considered noiseless for the purposes of comparison. For each SNR, five unique instantiations of the 256 
noise were added to the underlying data before reconstruction. These values are representative of actual fMRI SNR 257 
values [45]. This additional Gaussian noise only models additive thermal noise as a step towards more realistic data 258 
(coherent noise sources such as physiological noise with temporal autocorrelation are not modelled here). 259 
 260 
Prospectively Under-Sampled Data 261 
The prospectively accelerated reconstructions used a TURBINE acquisition across eight different slices centred on 262 
the motor cortex. Slices were first reconstructed by performing an inverse FFT along the phase-encode (z) direction 263 
before a k-t reconstruction was carried out on each (x-y) k-space plane. Identical acquisition parameters with the 264 
same experimental set-up (TRblade=50ms, TE=30ms, flip angle=15o, BW=1786 Hz/px) were used for a short 265 
experiment (320s, five 30s on/off task epochs) and a long experiment (640s, ten epochs) which were carried out 266 
consecutively on the same subject. An R=1.05 reconstruction of the long dataset contains enough temporal Degrees-267 
of-Freedom to characterize the underlying functional signal and provide high-quality activation maps, serving as a 268 
fully-sampled approximate "ground truth" reference against which the reconstruction of the accelerated short 269 
dataset is compared. The different acceleration factors in the short prospective dataset (R=7.85, R=15.71, R=26.18) 270 
lead to different temporal resolutions and temporal degrees of freedom, as well as affecting other statistical 271 
properties (such as physiological noise variance). While the most general method would reconstruct all eight slices 272 
simultaneously to capture shared temporal processes, the extra computational power required for this was not 273 
considered worth the benefits, and hence slices were reconstructed independently. The reconstruction details are 274 
listed in table 1. 275 
 276 

DATASET BLADES TRFRAME(S) R BLADES/FRAME FRAMES 
LONG 12,800 7.5 1.05 150 85 
SHORT 6,400 1 7.85 20 320 
SHORT 6,400 0.5 15.71 10 640 
SHORT 6,400 0.3 26.18 6 1066 
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Table 1: The reconstruction details for the different acceleration factors used in reconstructing the prospectively 277 
under-sampled data.  278 
 279 
2.2.2 Selection of reconstruction parameters  280 
A logarithmic grid search over potential λX and λT candidates was carried out for all datasets, constraints, and 281 
acceleration factors. The grid search for retrospective dataset A is shown in Figure 3 to demonstrate the typical 282 
effects of varying λ on the reconstructed spatial and temporal information for the different constraints, with 283 
boundary cases shown for λ=0 (zero prior influence) and λ=∞ (the solution is fixed to the prior). The special 284 
boundary case of  (λX = 0, λT = 0) defines k-t FASTER for all constraints and the special case of (λX = 0, λT = ∞) 285 
defines k-t PSF with LRP constraints. As the smoothness constraints rely on a single weighting parameter (λ∇), the 286 
results are shown as a line graph.  287 
 288 
The reconstruction rank was fixed at 16 in all cases (a value used in recent literature for low-rank task fMRI [46]), 289 
and a variety of acceleration factors were tested. The convergence criterion was defined as the normalized gradient 290 
for the whole cost function CF (equation 6), evaluated after the temporal subproblem optimization for iteration 291 
number i.  292 

|56!756!"#|
56!

