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Abstract

Data binning involves grouping observations into bins and calculating bin-wise summary

statistics. It can cope with overplotting and noise, making it a versatile tool for comparing

many observations. However, data binning goes awry if the same observations are used

for binning (selection) and contrasting (selective analysis). This creates circularity, biasing

noise components and resulting in artifactual changes in the form of regression towards the

mean. Importantly, these artifactual changes are a statistical necessity. Here, we use (null)

simulations and empirical repeat data to expose this flaw in the scope of post hoc analyses

of population receptive field data. In doing so, we reveal that the type of data analysis, data

properties, and circular data cleaning are factors shaping the appearance of such artifactual

changes. We furthermore highlight that circular data cleaning and circular sorting of change

scores are selection practices that result in artifactual changes even without circular data

binning. These pitfalls might have led to erroneous claims about changes in population

receptive fields in previous work and can be mitigated by using independent data for selection

purposes. Our evaluations highlight the urgency for us researchers to make the validation of

analysis pipelines standard practice.
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Highlights

• Circular data binning produces artifactual changes in the form of regression towards

the mean

• Analysis type, data properties, and circular data cleaning shape these artifactual changes

• Circular data cleaning and sorting produce artifactual changes even without circular

data binning

• These pitfalls can lead to faulty claims about changes in population receptive fields
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1. Introduction1

Data binning refers to grouping observations into bins or subgroups and calculating bin-wise2

summary statistics, such as the arithmetic mean. It is often applied to large datasets in order3

to prevent overplotting and control noise. As such, data binning has become commonplace4

in population receptive field (pRF) modeling (Dumoulin and Knapen, 2018; Dumoulin and5

Wandell, 2008), where researchers are commonly interested in comparing visual field maps6

with thousands of observations between different (experimental) conditions. However, pRF7

modeling is only one out of several research areas where some form of differential data binning8

has been adopted (e.g., Gignac and Zajenkowski, 2020; Holmes, 2009; Kriegeskorte et al.,9

2009; Preacher et al., 2005; Shanks, 2017).10

Although data binning can help us see an overall pattern in the face of an abundance of11

details, it goes awry if the same observations are used for binning (selection) and contrasting12

(selective analysis). This is because dipping into noise-tainted data (i.e., most data) more13

than once violates assumptions of independence, favoring some noise components over others14

and eventually biasing descriptive and inferential statistics (Kriegeskorte et al., 2009). As15

such, double-dipping in data binning prevents us from – amongst other things – controlling16

for regression towards the mean (e.g., Galton, 1886; Gignac and Zajenkowski, 2020; Holmes,17

2009; Makin and De Xivry, 2019; Shanks, 2017; Stigler, 1997).18

Regression towards the mean is a statistical artifact occurring when two variables are19

imperfectly correlated (e.g., due to random noise1). In this case, extreme observations for20

one variable will on average be less extreme for the other2 (e.g., Campbell and Kenny, 1999;21

Cohen et al., 2003; Galton, 1886; Shanks, 2017; Stigler, 1997). The magnitude of regression22

towards the mean tends to be higher the lower the correlation between the variables (e.g.,23

Campbell and Kenny, 1999, for systematic simulations, see Holmes 2009).24

Double-dipping and/or regression towards the mean are of particular concern in what25

is known as post hoc subgrouping (Preacher et al., 2005), post hoc data selection (Shanks,26

2017), and extreme groups approach (Preacher et al., 2005), all of which can be considered as27

subtypes of data binning. Post hoc subgrouping refers to collecting two measures, defining28

extreme subgroups post hoc using one measure (e.g., the lower and upper quantile), and29

then performing statistics on these measures for the extreme subgroups (Preacher et al.,30

2005). Post hoc data selection is similar but involves only one extreme subgroup (Shanks,31

2017). Both of these practices are different from the extreme groups approach, where extreme32

subgroups are selected a priori based on one measure; that is, without collecting the whole33

range of the other measure (Preacher et al., 2005). Here, we focus on a post hoc scenario34

1Note that random noise is only one factor weakening the correlation between two variables (for more details, see

Shanks, 2017).
2To be precise, regression towards the mean refers to standard scores (z-scores; Campbell and Kenny, 1999; Kenny,

2005)
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Figure 1. Simulated post hoc binning analysis on fictive body weight data. Bin-wise fictive body weight data
and means for Today and Tomorrow in the same group of adults and different data binning scenarios. Body weight
data for Today and Tomorrow were either binned according to body weight data for Today (1st column) or an
Independent test occasion (2nd column). Fictive body weight data were simulated by sampling the body weight of
1000 adults from a Gaussian distribution (M = 70 kg; SD = 10 kg) and disturbing each adult’s body weight with
random Gaussian noise (SD = 10 kg), separately for each test occasion (Today, Tomorrow, and Independent).
The red horizontal lines indicate the location of the overall mean for Today and Tomorrow. Dark brown colors
correspond to lower and dark blue-green colors to higher decile bins. The endpoints of the colorful lines represent
individual data points and the colorful dots with the black outline bin-wise means. Note that the graphs displayed
here are referred to as Galton squeeze diagrams (Campbell and Kenny, 1999; Galton, 1886; Shanks, 2017).

where essentially all subgroups are considered, not just the extreme ones (see also Gignac35

and Zajenkowski, 2020; Holmes, 2009). We label this procedure including its subtypes post36

hoc binning analysis.37

An intuitive way to think about the link between double-dipping, regression towards the38

mean, and post hoc binning are repeat data. Assume we measure body weight in a population39

of adults twice – Today and Tomorrow (see endpoints of colorful lines, Figure 1; 1st column).40

Further assume that any weight we measure involves a permanent and a transient component41

(true value + random noise). When determining Today’s and Tomorrow’s overall mean42

weight, all things being equal, the permanent component persists and the transient component43

cancels out (see red horizontal lines, Figure 1, 1st column). However, this is not the case when44

we select adults with extremely high measurements for Today (relative to the overall mean)45

and compare these measurements to Tomorrow’s in the same adults by calculating the means46
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(see lines and dots in dark green color, Figure 1, 1st column). This is because we used47

Today’s measurements twice: for selection (binning) and selective analysis (comparing bin-48

wise means). We therefore favored Today’s noise components over Tomorrow’s. Why is this?49

The noise components of our selection criterion are not independent of the noise components50

of Today’s measurements. This renders the subgroup we selected Today on average heavier51

than it really is. This is not the case for Tomorrow’s measurements. As a result, Tomorrow’s52

measurements for this subgroup regress on average to Tomorrow’s overall mean (see dots53

in dark green color, Figure 1, 1st column; for a similar example see Stigler, 1997). This54

artifactual change in average weight might look like a real phenomenon, although – of course55

– it is not.56

The analysis we just performed can be regarded as an instantiation of post hoc data57

selection involving one extreme subgroup. If we additionally select a subgroup of adults with58

extremely low measurements for Today (see lines and dots in dark brown color, Figure 1,59

1st column), regression towards the overall mean from below occurs for this subgroup. Such60

an approach would qualify as post hoc subgrouping involving two extreme subgroups. If61

we incorporate additional less extreme subgroups, we perform a full-blown post hoc binning62

analysis (see lines and dots in various colors, Figure 1, 1st column), where the bin-wise63

means for Tomorrow’s measurements regress towards the overall mean to various degrees.64