< 	𝜀      (6) 293 

 294 
A criterion of ε = 10-5 was used for both retrospective datasets, which was chosen as the value at which a k-t FASTER 295 
reconstruction with different random initializations was found to converge to identical subspaces. For the 296 
prospective dataset, ε = 10-3 was found to be more optimal. This lower convergence criterion was found to produce 297 
slightly improved statistical parameter maps (defined using the metrics of section 2.2.3), which may be a result of 298 
overfitting occurring at the more precise criterion used in both retrospective datasets. The different criteria chosen 299 
here were selected to ensure a very high level of agreement regardless of the initialization, and was chosen using the 300 
k-t FASTER reconstruction without additional subspace constraints. Future experiments may well benefit from 301 
more liberal criteria to enable faster reconstruction, without necessarily experiencing any loss in reconstruction 302 
quality.  303 
 304 
 305 
2.2.3 Evaluation and fMRI Analysis 306 
Reconstruction image quality can be difficult to determine [47], with more incoherent (‘noise-like’) artefacts usually 307 
preferable to coherent artefacts, and the first component of the subspace dominating most image quality metrics 308 
(such as root mean square error or structural similarity index). Spatial artefacts can also make conventional metrics 309 
like SNR (or simple measures of noise) harder to quantify.  310 
 311 
Instead, the spatial and temporal subspaces were directly compared to the retrospective ground truth subspaces 312 
using canonical correlation analysis. Canonical correlation measures the cosine of the principal angles (the 313 
alignment) between subspaces [48], with higher values reflecting more aligned subspaces, and a value equal to the 314 
rank of the subspace (16 in all cases) demonstrating complete alignment. A Canonical Correlation Score (CCS) was 315 
created by dividing the canonical correlation by the maximal rank of the decomposed matrices, providing a 316 
normalized metric measuring the alignment of the subspaces. X CCS and T CCS respectively refer to the CCS for 317 
spatial and temporal subspace analyses. As a subspace alignment metric, CCS does not account for the magnitude of 318 
the estimated components, only their relative alignment. This potential shortcoming is accepted for two reasons: 319 
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firstly the data consistency term will generally ensure that the relative magnitude of the signal is well captured, and 320 
secondly any ICA analysis run on the data will also be scale-independent [49].  321 
 322 
For all datasets, task fMRI analysis was performed in FEAT (FSL) [50]. To account for residual autocorrelation, the 323 
resulting z-statistic maps were null-corrected using mixture modelling [29], and the reconstructed prospective data 324 
is aligned to the ground truth reference using FLIRT [51] prior to analysis. Receiver Operating Characteristic (ROC) 325 
curves were calculated to measure the false positive rate (FPR) against true positive rate when comparing the 326 
reconstructions against the activation map of a fully sampled reconstruction. A threshold of z>3.1 was used to 327 
threshold the retrospective truth, and z>4.8 was used for the prospective data (these values were selected 328 
heuristically based on anatomical veracity of known regions of expected activation). Z-statistic parameter maps are 329 
shown at a false positive rate of 0.0015 in order to facilitate visualization. The ROC curves will be focussed on low 330 
FPRs, as the z-statistic corresponding to high FPRs would never be used in studies. The Area Under the Curve 331 
(AUC) of the full ROC curve allows for a simple comparison of many reconstructions, but the underlying z-statistic 332 
maps also provide valuable information as to the spatial location of false positives and false negatives.  333 
 334 

3. Results  335 
 336 

Optimal values of λX, λT, and λ∇ are evaluated for each dataset, method, and acceleration factor, and then the 337 
optimized reconstructions are evaluated against the reconstructions using the k-t FASTER and k-t PSF methods. 338 
The optima are selected using a heuristic combination of the CCSs, ROC AUCs, and qualitative assessments of z-339 
statistic activation maps. 340 
 341 
 342 
3.1. Retrospective Dataset A Results 343 
The influence of λX and λT on the recovered temporal and spatial components for different constraints is shown in 344 
Figure 3. The LRP constraints are defined by a peak in spatial CCS and a broad plateau in temporal CCS (although 345 
the gradient is quite shallow near the peak). The Tikhonov constraints were defined by a line of peak values normal 346 
to λX = λT, suggesting a 1D search could suffice to find an optimal λ pairing. For Tikhonov and LRP constraints, the 347 
upper-left-hand corner of every λ grid represents k-t FASTER, and the far left point represents k-t FASTER in the 348 
1D plot. The upper-right-hand corner of the LRP constraint λ grids represent k-t PSF. The optimal λ values are 349 
shown in table 2, and were constant across acceleration factors, except for the highest acceleration factor (R=52.36). 350 
 351 
 352 

R Method λX λT λ∇ X CCS T CCS ROC AUC 

15.71 

Tikhonov 10-5 10-5 0 0.89 0.91 0.9983 
LRP 10-5 10-5 0 0.88 0.91 0.9985 

Smoothness 0 0 10-5 0.85 0.91 0.9983 
k-t FASTER 0 0 0 0.84 0.91 0.9983 

k-t PSF 0 ∞ 0 0.34 0.28 0.8956 

31.42 

Tikhonov 10-5 10-5 0 0.80 0.85 0.9984 
LRP 10-5 10-5 0 0.78 0.82 0.9984 

Smoothness 0 0 10-5 0.74 0.85 0.9975 
k-t FASTER 0 0 0 0.73 0.85 0.9973 

k-t PSF 0 ∞ 0 0.22 0.20 0.7052 
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39.27 

Tikhonov 10-5 10-5 0 0.76 0.83 0.9974 
LRP 10-5 10-5 0 0.72 0.78 0.9968 

Smoothness 0 0 10-5 0.71 0.84 0.9956 
k-t FASTER 0 0 0 0.70 0.84 0.9956 

k-t PSF 0 ∞ 0 0.21 0.22 0.5213 

52.36 

Tikhonov 10-5 10-5 0 0.73 0.82 0.9967 
LRP 10-4 10-6 0 0.67 0.78 0.9962 

Smoothness 0 0 10-4 0.65 0.80 0.9938 
k-t FASTER 0 0 0 0.63 0.81 0.9927 

k-t PSF 0 ∞ 0 0.21 0.23 0.5741 
 353 
Table 2: The optimal λ values for each method in retrospective dataset A. Results within 0.001 of the best ROC 354 
AUC score and 0.01 of the best CCS values are shown in bold. 355 
 356 
Z-statistic activation maps were derived for all approaches using the optimized λ values at R=31.42 (Figure 4) and R 357 
= 52.36 (Figure 5). The ROC curves and activation maps are consistent with the results of Figure 3, with the 358 
Tikhonov and LRP constraints performing better than the other k-t methods at both acceleration factors, albeit with 359 
the Tikhonov regularization marginally outperforming LRP-constrained reconstruction at R=52.6. The cleanness of 360 
the dataset appeared to allow very high reconstruction factors which were not found to be possible in more realistic 361 
data.   362 
 363 
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 364 
Figure 3: The canonical correlation scores (CCS) of retrospective dataset A vs a ground truth for a): Tikhonov-365 
constrained reconstructions, b): LRP-constrained reconstructions, c): Temporal Subspace Smoothness 366 
reconstructions. X CCS and T CCS refer to the spatial and temporal Canonical Correlation Scores respectively. The 367 
acceleration factors shown are: R=15.71 (10 blades/frame), R=31.42 (5 blades/frame), R=39.27 (4 blades/frame), 368 
and R=52.36 (3 blades/frame). The λ values encoding the pre-existing k-t FASTER and k-t PSF methods are shown 369 
on the right for each constraint.   370 
 371 
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 372 
Figure 4: R=31.42 (5 blades/frame) retrospective dataset A reconstructions. a) ROC curves, legend lists full curve 373 
AUC. b)-f) Activation maps using a z-statistic corresponding to an FPR of 0.15%. g)-k) A medial zoom of the 374 
associated activation maps. b/g) Tikhonov: λX	= 10-5, λT	= 10-5, c/h) LRP: λX	= 10-5, λT	= 10-5, d/i) Temporal subspace 375 
smoothness: λ∇	= 10-5, e/j) k-t FASTER, f/k) k-t PSF. Maps b)-k) use green true positive pixels, red false positives, 376 
and blue false negatives.  377 
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 378 
Figure 5: R=52.6 (3 blades/frame) retrospective dataset A reconstructions. a) ROC curves, legend lists full curve 379 
AUC. b)-f) Activation maps using a z-statistic corresponding to an FPR of 0.15%. g)-k) A medial zoom of the 380 
associated activation maps. b/g) Tikhonov: λX	= 10-5, λT	= 10-5, c/h) LRP: λX	= 10-4, λT	= 10-6, d/i) Temporal subspace 381 
smoothness: λ∇	= 10-4, e/j) k-t FASTER, f/k) k-t PSF. Maps b)-k) use green true positive pixels, red false positives, 382 
and blue false negatives. 383 
 384 
3.2 Retrospective Dataset B Results 385 
Optimal λ was found to increase as SNR decreased for Tikhonov and LRP results. The following values were used for 386 
both Tikhonov and LRP constraints: high SNR (SNR=100, λX=10-4, λT =10-5); medium SNR (SNR=50, λX=10-4, 387 
λT =10-4); low SNR (SNR=20, λX=10-3, λT =10-4). The temporal subspace smoothness results used λ∇	=	10-4 in all 388 
cases, although the variation in results was small for	10-4 < λ∇	<	10-1. 389 
 390 
The mean AUC of the noisy parameter map ROCs compared to a noiseless truth are summarized in Figure 6, with 391 
all reconstructions losing fidelity as SNR decreased. The noiseless reconstructions are equivalent to the data shown 392 
in figure 4. Maps comparing thresholded z-stat maps with the ground truth for each method are shown in Figure 7, 393 
with full visualizations of all reconstruction activation maps and ROC curves shown in Supplementary Figures 4-6. 394 
In t-tests performed between the different constraints within the three non-noiseless SNRs, all reconstructions 395 
within an acceleration factor were significantly different (p<0.05) except Tikhonov vs LRP at high SNR, k-t FASTER 396 
vs k-t PSF at low SNR, and LRP vs Smoothness at low SNR. 397 
 398 
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Tikhonov-constrained reconstruction outperformed all other methods, identifying plausible activity even at the 399 
lowest SNR tested. LRP and temporal smoothness constraints represent improvements on the previously proposed 400 
techniques (k-t FASTER and PSF), with all constrained results better than all k-t FASTER results at medium and 401 
low SNR. The k-t FASTER approach appears highly susceptible to noise, with a roughly equivalent noiseless AUC 402 
score to the other methods at R=31.42 (figure 5) rapidly decreasing as SNR decreased. The k-t PSF approach failed 403 
to capture activation even for the noiseless simulated dataset at this acceleration factor.  404 