Importantly, this regression artifact is a statistical necessity not hinging upon body weight65

data. Once we use Independent data for binning purposes (e.g., body weight measurements66

collected for the day after tomorrow), we break the circularity, and the regression artifact67

disappears (Figure 1, 2nd column).68

How does all of this relate to post hoc analyses involving pRF data? Imagine we conduct69

a retinotopic mapping experiment (Dumoulin and Wandell, 2008), where we estimate pRF70

position and pRF size for each voxel in the visual brain under a Baseline condition as well71

as a condition of Interest (see Figure 2 for a single pRF). We can think of the Interest and72

Baseline conditions as repeat data (e.g., Benson et al., 2018; Senden et al., 2014; van Dijk73

et al., 2016), different attention conditions (e.g, de Haas et al., 2014, 2020; Klein et al., 2014;74

van Es et al., 2018; Vo et al., 2017), mapping sequences (e.g., Binda et al., 2013; Infanti and75

Schwarzkopf, 2020), mapping stimuli (e.g., Alvarez et al., 2015; Binda et al., 2013; Le et al.,76

2017; Yildirim et al., 2018), magnetic field strengths (e.g., Morgan and Schwarzkopf, 2020),77

scotoma conditions (e.g., Barton and Brewer, 2015; Binda et al., 2013; Haak et al., 2012;78

Prabhakaran et al., 2020), and pRF modeling techniques (e.g., Carvalho et al., 2020) – to79

name but a few examples. Similarly, apart from visual scenarios, we can also interpret the80

Baseline and Interest condition as adaptation conditions (e.g., Tsouli et al., 2021), different81

finger movements (e.g., Schellekens et al., 2018), or uni- and multisensory conditions (see82

Holmes, 2009, for a discussion on non-pRF work).83

As a pRF model, we adopt a 2D Gaussian, where pRF position represents the center84

of a pRF in visual space (the center of the Gaussian) and pRF size its spatial extent (the85

standard deviation of the Gaussian; see Figure 2). We then fit this model to the voxel-wise86
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Figure 2. Population receptive field estimates. The large black square outline represents a cutout of the visual
field and the black dashed arrows a Cartesian coordinate system. The two circles represent a pRF that changes its
position (gray solid line) in an Interest (magenta) compared to a Baseline (gray) condition. The pRF was modeled
as a 2D Gaussian function. The center of the 2D Gaussian (midpoint of the gray and magenta circles) represents
the position of the pRF. PRF position can be expressed in terms of x0 and y0 coordinates (green arrow heads)
or eccentricity (blue dashed line) and polar angles (orange solid line). Eccentricity corresponds to the Euclidean
distance between the center of gaze (origin) and the center of the 2D Gaussian. Polar angle corresponds to the
counter-clockwise angle running from the positive x-axis to the eccentricity vector. The standard deviation of the
Gaussian (1σ; black solid line) represents pRF size. Both pRF position and size are typically expressed in degrees of
visual angle. Polar angles are typically expressed in degrees. Ecc = Eccentricity. pRF = Population receptive field.

brain responses we measured in the retinotopic mapping experiment (Dumoulin and Wandell,87

2008). To compare pRF positions in the Interest and Baseline condition voxel-by-voxel, we88

bin the pRF positions from both conditions according to the pRF positions from the Baseline89

condition. Subsequently, we quantify for each voxel the position shift from the Baseline to90

the Interest condition (see Figure 2 for a single pRF). Finally, we calculate the bin-wise mean91

shift. This is equivalent to calculating the bin-wise simple means for each condition and92

comparing them subsequently.93

Either way, by adopting such a post hoc binning analysis, we essentially assume that94

binning voxels according to pRF positions from the Baseline condition and aggregating them95

subsequently for this condition ensures that bin-wise noise components are unbiased on av-96

erage (see also Shanks, 2017). This, however, is not the case. The underlying reason is the97
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same as for our body weight analysis further above: we dipped into the Baseline condition98

twice, namely to define bins (selection) and to estimate bin-wise means for further compari-99

son (selective analysis). This circularity leads to a favoring of noise components, skewing the100

bin-wise means in the Baseline condition and eventually resulting in regression towards the101

overall mean for the bin-wise means of the Interest condition.102

Here, we expose and explore this flaw in the scope of post hoc analyses of pRF data using103

(null) simulations and empirical repeat data from the Human Connectome Project (HCP;104

Benson et al., 2018, 2020). Unlike empirical data, simulations allowed us to separate true105

values from noise components. They also provided an excellent test bed for determining that106

the type of data analysis (change scores or simple scores, 1D or 2D binning, equidistant or107

decile binning), data properties (presence or absence of heteroskedasticity or a true effect)108

and additional circular selection practices (presence or absence of circular data cleaning)109

influence the appearance of the regression artifact. Moreover, they allowed us to pinpoint110

that circular data cleaning and circular sorting of change scores represent selection practices111

that yield artifactual changes even without circular data binning. Unlike empirical data from112

different experimental conditions, repeat data permitted us to assume a null effect between113

conditions, allowing for more straightforward conclusions about any systematic differences114

we might observe.115

2. Methods116

2.1. Post hoc binning using simulated data117

For the post hoc binning analysis involving simulations, we used an empirical V1 visual118

field map of a single human participant as a basic data distribution. This map originated119

from a functional magnetic resonance imaging experiment (fMRI) aimed at mapping pRFs120

under different attention conditions using a drifting bar stimulus (2 sessions each with 4121

runs per condition). One of these conditions was selected for simulation purposes. The122

maximal eccentricity of the mapping area subtended 8.5 degrees of visual angle (dva). We fit123

a 2D Gaussian function to preprocessed fMRI responses projected onto the cortical surface.124

For each vertex (gray matter node on the cortical surface), we obtained 6 estimates: pRF125

position (x0 and y0 coordinates), pRF size (σ), pRF baseline (β0), pRF amplitude (β1),126

and goodness-of-fit (R2). We first smoothed the resulting parameter maps and delineated127

V1 hemifield maps manually (for more details, see Supplementary methods, 1. Retinotopic128

mapping experiment). We then pooled the x0 and y0 coordinates across V1 hemifield maps129

and removed empty data points.130

2.1.1. 1D post hoc binning analysis on eccentricity131

To uncover the regression artifact, we first simulated a simplified contrast scenario with a132

null effect. To this end, we disturbed the x0 and y0 coordinates (Figure 2) 200 times with133

random Gaussian noise (SD = 2 dva). We repeated this to generate a Baseline, Interest, and134
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Figure 3. Schematic workflow of 1D post hoc binning analysis on simulated eccentricity data | Null effect.
Ecc = Eccentricity.

Independent condition. We then converted the x0 and y0 coordinates to eccentricity values135

(Figure 2), as is often done in the pRF literature (see Figure S1 for interpretational difficulties136

with eccentricity when it comes to position shifts). This resulted in a gamma-like eccentricity137

distribution. Lastly, we binned the eccentricity values in the Baseline and Interest condition138

according to the eccentricity values of any of the 3 conditions using deciles and calculated the139

bin-wise means3. A schematic workflow of this simulated 1D post hoc binning analysis can140

be found in Figure 3. Bin-wise eccentricity means were visualized as a color-coded scatter141

plot along with individual observations per bin and marginal histograms (bin width = 0.5142

dva) reflecting the simulated distributions.143

Building upon the simulated null effect, we performed the 1D post hoc binning analysis144

on 4 more simulation cases: a null effect with condition cross-thresholding based on the145

Baseline condition, a null effect with condition cross-thresholding based on both the Baseline146

and Interest condition, a null effect with eccentricity-dependent noise, and a true effect. We147

use the term ’condition cross-thresholding’ to refer to the pair-wise or list-wise deletion of148

3Note that when evaluating data distributions with unequal means, variances, or non-linearity, z-standardization

might be necessary to detect regression towards or away from the mean (Campbell and Kenny, 1999; Shanks, 2017). In

particular, z-standardization makes data distributions directly comparable. As such, bin-wise means should regress to

wherever they intersect the identity line. Here, we always display data in native space, as this is typically done in the

pRF literature. However, we use crosshairs to indicate the location of the mean and thus provide a visual guideline.
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data points across experimental conditions (see below). The selected simulation cases reflect149

analysis practices and data properties we consider characteristic of pRF studies. For all150

simulation cases, the Independent condition consisted of a second draw (resample) of the151

Baseline condition. Moreover, to ensure reproducibility and comparability, all simulation152

cases were based on the same seed for random number generation. However, our conclusions153

do not depend on the choice of seed for random number generation.154

For the simulation cases involving condition cross-thresholding, we removed simulated155

observations falling outside a certain eccentricity range (≥ 0 and ≤ 6 dva) in the Baseline or156

Baseline and Interest condition from all conditions (i.e., Baseline, Interest, and Independent).157

For the simulation case involving eccentricity-dependent noise, we used a small standard158

deviation (SD = 0.25 dva) of random Gaussian noise to disturb empirical observations with159

smaller eccentricities (≥ 0 and < 3 dva) and a larger standard deviation (SD = 2 dva) to160

disturb empirical observations with larger eccentricities (≥ 3 dva). For the simulation case161

involving a true effect, we induced a radial increase in eccentricity of 2 dva in the Interest162

condition.163

Apart from simple bin-wise means, we performed the 1D post hoc binning analysis also164

on change scores. The change scores were obtained by subtracting individual simulated165

observations or means in the Baseline condition from those in the Interest condition. Both166

simple means and mean change scores have been used for post hoc binning in previous pRF167

studies (e.g., Barton and Brewer, 2015; Binda et al., 2013; Carvalho et al., 2020; Haak et al.,168

2012; Yildirim et al., 2018; de Haas et al., 2014, 2020; Prabhakaran et al., 2020; Tsouli et al.,169

2021). Similarly, we repeated the binning analysis using equidistant instead of decile binning.170

To this end, we used a constant bin width of 1.75 dva and an overall binning range of 0 to171

19.25 dva eccentricity. Unlike equidistant binning, decile binning ensures a roughly equal172

number of data points in each bin, which facilitates the interpretation of results. However,173

we consider equidistant binning as the most common binning type in the pRF literature. For174

both the change score analysis and equidistant binning, we used the simulation case involving175

a null effect as a data basis.176

2.1.2. 2D post hoc binning analysis on x0 and y0177

Apart from the 1D binning analysis on eccentricity, we also conducted a 2D binning analysis178

on the simulated x0 and y0 values. To this end, we converted the x0 and y0 values to179

polar coordinates, that is, polar angle and eccentricity (Figure 2). We then binned the x0180

and y0 values in the Baseline or Interest condition according to their polar coordinates in181

the Baseline, Interest, or Independent condition using equidistant bins and calculated the182

bin-wise x0 and y0 means for each condition. The condition-wise means were visualized as183

vector graphs along with marginal histograms (bin width = 0.5 dva) illustrating the simulated184

distributions. Vector graphs have been used in prior pRF work (e.g., Klein et al., 2014; van Es185

et al., 2018; Vo et al., 2017). The 2D binning analysis was performed for all aforementioned186

simulation cases. The polar angle bins ranged from 0° to 360° with a constant bin width of187
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45°. The eccentricity bins ranged from 0 to 22 dva (for the simulation case involving a true188

effect) or from 0 to 20 dva (for all other simulation cases) with a constant bin width of 2 dva.189

2.2. Post hoc binning using empirical repeat data190

For the post hoc binning analysis on repeat data, we used publicly available pRF estimates191

from the HCP 7 T Retinotopy Dataset (Benson et al., 2018, 2020). These estimates stem192

from a split-half analysis where a 2D isotropic Gaussian with a subadditive exponent (Kay193

et al., 2013) was fit to fMRI time series from the first and second half of 6 pRF mapping runs.194

For each half, 6 estimates were obtained for each grayordinate (vertex; https://wiki.hum195

anconnectome.org/display/WBPublic/Workbench+Glossary), that is, pRF polar angle,196

pRF eccentricity, pRF size, pRF gain, percentage of R2, and mean signal intensity. The197

maximal eccentricity of the mapping area subtended 8 dva. For further details, see Benson198

et al. (2018).199

Following Benson et al. (2018), we analyzed complexes of visual areas across hemispheres200

for the 25th and 75th percentile participants of the R2 distribution using delineations from201

Wang et al.’s (2015) atlas. Benson et al. (2018) generated the R2 distribution by calculating202

the median R2 for each participant across grayordinates from both cortical hemispheres within203

all areas of Wang et al.’s (2015) atlas. For our purposes, we focused on the posterior complex204

(V1-V3) and the dorsal complex (V3A/B and IPS0–5), as those came with a larger number205

of available data points (which was, amongst other things, necessary to perform the 2D post206

hoc binning analysis and generate vector graphs).207

To obtain x0 and y0 values, polar angle and eccentricity estimates were converted to208

Cartesian coordinates. The eccentricity, x0, and y0 values of the first half were used as a209

Baseline condition and those of the second half as an Interest condition. Similar to the210

simulation-based analyses, binning was either based on the Interest or Baseline condition211

and bin-wise means were calculated. Moreover, binning was either performed without or212

with condition cross-thresholding. As for the latter case, we removed observations outside213

a certain eccentricity range (≥ 0 and ≤ 8 dva) or below a certain R2 cut-off (≤ 2.2%) in214

the Baseline or Baseline and Interest condition from both conditions. The R2 cut-off was215

adopted from Benson et al. (2018).216

We then performed a 1D binning analysis on eccentricity and a 2D binning analysis217

on x0 and y0 as we did for the simulated data. However, here, the eccentricity bins for218

the 2D analysis ranged from 0 to 18 dva with a constant bin width of 2 dva. All binning219

analyses and visualizations (including those on simulated data) were implemented in Matlab220

2016b (9.1; https://uk.mathworks.com/) using custom code (Data and code availability).221

The color scheme used for color-coding was an adapted version of the BrBG palette from222

ColorBrewer (2.0; Brewer et al., 2021) retrieved via R (3.5.3; R Core Team, 2018) and the223

package RColorBrewer (1.1-2; Neuwirth, 2014).224
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3. Results and discussion225