Figure 6: Retrospective dataset B reconstruction AUC results. Each bar represents the mean AUC of five different 405 
instantiations of Gaussian noise in k-t space at a specific SNR for a specific reconstruction method, except for the 406 
left-hand set, which represent a single noiseless reconstruction. The error bars show the range of AUC values.  407 

 408 
Figure 7: An example activation map at each noise value for each reconstruction method. See Supplementary 409 
Figures 3-5 for the full set of activation maps and the individual ROC curves. As with Figures 4-5, green pixels 410 
represent true positives, red pixels represent false positives, blue pixels represent false negatives. The z-statistics 411 
threshold yielded a false positive rate of 0.15%. 412 
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3.3 Prospective Results 413 
This section presents results on the prospectively under-sampled (“real”) experiments, with three different 414 
acceleration factors tested: R=26.2 (6 blades/frame); R=15.7 (10 blades/frame); and R=7.9 (20 blades/frame). The 415 
optimal λ values were found to be dependent on both R and the chosen constraint in the prospective dataset (the 416 
distribution of reconstruction scores with respect to λ were similar to Figure 3, and so are not shown here). The only 417 
exception is that the LRPs were less dependent on λT, with a broader range of values producing scores close to the 418 
optimum. Optimal λ values are shown in table 3. 419 
 420 