3.1. The many faces of regression towards the mean and other problems226

To expose the regression artifact, we repeatedly perturbed the x0 and y0 values of an empirical227

visual field map with random Gaussian noise to generate a Baseline and Interest condition.228

We then converted the x0 and y0 values to eccentricity. Subsequently, we binned the eccen-229

tricity values of either condition according to eccentricity values in the Baseline condition230

using deciles and calculated bin-wise means. The bin-wise means from both conditions were231

plotted against one another along with individual observations per bin and marginal his-232

tograms reflecting the simulated distributions4 (Figure 4, 1st column). Since there was no233

true difference between conditions, the bin-wise means should lie on the identity line. Con-234

trary to this prediction, they systematically diverged from the identity line. Strikingly, when235

using the Interest instead of the Baseline condition for binning, this systematic pattern of236

divergence flipped (Figure 4, 2nd column). This bidirectionality is a typical sign of regression237

towards the mean (Campbell and Kenny, 1999; Shanks, 2017) and due to circularity. This238

leads to asymmetric bins (see bin-wise ranges of observations for the Baseline and Interest239

condition, Figure 4, 1st and 2nd columns) and on average biases bin-wise noise components240

for the condition that was used for contrasting and binning (henceforth circular condition).241

On the contrary, for the other condition (henceforth non-circular condition), this is not the242

case.243

The skew in average noise renders the bin-wise eccentricity means of the circular condition244

more extreme, especially for lower and higher decile bins. As a result, the bin-wise eccentricity245

means for the non-circular condition regress – by statistical necessity – to the overall mean5246

for this condition (red crosshair); that is, they are less extreme. This becomes clear when247

looking at the different ranges of bin-wise means for the circular and non-circular conditions248

(Figure 4, 1st and 2nd columns). If the Interest condition is then contrasted to the Baseline249

condition, a mean increase in eccentricity for lower deciles and a mean decrease for higher250

deciles or vice versa occurs, depending on whether the data are binned on the Baseline251

or Interest condition (Figure 4, 1st and 2nd columns). This artifact arises because we did252

not always use independent conditions for binning and contrasting; that is, conditions with253

independent noise components.254

Apart from simple means (e.g., Binda et al., 2013; Carvalho et al., 2020; Haak et al., 2012;255

Yildirim et al., 2018), post hoc binning analyses have also been performed on change scores in256

previous pRF studies (e.g., Barton and Brewer, 2015; de Haas et al., 2014, 2020; Prabhakaran257

4Note that apart from the visualizations provided here, it might be beneficial to additionally look at Galton squeeze

diagrams to detect regression towards or away from the mean (see Figure 1; Campbell and Kenny, 1999; Galton, 1886;

Shanks, 2017)
5Note that for skewed distributions (such as the gamma-like distribution here), the regression effect might be actually

towards the mode and away from the mean of the overall distribution (Schwarz and Reike, 2018). If the location of the

overall mode and mean are sufficiently close, our visualizations would be unable to distinguish these two cases.
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Simulated null effect

Figure 4. Simulated 1D post hoc binning analysis on eccentricity | Null effect. Bin-wise eccentricity values
and means in the Interest and Baseline condition for a simulated null effect and different data binning scenarios.
The eccentricity values in the Baseline and Interest condition were either binned according to eccentricity values
in the Baseline (1st column), Interest (2nd column), or an Independent condition (equivalent to repeat data of the
Baseline condition; 3rd column). The gray marginal histograms (bin width = 0.5 dva; y-axis: relative frequency)
show the simulated eccentricity distributions for each condition, obtained by repeatedly disturbing the x0 and y0
values of an empirical visual field map with random Gaussian noise (SD = 2 dva) and subsequently converting
them to eccentricity values. Note that the range of the marginal y-axis is the same for all histograms. The red
crosshair indicates the location of the overall mean for the Interest and Baseline condition. The red dashed line
corresponds to the identity line. Dark brown colors correspond to lower and dark blue-green colors to higher decile
bins. The smaller colorful dots represent individual data points and the larger colorful dots with the black outline
bin-wise means. The maximal eccentricity of the stimulated visual field area subtended 8.5 dva. Dva = Degrees of
visual angle. Ecc = Eccentricity.

et al., 2020; Tsouli et al., 2021). Here, the difference between the Interest and Baseline258

condition is typically plotted against the binning (i.e., circular) condition (Figure 5, A., 1st259

and 2nd columns). Consequently, the bin-wise means now regress to the overall mean of the260

change score distribution (see also Gignac and Zajenkowski, 2020; Holmes, 2009) and bin-wise261

noise components are neither unbiased for the change scores nor the binning conditions. This262

is because the noise components of the change scores are not independent of those in either263

binning condition. What is more, scatter plots of change scores disguise important aspects264

readily available with scatter plots of simple scores. Specifically, they prevent us from directly265

appreciating the larger bin-wise range of eccentricity means for the circular as compared to266

the non-circular condition (see explanations further above and compare Figure 5, A., and267

Figure 4, 1st and 2nd columns). This makes it difficult to spot the source of the problem268

graphically when only looking at a single plot. On the other hand, since both the x- and269

y-axis feature the Baseline or Interest condition and either of these conditions are used for270

data binning, the act of double-dipping becomes much more obvious.271

Critically, scattering change scores against one of the conditions involved in change score272

calculation also results in a biased visualization of individual change scores. This is because273

the noise components of the variables on the x- and y-axis are not independent, rendering274
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this sorting procedure circular. When plotting individual change scores against the Baseline275

condition, this results in a downwards sloping data cloud, suggesting an effect although there276

is none (Figure 5, A., 1st column). Why does this happen? Owing to noise, the change scores277

are more likely to be positive for lower Baseline eccentricities and negative for higher Baseline278

eccentricities (Figure 5, A., 1st column). When plotting individual change scores against the279

Interest condition, the reverse is true (Figure 5, A., 2nd column). This means visualizing or280

analyzing the data using such a circular sorting procedure is misleading irrespective of circular281

data binning (for more details on circular data sorting, see Holmes, 2009; Kriegeskorte et al.,282

2009).283

The fact that circular sorting of change scores and circular data binning are separate284

issues can be further appreciated by imagining what happens when we plot the individual285

change scores against the Baseline condition, but bin on the Interest condition (instead of286

the Baseline condition as before). In this case, the individual change scores are sorted in a287

way (downwards sloping; just like in Figure 5, A., 1st column) that is opposite to the trend288

implied by the bin-wise means (upwards sloping).289

How the regression artifact induced by circular data binning manifests can change when290

data are thresholded across conditions, that is, deleted in a pair- or list-wise fashion (Figure 5,291

B. and C., 1st and 2nd columns). In fact, in the event of condition cross-thresholding, noise292

components are reshaped and might thus not necessarily be unbiased on average even for the293

non-circular condition (Figure 5, B., 2nd column as well as Figure 5, C., 1st and 2nd columns).294

Condition cross-thresholding is common practice in the pRF literature where data are cleaned295

across conditions according to eccentricity, goodness-of-fit (R2), pRF size, missing data or296

other criteria from one or multiple conditions.297

Here, we cross-thresholded the eccentricity values in the Interest and Baseline condition298

using the eccentricity values from the Baseline condition (Figure 5, B., 1st and 2nd columns)299

or both the Baseline and Interest condition (Figure 5, C., 1st and 2nd columns). This cross-300

thresholding procedure is circular whenever the noise components of the data used for cross-301

thresholding are not independent of the noise components of the data involved in contrasting.302

This is evidently true even without circular data binning. As such, the reason why the noise303

components in our cross-thresholding scenarios are sometimes biased even for the non-circular304

condition6 (Figure 5, B., 2nd column as well as Figure 5, C., 1st and 2nd columns) is because305

we introduced another layer of circularity.306

The fact that circular cross-thresholding and circular data binning are somewhat distinct307

but also highly similar issues can, for instance, be appreciated when comparing the overall308

instead of the bin-wise means. Without circular cross-thresholding, the overall mean in both309

6For reasons of clarity and simplicity, we use the term ’circular condition’ or ’non-circular condition’ exclusively

when referring to circular data binning. However, other circular selection procedures, such as circular data sorting or

cleaning, might of course render a condition circular above and beyond circular data binning.
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A. Simulated null effect - Change score

B. Simulated null effect - Cross-thresholding (Baseline)

C. Simulated null effect - Cross-thresholding (Baseline and Interest)

Figure 5. Simulated 1D post hoc binning analysis on eccentricity | Null effect — Change score and cross-
thresholding. A. The same as in Figure 4, although here, the change score (Interest vs Baseline) is plotted against
the respective binning condition. B. The same as in Figure 4, although here, condition cross-thresholding was
applied, i.e., simulated observations falling outside a certain eccentricity range (≥ 0 and ≤ 6 dva) in the Baseline
condition were removed from all conditions. C. The same as in B., although here, condition cross-thresholding
was based on both the Baseline and Interest condition. (Condition) cross-thresholding = The pair-wise or list-wise
deletion of observations across conditions.

15

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2020.12.15.422942doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422942
http://creativecommons.org/licenses/by/4.0/


A. Simulated null effect - Eccentricity-dependent noise

B. Simulated true effect - Radial shift

C. Simulated null effect - Equidistant binning

Figure 6. Simulated 1D post hoc binning analysis on eccentricity | Null or true effect — Eccentricity-
dependent noise, radial shift, and equidistant binning. A. The same as in Figure 4, although here, original
observations having smaller eccentricities (≥ 0 and < 3 dva) were disturbed by random Gaussian noise with a
smaller standard deviation (SD = 0.25 dva) and those having larger eccentricities (≥ 3 dva) by random Gaussian
noise with a larger standard deviation (SD = 2 dva). B. The same as in Figure 4, although here, we simulated a
true effect, that is, a radial increase in eccentricity of 2 dva in the Interest as compared to the Baseline condition.
C. The same as in Figure 4, although here, equidistant binning was used. The equidistant bins ranged from an
eccentricity of 0 dva to an eccentricity of 19.25 dva with a constant bin-width of 1.75 dva. Please note the different
number of bins here relative to the other figure panels (11 vs 10, respectively).
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the Baseline and Interest condition amounts to 4.66 dva (Figure 4, A., 1st and 2nd columns).310

With circular cross-thresholding based on the Baseline condition, the overall mean in the311

Baseline condition amounts to 3.40 dva, whereas it amounts to 3.97 dva in the Interest312

condition (Figure 5, B., 1st and 2nd columns). Here, the introduced bias for the Baseline313

condition can be appreciated by directly comparing the overall means in the Baseline and314

Interest condition. With circular cross-thresholding based on both the Baseline and Interest315

condition, the overall means in the Baseline and Interest condition amount to 3.24 dva and316

3.25 dva, respectively (Figure 5, C., 1st and 2nd columns). Here, the introduced bias for the317

Baseline and Interest condition can be appreciated by comparing the overall means in these318

conditions to the overall mean of an Independent condition (retest of the Baseline condition)319

that was cross-thresholded based on both the Baseline and Interest condition. This overall320

mean amounts to 3.66. We will return to the usefulness of such an Independent condition321

further below (3.2. Potential mitigation strategies). In any case, circular cross-thresholding322

biases the overall means as compared to when no such thresholding is performed.323

Importantly, however, only circular cross-thresholding based on the Baseline condition324

results in artifactual differences between the overall means. Why is this? Given that the325

level of noise in the Interest and Baseline condition was equivalent (2.1. Post hoc binning326

using simulated data), circular cross-thresholding based on both the Baseline and Interest327

condition on average skewed the noise components for these conditions similarly, resulting328

in biased overall means, but a valid difference of around 0 between them. However, as for329

empirical data, the assumption of equivalent noise levels can probably only be safely made for330

repeat data (and even then, this needs to be justifiable). In any case, conceptually, circular331

cross-thresholding without data binning can be regarded as a single bin or region-of-interest332

analysis (Kriegeskorte et al., 2009), essentially constituting another subtype of a post hoc333

binning analysis.334

The appearance of the regression artifact arising from circular data binning can further-335

more change when the level of noise depends on eccentricity – a property better known as336

heteroskedasticity (Figure 6, A., 1st and 2nd columns; see also Holmes, 2009). In fact, the337

case of eccentricity-dependent noise shows that the artifact can include some clear regres-338

sion away from the mean – a phenomenon referred to as egression7 (Figure 6, A., 1st and339

2nd columns; see e.g., Campbell and Kenny, 1999; Schwarz and Reike, 2018). Eccentricity-340

dependent noise might arise from fitting errors that differ across visual space. This could341

be due to partial stimulation of pRFs (especially near the edge of the stimulated mapping342

area), higher variability in pRF position estimates for wider pRFs as well as fluctuations in343

the signal-to-noise ratio of brain responses from the central to the peripheral visual field or344

as a result of manipulating attention.345

7Note that the regression was presumably towards the nearest modes of the simulated bimodal distribution (see

marginal histograms in Figure 6, A., 1st and 2nd columns; Schwarz and Reike, 2018).
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The regression artifact due to circular data binning also manifested when simulating a346

true effect (Figure 6, B., 1st and 2nd columns). The same was true for equidistant binning347

(Figure 6, C., 1st and 2nd columns), which is frequently applied in the pRF literature. How-348

ever, unlike decile binning (which we used further above), equidistant binning resulted in a349

lower number of observations for higher equidistant bins (due to the gamma-like eccentric-350

ity distribution; Figure 6, C., 1st and 2nd columns). Consequently, for higher equidistant351

bins, the skew in average noise for the circular condition was generally larger here (compare352

Figure 6, C., and Figure 4, 1st and 2nd columns). Similarly, for higher equidistant bins,353

noise components were not always unskewed on average for the non-circular condition (see354

Figure 6, C., 1st and 2nd columns, where the pattern of bin-wise means is not entirely mirror-355

symmetric). This is because for random noise to be unskewed on average, the number of356

observations needs to be sufficiently large.357

Critically, both true effects and equidistant binning can substantially modify the ap-358

pearance of the regression artifact. Along with circular condition cross-thresholding and359

eccentricity-dependent noise, this teaches us an important lesson: the regression artifact can360

take pretty much any form8.361

For all presented simulation cases (null effect, null effect with cross-thresholding or eccentricity-362

dependent noise, and true effect), the regression artifact likewise manifested for another kind363

of binning analysis, namely, when binning the x0 and y0 values according to both eccentricity364

and polar angle (i.e., 2D segments) and computing shift vectors (Figure 2 as well as Figure 7365

and Figure S2-S5, 1st row). Here, the bin-wise means regressed towards and away from the366

overall means of the x0 and y0 distribution. The calculation of shift vectors is not uncommon367

in pRF studies (e.g., Klein et al., 2014; van Es et al., 2018; Vo et al., 2017).368