R 𝑩𝒍𝒂𝒅𝒆𝒔
𝑭𝒓𝒂𝒎𝒆𝒔 Method λX λT λ∇ MEAN RECON TIME 

(HOURS) 
ROC AUC 

7.85 20 

Tikhonov 10-1 10-2 0 2.9 0.9915 

LRP 10-1 10-7 0 (1.7+1.6) 3.3 0.9913 

Smoothness 0 0 10-3 1.4 0.9911 

k-t FASTER 0 0 0 1.4 0.9906 

k-t PSF 0 ∞ 0 (1.7+0.3) 2.0 0.9884 

15.71 10 

Tikhonov 10-1 10-2 0 6.3 0.9871 
LRP 10-1 10-3 0 (26.9+6.4) 33.3 0.9851 

Smoothness 0 0 10+1 11.2 0.9880 
k-t FASTER 0 0 0 5.8 0.9644 

k-t PSF 0 ∞ 0 (26.9+0.3) 27.2 0.9000 

26.18 6 

Tikhonov 10-2 10-1 0 11.6 0.9785 
LRP 10-3 10-7 0 (192.3+11.3) 203.6 0.9586 

Smoothness 0 0 10+2 29.6 0.9875 
k-t FASTER 0 0 0 13.0 0.9410 

k-t PSF 0 ∞ 0 (192.3+0.3) 192.6 0.4613 

Table 3: the optimum λ values in the prospective dataset for each constraint at each acceleration factor. The time in 421 
brackets shows the split between the time taken to generate the priors and the final reconstruction. Results with the 422 
shortest reconstruction time or within 0.001 of the best ROC AUC score are shown in bold. 423 
 424 
The ROC curves for the optimal λ at each acceleration factor for each method are shown in Figure 8. The activation 425 
maps for every second slice of the R=15.7 and R=26.2 results are shown in Figures 9 and 10 respectively. The full 426 
selection of activation maps for all slices and acceleration factors can be seen in Supplementary Figures 6-8.  427 
 428 
At the lower acceleration factor (R=7.85), all approaches appear approximately equivalent, with k-t PSF performing 429 
worst with AUC = 0.9884 and all other methods having AUC > 0.99. At the medium acceleration factors (R=15.71, 430 
Figure 9), the soft subspace constraints outperformed k-t FASTER (AUC = 0.9644) and k-t PSF (AUC = 0.90) with 431 
AUC > 0.98. At the high acceleration factor (R=26.18, Figure 10), the Tikhonov-constrained results and smoothness 432 
results outperformed all other methods with AUCs of 0.9785 and 0.9875 respectively, and the LRP constrained 433 
method (AUC = 0.9586) performing similar to k-t FASTER (AUC = 0.9410) at this acceleration factor. Here, the 434 
smoothness constraints outperformed the Tikhonov constraints by a score of 0.09, whereas the Tikhonov 435 
constraints either performed equivalently or outperformed the smoothness constraints in all other scenarios. 436 
 437 
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 438 
Figure 8: The ROC curves across eight slices for a) R=7.85 (20 blades/frame), b) R=15.71 (10 blades/frame), and c) 439 
R=26.18 (6 blades/frame). The ground truth is the long dataset taken under similar experimental conditions, at a 440 
threshold of z≥4.8. The false-positive rate is shown on the x-axis up to 0.02, in order to allow visualization of the 441 
analytically relevant representation of the activation maps. 442 

Figure 9: Prospective data, R=15.71. The activation maps for every second slice of the reconstruction, at a 443 
threshold defined by a 0.15% volumetric false positive rate. Supplementary Figure 7 shows the activation maps of all 444 
slices.  445 
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 446 
Figure 10: Prospective data, R=26.18. The activation maps for every second slice of the reconstruction, at a 447 
threshold defined by a 0.15% volumetric false positive rate. Supplementary Figure 8 shows the activation maps of all 448 
slices.  449 
 450 

4. Discussion  451 
 452 
This study demonstrates the impact of three different L2-based constraints in a global low-rank optimization 453 
framework for accelerated fMRI data reconstruction. In instances of high acceleration or low SNR, the constrained 454 
approaches are able to better identify true regions of activation in a finger-tapping study, as well as producing 455 
solutions which more closely map to the spatial and temporal subspaces of a ground truth. These results highlight 456 
the viability of non-linear reconstruction frameworks in fMRI that do not rely explicitly on sparse modelling of the 457 
BOLD signals. 458 
 459 
4.1 Comparison between methods 460 
Across the different evaluated datasets a clear trend emerged: the addition of soft subspace-constraints to the k-t 461 
FASTER formulation produces improved subspace alignment and ROC AUC scores at high acceleration/low SNR. 462 
Collectively, the qualitative and quantitative metrics reveal that very high acceleration factors are possible with 463 
these soft constrained-subspace low-rank approaches, in the right conditions. The conditions tested in this paper 464 
show that the fMRI signal of interest can be represented by a small number of high-variance components, as elicited 465 
with a finger-tapping motor task experiment. The effectiveness of this approach in other, lower-variance examples 466 
such as resting-state fMRI or more subtle task fMRI experiments remains to be seen.  467 
 468 
The non-linear reconstruction framework only aimed to recover the first 16 components in a low-rank 469 
representation of the signal, resulting in feasible reconstructions at very high acceleration due to the reduced matrix 470 
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degrees of freedom in the estimated output. The acceleration factors reported here (R=26.18 for the prospective 471 
dataset) are considerably higher than those reported in previous studies of low-rank fMRI reconstruction using 472 
realistic data, which is facilitated largely by the additional soft subspace-constraints. The high acceleration factors in 473 
the retrospective dataset A (e.g. R=52.36) were chosen to differentiate between different constraints, and are not 474 
considered representative of realistic acceleration factors. 475 
 476 
The Tikhonov constraints produced high fidelity reconstructions in both retrospective and prospective under-477 
sampling, even at acceleration factors or SNR levels where other methods began to fail (e.g. the prospective 478 
R=26.18/TR=0.3s results, or the low SNR retrospective dataset B results). Additionally, Tikhonov-constrained 479 
reconstructions were the fastest to reconstruct out of all the softly constrained reconstructions while its optimal λ 480 
pairing could be found through a 1-D parameter search only - reducing the dimensionality of the design constraints. 481 
 482 
However, the Tikhonov reconstructions were outperformed by the temporal subspace smoothness approach in the 483 
reconstructions of the prospectively under-sampled data, despite that same smoothness approach only providing a 484 
relatively small improvement over k-t FASTER in both retrospective datasets. However, the retrospective datasets 485 
were constructed under conditions that were favourable for k-t FASTER, without any additional phase modulations 486 
or physiological noise (beyond what was in the original dataset). The scale of improvement is also worth noting, 487 
with the AUC scores showing Tikhonov outperforming smoothness by an absolute value of +0.3% in the most 488 
discriminatory result of retrospective dataset A (R=52.36, 0.9967 vs 0.9938), but smoothness outperforming 489 
Tikhonov by +0.9% in the highest acceleration factor tested in the prospective data (R=26.18, 0.9875 vs 0.9785). 490 
This smoothness improvement is in addition to the improvement the Tikhonov approach manages over all other 491 
methods (+3.75% total over k-t FASTER), while also occurring in the dataset most representative of real data. The 492 
outstanding question from these findings is then whether all real-data reconstructions favour smoothing 493 
constraints, or are there a set of conditions in real data that would favour Tikhonov constraints? 494 
 495 
The low-resolution priors were unable to match the performance of the Tikhonov constraints in any dataset, nor the 496 
temporal smoothness in the prospective dataset. The false positives in the LRP-constrained z-stat maps were 497 
localized close to the area of interest, indicating the influence of the prior and resulting potential reduction in 498 
effective spatial resolution. By comparison, at lower SNR k-t FASTER produced false positives which were less 499 
localized to voxels adjacent to true positive activations. As a generalization of the k-t PSF approach, this may reflect 500 
the intrinsic limitation of generating priors from low-resolution training data for constraining a high-resolution 501 
reconstruction. Furthermore, reconstruction times for the LRP constrained reconstructions were the longest by far. 502 
 503 