Notably, for empirical repeat data from the HCP (Benson et al., 2018, 2020), both kinds369

of binning analyses produced patterns consistent with the regression artifact (Figure S6-S13).370

This establishes its practical relevance. Moreover, some of us recently retracted an article371

on attention-induced differences in pRF position and size in V1-V3 (de Haas et al., 2014)372

because an in-house reanalysis suggested that circular post hoc binning along with circular373

condition cross-thresholding and heteroskedasticity yielded artifactual results in the form of374

egression from the mean (de Haas et al., 2020). In this case, the apparent significant effect375

was an increase in eccentricity and pRF size in the Interest vs Baseline condition (expressed376

as change scores) for eccentricity bins (based on the Baseline condition) in the middle of the377

tested range. Importantly, the inferential statistical analysis in this study (de Haas et al.,378

2014, 2020) was based on unbinned data, and thus the overall means. As such, the apparent379

significant effect was likely driven by or inflated due to circular cross-thresholding.380

8Note that floor/ceiling effects (due to physiological and methodological constraints on the minimum and maximum

observable value) and/or the calculation of absolute (raw) vs proportional (%) differences are further factors influencing

the appearance of the regression artifact (de Haas et al., 2014, 2020; Holmes, 2009).
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Simulated null effect
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Figure 7. Simulated 2D post hoc binning analysis on x0 and y0 | Null effect. Bin-wise x0 and y0 means in
the Interest and Baseline condition for a simulated null effect and different data binning scenarios. The x0 and y0
values in the Baseline and Interest condition were either binned according to eccentricity and polar angle values in
the Baseline (1st column, 1st row), Interest (2nd column, 1st row), or an Independent condition (equivalent to repeat
data of the Baseline condition; 2nd row). The marginal histograms (bin width = 0.5 dva; y-axis: relative frequency)
show the simulated x0 and y0 distributions for each condition, obtained by repeatedly disturbing the x0 and y0
values of an empirical visual field map with random Gaussian noise (SD= 2 dva). Magenta histograms correspond
to the Interest condition and gray histograms to the Baseline condition. Note that the range of the marginal y-axis
is the same for all histograms. The large magenta dots (arrow tip) correspond to the means in the Interest condition
and the endpoint of the gray line (arrow knock) to the means in the Baseline condition. The gray line itself (arrow
shaft) depicts the shift from the Baseline to the Interest condition. The magenta crosshair indicates the location of
the overall x0 and y0 means for the Interest condition and the gray crosshair the location of the overall means for
the Baseline condition. Note that if there is no systematic difference between the Baseline and Interest condition,
the histograms and crosshairs coincide (as is the case here). The light gray polar grid demarks the bin segments.
Polar angle bins ranged from 0° to 360° with a constant bin width of 45° and eccentricity bins from 0 to 20 dva
with a constant bin width of 2 dva. The maximal eccentricity of the stimulated visual field area subtended 8.5 dva.
Dva = Degrees of visual angle.
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The example of de Haas et al. (2014, 2020) illustrates that data visualizations and as-381

sociated inferential statistical analyses do not necessarily suffer from the same pitfalls. It is382

also possible that only one but not the other produces artifactual changes. This potential383

divergence adds another layer of complexity to the issues we discussed here.384

Taken together, the heterogeneity in manifestation we exposed here makes it hard to spot385

the regression artifact by visual inspection alone and highlights its dependency on the type386

of analysis, additional circular selection practices as well as exact distributional properties of387

the data at hand (see Campbell and Kenny, 1999; Holmes, 2009; Schwarz and Reike, 2018,388

for similar points). Importantly, circular data binning is only but one pitfall resulting in389

artifactual changes. Other pitfalls, such as circular sorting of change scores and circular390

cross-thresholding are equally problematic.391

3.2. Potential mitigation strategies392

How can we omit double-dipping and control for regression towards the mean? We could, for393

instance, use an Independent condition for binning (such as repeat data or odd or even runs394

for the Baseline condition; Figure 4 and Figure 5-6, A.-C., 3rd column as well as Figure 7 and395

Figure S2-S5, 2nd row) or an anatomical criterion (Kriegeskorte et al., 2009), such as cortical396

distance or anatomical atlases (Benson et al., 2012, 2014). This way, noise components should397

be unbiased on average in both the Baseline and Interest condition.398

Unbiased bin-wise noise components are of course less likely for sparsely populated bins399

(Figure 6, C., 3rd column as well as Figure 7 and Figure S2-S5, 2nd row), which can be400

captured by quantifying uncertainty. Critically, however, for scatter plots of change scores,401

bin-wise noise components are not unbiased for the Independent binning condition (Figure 5,402

A., 3rd column). The reason for this is the same as before: non-independence of noise compo-403

nents. Thus, only the bin-wise change scores can be readily interpreted here. Moreover, given404

that cross-thresholding reshapes noise components, they might not be unbiased when bin-405

ning on an Independent condition (Figure 5, B. and C., 3rd column as well as Figure S2-S3,406

2nd row). The same can evidently also happen with an anatomical criterion if the Base-407

line and/or the Interest condition are subjected to cross-thresholding. Consequently, unless408

cross-thresholding can be omitted or demonstrated to be unbiased (see below for further409

considerations), an Independent condition might not be a safe option.410

Of note, for the discussed cross-thresholding case where circular cross-thresholding was411

performed based on both the Interest and Baseline condition, binning on the Independent412

condition ensured that the bin-wise noise components for the Interest and Baseline condition413

are similarly biased (Figure 5, C., 3rd column). As mentioned earlier, this is because cross-414

thresholding of this sort biases the noise components in the Baseline and Interest condition415

similarly (3.1. The many faces of regression towards the mean and other problems) and416

binning on an Independent condition introduces no further biases. Moreover, given that417

the noise components of both the Interest and Baseline condition were independent of those418

in the Independent condition, cross-thresholding did not bias the noise components in the419
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Independent condition. As such, although the simple bin-wise means in the Baseline and420

Interest condition are biased, the difference between those amounts to around 0 (Figure 5,421

C., 3rd column).422

Apart from binning on an Independent condition, we could use analyses without binning423

that control for circularity and regression artifacts or effects could be evaluated against ap-424

propriate null distributions that take into account all statistical dependencies (e.g., Holmes,425

2009; Kriegeskorte et al., 2009). For instance, errors-in-variables models (e.g., Deming regres-426

sion) might be an option. Such models account for the noise in both the Baseline and Interest427

condition as well as for the fact that we often have no clear separation between independent428

and dependent variables in post hoc analyses of pRF data. However, as with any statistical429

approach, the underlying assumptions need to be checked carefully.430

Just like circular data binning, circular sorting of change scores can be counteracted431

by plotting individual change scores against an Independent condition (Figure 5, A., 3rd432

column). Similarly, one way to deal with circular cross-thresholding might be to cross-433

threshold all data according to an Independent condition/the Independent binning condition.434

However, condition-specific systematic errors, such as artifacts and outliers, might survive435

such independent data cleaning. As such, the usage of robust estimators might be advisable.436

Future research is necessary to evaluate this point more comprehensively.437

A combination of the discussed approaches might prove most fruitful. Regardless of the438

specific mitigation strategy, we believe that in light of the many layers of complexity in our439

analysis pipelines, we need to make it common practice to perform sanity checks using (null)440

simulations and empirical repeat data. This is because such sanity checks provide a means441

for us researchers to ensure the validity of our analysis procedures.442

3.3. The bigger picture443

Circular post hoc binning analyses come in many flavors (e.g., centroids, shift vectors, eccen-444

tricity differences, x0 and y0 differences, and 1D or 2D bins) and cannot be assumed to be445

restricted to pRF position estimates. For instance, partial stimulation of pRFs likely results446

in heteroskedasticity and positively correlated errors for pRF size and position. This would,447

for instance, bias bin-wise pRF size vs pRF position or pRF size vs pRF size comparisons448

where binning is based on non-independent eccentricity values. Likewise, fitting errors due449

to partial stimulation should be more pronounced whenever pRF size is larger, leading to450

stronger artifactual effects (for simulations using different levels of noise see Holmes, 2009).451

The same is to be expected based on a higher variability in pRF position estimates for wider452

pRFs. These factors might potentially explain why changes in pRF position and/or size453

have been reported to be tendentially larger in higher-level areas where pRFs are wider (e.g.,454

Barton and Brewer, 2015; de Haas et al., 2014, 2020; Klein et al., 2014; van Es et al., 2018).455

Moreover, the distribution of errors likely depends on the toolbox that was used for456

fitting (Lerma-Usabiaga et al., 2020), making it hard to generalize across studies. And lastly,457

delineations of visual areas in post hoc binning analyses should ideally also be based upon458
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independent criteria as this is where selection starts. Importantly, the intricacies we just459

discussed do not only apply to circular data binning, but also circular sorting of change460

scores and circular condition cross-thresholding.461

The application of circular data binning, circular sorting of change scores, and/or circular462

cross-thresholding in the pRF literature might have led to spurious claims about changes463

in pRFs (see de Haas et al., 2014, 2020, for an example). Consequently, we encourage464

researchers who used such procedures to check for the severity of biases in their analyses by465

running adequate simulations and reanalyzing the original data wherever possible. Likewise,466

we urge them to take into account the issues discussed here when conducting future studies,467

reviewing manuscripts, and when teaching and mentoring.468

3.4. Limitations469

Our simulations were designed to encapsulate a given issue succinctly and cannot be inter-470

preted as reflecting the exact properties of empirical pRF data. For this, we would need to471

have a good understanding of the underlying noise components. Similarly, the level of random472

Gaussian noise we adopted for most simulations (SD = 2 dva) might be more reminiscent473

of higher than lower visual areas (although this depends on many factors, such as mapping474

stimulus and magnetic field strength). For the present purposes, it appeared important to475

settle on a level allowing for clear exposition. Moreover, as alluded to further above (1. In-476

troduction), unless there is a perfect correlation between two variables (and thus no random477

noise), double-dipping and/or regression towards or away from the mean likely pose issues to478

post hoc analyses involving a range of selection procedures, such as data binning, cleaning,479

and sorting.480

To fully parallel our simulations, the analyses of the HCP data would have benefited from481

binning on an Independent condition, that is, a second set of repeat data. PRF estimates482

for such an Independent condition are currently not publicly available (Benson et al., 2018,483

2020), leaving this sanity check for future research. Moreover, unlike our simulations, the484

condition cross-thresholding applied to the HCP data not only involved pRF position, but485

also goodness-of-fit (2.1. Post hoc binning using simulated data and 2.2. Post hoc binning486

using empirical repeat data). This is because such multivariate data cleaning is frequently487

applied in pRF studies. It is challenging to simulate these more complex scenarios and thus488

best addressed in a separate article.489

Some post hoc binning analyses in the pRF literature are conducted in a hemifield-specific490

fashion, whereas others mirror observations across hemifields or quadrants. Our analyses491

do not capture these specificities. However, there is no reason to believe that they would492

alleviate the expression of the regression artifact. The primary component that might change493

when applying such procedures is the location of the overall mean and the shape of the494

data distribution and thus how exactly the artifact manifests (for preliminary analyses, see495

Stoll et al., 2022). Of course, if data points are not mirrored based on an Independent496

condition but, for instance, the Baseline condition, data mirroring in combination with post497
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hoc binning and/or circular cross-thresholding might favor noise components in multiple ways.498

Importantly, circular data mirroring is also problematic for analyses that do not involve any499

circular data binning and/or circular cross-thresholding, as are other procedures, such as500

circular data weighting (Kriegeskorte et al., 2009).501

4. Conclusions502

Without doubt, circularity and regression towards the mean are thorny and omnipresent503

problems that can manifest subtly and diversely (e.g., Ball et al., 2020; Barnett et al., 2005;504

Campbell and Kenny, 1999; Eriksson and Häggström, 2014; Gignac and Zajenkowski, 2020;505

Holmes, 2009; Kilner, 2013; Kriegeskorte et al., 2009; Preacher et al., 2005; Shanks, 2017;506

Stigler, 1997; Vul et al., 2009). As such, we need to ensure that the validation of analysis507

procedures becomes part and parcel of the scientific process.508
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Supplementary methods519

1. Retinotopic mapping experiment520

1.1. Participants521

All participants (N = 5, of which 2 were authors; 3 females; age range: 29-36 years) had522

corrected-to-normal visual acuity (obtained through corrective contact lenses) and gave writ-523

ten informed consent. As mentioned in the main text (2.1. Post hoc binning using simulated524

data), only the dataset of a single participant was used for simulation purposes. Experimental525

procedures were approved by the University College London Ethics Committee.526
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1.2. Apparatus527

Functional and anatomical images were acquired at a field strength of 1.5 T on a Siemens528

Avanto magnetic resonance imaging (MRI) scanner. All stimuli were projected onto a screen529

(resolution: 1920 × 1080 pixels; refresh rate: 60 Hz; background color: gray) at the back530

of the MRI scanner. Participants viewed the experiment through a head-mounted mirror.531

The viewing distance was approximately 67 cm. To ensure unobstructed view, we used a532

custom-made 32-channel head coil, where the front visor was demounted, leaving 30 effective533

channels. Eye movements of participant’s left eye were recorded via an EyeLink 1000 MRI534

compatible eye tracker.535

1.3. Stimuli and procedure536

The mapping stimulus comprised a gray square field with a dynamic horizontal bar aperture537

(length of major axis: 17.15 dva; length of minor axis: 1.27 dva). The bar aperture was538

presented within the boundaries of a circular mapping area (diameter: 17.15 dva). It moved539

discretely and consecutively across the mapping area along cardinal (0/180° and 90/270°) and540

oblique axes (45/225° and 135/315°) and was superimposed onto a random dot kinematogram541