The k-t PSF method did well at R=7.85 in the real prospective data, and has not to our knowledge been previously 504 
tested without sparsity constraints in an fMRI framework. However, the formulation of k-t PSF used in this paper 505 
did not produce robust solutions in the other datasets or at the higher acceleration factors tested This is also 506 
consistent with the performance of the low-resolution prior method, where both methods that constrained the 507 
reconstruction based on a low-spatial resolution temporal basis were not as successful as the other constraints in 508 
under-sampled signal recovery. 509 

 510 
The optimal regularization factors varied between datasets, and were dependent on SNR for Tikhonov/LRP 511 
constraints, and weakly with R. It is clear that a soft constraint can help guide the dataset to improved 512 
reconstruction scores, but as with many regularization methods, identification of optimal λ parameters will require 513 
some care.  514 
 515 
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4.2 Limitations and Future Work 516 
One limitation of this work is the small sample of datasets used to evaluate the methods, and further testing on 517 
additional datasets with physiological noise models or other confounding factors would be needed to establish 518 
robustness. This would allow more insight into the robustness of the Tikhonov and smoothness constraints, the 519 
optimal λ values, and the impact of coherent noise contamination or auto-regressive noise properties on the 520 
different approaches. In addition, further dataset testing could assess the impact of motion. Motion can violate the 521 
low-rank assumptions in fMRI, with motion-related variance swamping BOLD fluctuations, and so adequate 522 
motion-correction is required. However, a major challenge is that this effect cannot be corrected post-hoc using 523 
conventional time-series registration, but needs to correct the k-space data prior to low-rank reconstruction. The 524 
data collected for this study was performed on healthy volunteers with very little apparent motion, although the 525 
TURBINE k-space trajectory enables motion correction using low spatial resolution navigators [36]. One solution 526 
could involve combining TURBINE’s self-navigation capabilities with a joint estimation of the subspaces and 527 
motion parameters, leveraging an assumption that a motion-free reconstruction would have the lowest rank or 528 
nuclear norm. While the TURBINE acquisition scheme was used to help fulfil the non-uniform sampling density 529 
requirement of the LRP constraints, alternative sampling schemes could also be tested to explore how well the 530 
smoothness and Tikhonov constraints generalize. 531 
 532 
The joint-optimization of two subspaces in alternating minimization provides a flexible reconstruction framework, 533 
but could benefit from speeding up. The slowest reconstructions took up to 10s of hours per slice for both Tikhonov 534 
and smoothness- constrained reconstruction (Table 2). While Toeplitz Embedding was used to speed up iterative 535 
use of the NUFFT [52], [53], the reconstruction code has not been optimized for speed and these computation times 536 
could likely be reduced significantly. In addition to code optimization, subproblem parameters such as the 537 
convergence factor ε and the number of internal iterations in each linear subproblem (see Supplementary Figure 2) 538 
were both chosen to be deliberately conservative for this exploratory analysis and could be fine-tuned for faster 539 
reconstructions in future. 540 
 541 
5. Conclusions  542 
Low-rank reconstructions in fMRI can benefit from additional regularization, particularly at high acceleration 543 
factors or in low-SNR regimes. The L2-based constrained-subspace approaches studied here were shown to improve 544 
upon methods like k-t FASTER in realistic fMRI data at acceleration factors of R>10, although there is an associated 545 
increase in reconstruction time as currently implemented. The improvements with the soft subspace constraints 546 
were most apparent at the highest acceleration factor tested (R=26, TR=0.3), and particularly pronounced for the 547 
Tikhonov constraints and temporal smoothness constraints.  548 
 549 
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 685 
Appendix A: Pseudocode 686 
 687 
Input 688 
d: multicoil under-sampled k-t fMRI data 689 
E: Sampling and multi-coil encoding operator  690 
λX: spatial regularization weighting factor 691 
λT: temporal regularization weighting factor 692 
λ∇: temporal smoothness regularization weighting factor 693 
 694 
%Initialize 695 
X89:;9<$%&_#: Temporal Mean (The average image over all time) 696 

X89:;9<$%&(_):+: 0 697 
T89:;9<: Randomly orthogonal rows 698 
 699 
%Create Priors 700 
d=:> = window(d)	707 
while not converged do 701 

X89:;9,-#ß𝑎𝑟𝑔𝑚𝑖𝑛%.+,%+ @AEV	X89:;9	T89:;9, ’	X–	d=:>	A$
$
B 702 

T89:;9,-#ß𝑎𝑟𝑔𝑚𝑖𝑛&.+,%+ @AE(	X89:;9,-#T89:;9’	)	–	d=:>A$
$
B 703 

end while 704 
 705 
%Final Reconstruction 706 
X< = X89:;9 708 
T< = T89:;9 709 
 710 
while not converged do 711 

X1?@ß𝑎𝑟𝑔𝑚𝑖𝑛! @‖E(X	T:’)– d‖$$ + λ%AX–X89:;9A$
$
B 712 

T:?@ß𝑎𝑟𝑔𝑚𝑖𝑛# @‖E(	X:?@T’	)– d‖$$	+	λ&AT–T/0120A$
$		+	λ∇‖	∇T	‖$$B 713 

end while 714 
 715 
%Output 716 
D = X*T’: Final reconstructed x-t fMRI data 717 
 718 
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Test code for running the main algorithm of this paper can be found at 719 
https://github.com/harrytmason/constrained-lowrank-recon, and the data can be downloaded from ORA once it is 720 
made public (it is currently being processed). A link to the data will be provided in the readme file of the code. 721 
 722 
Appendix B : Implementation Details 723 
 724 
There are a few ways to tackle a k-t space reconstruction problem that constructs a low-rank matrix (e.g. minimizing 725 
the nuclear norm: the sum of the singular values [54]; or matrix completion [55]). The approach used in our 726 
formulation is known as alternating minimization [38], which reconstructs the decomposed matrices at a fixed rank, 727 
pre-selecting an arbitrary low-rank value below the maximum potential rank of the system. Each row in X 728 
represents a separate voxel, each row in T represents a frame in time, and the rank is encoded through the columns 729 
of both matrices. An additional adaptation employed during prior generation is the forced orthogonalization of the 730 
system when alternating between the two subproblems where no alternate regularization exists (e.g. where λX = λT = 731 
0). 732 
 733 
Our reconstruction problem was solved using the minres.m function in MATLAB R2019a. NUFFT calculations used 734 
the Fessler toolbox [37]. Canonical correlations were calculated using the subspacea.m function [48] rather than the 735 
inbuilt canoncorr.m function, in order to avoid the extra alignment that occurs during demeaning (which is only 736 
significant for low canonical correlation scores). 737 
 738 

For windowing, a Tukey parameter of 0.4 was used with full-width half-maximum at  -∗'_)*+
$,

. For generation of the 739 

priors, a 1D Tukey window was applied along each acquired blade in k-space, and a 2D version of the window was 740 
applied to the priors in Cartesian k-t space post prior-generation, but pre-final reconstruction with the full k-space. 741 
This ensured no leakage of energy into the higher frequencies, as the windowed data in a consistency term does not 742 
strictly enforce the output to only the central k-space. 743 
 744 
The overall convergence criterion was a normalized cost function gradient; it was evaluated relative to the cost 745 
function at the previous post temporal subproblem iteration after the temporal subproblem in each cycle. The CCS 746 
metric was used to establish robustness within a given acceleration factor with respect to the convergence criterion, 747 
by reconstructing from different randomly initialized X and T matrices and measuring the agreement of those 748 
reconstructions with respect to the principal angles at different levels of convergence. The reconstructions were 749 
carried out through a k-t FASTER reconstruction of retrospective dataset A, and are shown in Supplementary Figure 750 
1. 751 
 752 
The differing size of the spatial and temporal subproblem means the spatial and temporal problems require 753 
different convergence and/or iteration parameters (typically there are 1-2 orders of magnitude more voxels than 754 
frames). We chose parameters that made the system spend 10x as long in the spatial subproblem (50 iterations per 755 
temporal subproblem, 500 per spatial subproblem, with a subproblem tolerance of 10-15 in case of early 756 
convergence). The effect of varying the number of iterations of each subproblem against the cycles between the 757 
subproblem is shown in Supplementary Figure 2. An internal iteration number of 50 was chosen to guarantee 758 
convergence, but this has the potential to be optimized for speed. 759 
 760 
Toeplitz embedding exploits the Gram matrix (E’E) formed by Fourier encoding to produce a block Toeplitz 761 
structure. These can be embedded in block Circulant matrices, which can be fully explained by their first column, 762 
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and are diagonalized by FFTs. Toeplitz Embedding speeds up the computation from O(N2) to O(NlogN). Mark 763 
Chiew’s tools for implementing can be found at https://users.fmrib.ox.ac.uk/~mchiew/tools.html. 764 
 765 
Supplementary Figures 766 
 767 

 768 
Supplementary Figure 1: A measure of the robustness of the k-t FASTER algorithm. At each different 769 
acceleration factor (columns), five different reconstructions with randomly orthogonal initialization and a temporal 770 
mean as the first component were carried out. The result was saved at four different relative absolute gradients of 771 
the cost function (rows). The CCS between these different initializations is then shown in each grid, with the 772 
diagonal indicating a self-CCS of 1.  It is worth noting that random non-orthogonal initializations showed much 773 
poorer convergence to a single solution. 774 
 775 
 776 
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 777 
Supplementary Figure 2: Various criteria (Row 1: X CCS, Row 2: T CCS, Row 3: Cost, Row 4: Time) are used to 778 
judge the reconstruction performance with varying iteration numbers in the subproblems. Three different 779 
acceleration factors are shown (R=31.42, 5 blades/frame; R=15.71, 10 blades/frame; R=10.47, 15 blades/frame) 780 
across a range of cycles (shown in each column). The number of iterations in the spatial subproblem was 10× 781 
higher. These results were acquired using alternating minimization k-t FASTER on retrospective dataset A. 782 

Supplementary figure 3: The full set of reconstructions for high SNR in retrospective dataset B. a) The ROC 783 
curves for all five instantiations of the noise, when subjected to the different reconstruction methods. The mean 784 
AUC across the entire curve is included in the legend. b) The activation maps of all three methods for each 785 
individual instantiation of the noise. 786 
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Supplementary figure 4: The full set of reconstructions for medium SNR in retrospective dataset B. a) The ROC 787 
curves for all five instantiations of the noise, when subjected to the different reconstruction methods. The mean 788 
AUC across the entire curve is included in the legend. b) The activation maps of all three methods for each 789 
individual instantiation of the noise.  790 
 791 

Supplementary figure 5: The full set of reconstructions for low SNR in retrospective dataset B. a) The ROC 792 
curves for all five instantiations of the noise, when subjected to the different reconstruction methods. The mean 793 
AUC across the entire curve is included in the legend. b) The activation maps of all three methods for each 794 
individual instantiation of the noise.  795 
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 796 
Supplementary figure 6: The activation maps for all eight slices for prospective reconstruction at R = 7.85 across 797 
the k-t reconstruction methods. The maps were thresholded according to the z-statistic equivalent to a false positive 798 
rate of 0.15% (Figure 8). Green pixels represent true positives, blue is false negatives, red is false positives.  799 
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 800 
Supplementary figure 7: The activation maps for all eight slices for prospective reconstruction at R = 15.71 801 
across the k-t reconstruction methods. The maps were thresholded according to the z-statistic equivalent to a false 802 
positive rate of 0.15% (Figure 8). Green pixels represent true positives, blue is false negatives, red is false positives.  803 
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 804 
Supplementary figure 8: The activation maps for all eight slices for prospective reconstruction at R = 26.18 805 
across the k-t reconstruction methods. The maps were thresholded according to the z-statistic equivalent to a false 806 
positive rate of 0.15% (Figure 8). Green pixels represent true positives, blue is false negatives, red is false positives.  807 
 808 
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