(RDK). The RDK comprised moving black dots (diameter: 0.13 dva) positioned within a542

square field (size: 17.03 × 17.03 dva). If a dot left the square field, it was moved back by 1543

field width/height. The dots had a density of 6.89 dots/dva2, a lifetime of 36 frames, were544

repositioned randomly once they had died, and oscillated coherently along the major axis of545

the bar aperture according to a sine wave (A = 1.29 dva, f = 1 Hz, ω = 6.28 rad/s, ϕ = 0546

rad). The mapping stimulus and RDK were centered at the screen’s midpoint.547

A semi-transparent (α = 50%) array of 5 vertical ovals was superimposed onto the map-548

ping stimulus. One of the ovals was centered at the screen’s mid-point (length of major549

axis: 0.43 dva; length of minor axis: 0.28 dva) and the remaining ovals at an eccentricity550

of 4.29 dva (length of major axis: 0.86 dva; length of minor axis: 0.57 dva) and different551

polar angles (45°, 135°, 225°, and 315°). The ovals were presented as a rapid serial visual552

presentation (RSVP) task, where each trial started with 200 ms of oval presentation, followed553

by an interval of 600 ms without any ovals. Each oval’s orientation (45° left- or rightwards554

from vertical) and color (red, yellow, cyan, orange, brown, white, black, green, and blue)555

changed randomly in each trial with the exception that ovals of the same color were never556

presented simultaneously. Participants had to press a button whenever a rightwards oriented557

oval was presented in blue or green color. A black polar grid (line width: 0.02 dva) at low558

opacity (α = 20%) with 12 radial lines (polar angles: 0 to 330° with a step size of 30°) and559

18 circles (diameters: 0.95 to 51.42 dva with a step size of 2.97 dva) was superimposed onto560

the screen. The radial lines ran from the midpoint of the screen to the outermost circle.561

The experiment comprised 4 attention conditions, in which participants were required to562

perform the RSVP task on different oval streams whilst ignoring other streams and the bar563

aperture. The condition used for simulation purposes was the Center condition, where par-564

ticipants performed the task on the central oval stream. This condition therefore resembled565
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a standard pRF mapping experiment where participants typically perform a task at fixation566

(e.g., Alvarez et al., 2015; Amano et al., 2009; Benson et al., 2018). Participants performed567

2 sessions each with 4 runs per condition on consecutive days. The order of conditions was568

pseudorandomized. Participants’ eye position and pupil size were recorded at 60 Hz (down-569

sampled) throughout each run. One day prior to the first session, participants underwent 1570

mock run per condition inside the scanner to familiarize themselves with the task. Here, only571

behavioral data (and no functional or anatomical images) were collected.572

Within each run, the bar aperture moved along each axis twice, so that the starting point573

covered all chosen polar angles. Specifically, the sequence of starting points in each run was:574

90°, 225°, 180°, 315°, 270°, 45°, 0°, and 135°. One bar sweep lasted 28 s (1 step/s). Consecutive575

bar apertures overlapped by 50%. After 4 bar sweeps, a blank interval of 28 s (without the bar576

apertures and RDK) was presented, during which participants had to refrain from doing the577

RSVP task. A brief tone cued the beginning and end of this interval. The position and lifetime578

of each dot in the RDK at the start of every 28-s-interval was randomized. Experimental579

procedures were implemented in Matlab 2014a (8.3; https://uk.mathworks.com/) using580

Psychtoolbox-3 (3.0.11; Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).581

1.4. MRI acquisition582

We collected anatomical images using a T1-weighted magnetization-prepared rapid acquisi-583

tion with gradient echo sequence (repetition time, TR = 2.73 s; echo time, TE = 3.57 ms;584

voxel size = 1 mm isotropic; flip angle = 7°; field of view, FoV = 256 mm × 224 mm; matrix585

size = 256 × 224; 176 sagittal slices) and functional images using a T2*-weighted multiband586

2D echo-planar imaging sequence (Breuer et al., 2005, TR = 1 s, TE = 55 ms, voxel size =587

2.3 mm isotropic, flip angle = 75°, FoV = 224 mm × 224 mm, no gap, matrix size: 96 ×588

96, acceleration = 4, 36 transverse slices). The slab for the functional images was aligned to589

be roughly parallel to the calcarine sulcus so that the posterior third of the cortex was well590

covered.591

1.5. Preprocessing592

The initial 10 volumes of each run were discarded to allow for magnetization to reach equi-593

librium. Using SPM8 (6313; https://www.fil.ion.ucl.ac.uk/spm/software/spm8/),594

functional images were then bias-corrected, realigned, unwarped, coregistered to the anatom-595

ical image, and finally projected onto an anatomical surface model constructed in FreeSurfer596

(5.3.0; Dale et al., 1999; Fischl et al., 1999). We generated vertex-wise fMRI time series per597

run by determining the functional voxel at half the distance between corresponding vertices598

in the pial surface and gray-white matter mesh. We then applied linear detrending to the599

time series of each run and z-standardized them. Surface projection, detrending, and z-600

standardization were performed in Matlab 2016b (9.1; https://uk.mathworks.com/) using601

SamSrf7 (7.05; https://github.com/samsrf/samsrf/tree/3c7a0e25090e9097d5e2fd95602

696c00774acd26d6).603
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1.6. pRF estimation and delineations604

The vertex-wise preprocessed time series of the Center condition were averaged across the605

2 sessions. We then fit a 2D isotropic Gaussian pRF model with 5 free parameters (x0, y0,606

σ, β0, and β1) to the vertex-wise average time series. To this end, we first predicted pRF607

responses by calculating the overlap between the pRF model and an indicator function of608

the bar aperture for each volume using a 100 × 100 pixel matrix. Specifically, we used a 3D609

search space of possible values for σ (8.5 dva × 2-5.6:0.2:1)9, x0, and y0, and generated pRF610

responses for each combination of these values. Values for x0 and y0 were first sampled from611

the polar coordinate system (polar angles: 0:10:350°; eccentricities: 8.5 dva × 2-5:0.2:0.6) and612

then transformed to Cartesian coordinates. The pRF response per volume was expressed as613

mean percent overlap with the pRF model.614

To obtain a predicted fMRI time series, we then convolved these pRF responses with615

a canonical hemodynamic response function (HRF) obtained based on data from a pre-616

vious study (de Haas et al., 2014, 2020). Next, we calculated the Pearson correlation617

between the predicted and the observed fMRI time series and retained the combination618

of parameter values showing the largest R2 with all R2s ≥ .01. These initial parameter619

estimates were then used as seeds for an optimization procedure aimed at further maxi-620

mizing the Pearson correlation between the observed and predicted fMRI time series us-621

ing a Nelder-Mead algorithm (Lagarias et al., 1998; Nelder and Mead, 1965). Lastly, we622

estimated β0 and β1 by performing linear regression between the observed and predicted623

time series. The final parameter maps were smoothed with a Gaussian kernel (FWHM624

= 3 mm) in spherical surface space. Vertices with a very poor R2 (< .01) or artifacts625

(σ ≤ 0, β1 ≤ 0 or β1 > 3) were removed prior to smoothing. V1 hemifield maps were626

manually delineated based on smooth polar angle maps using polar angle reversals (En-627

gel et al., 1997; Sereno et al., 1995; Wandell et al., 2007). These delineations were used628

as a mask to extract V1 vertices. Fitting, smoothing, and manual delineations were per-629

formed in Matlab 2016b (9.1; https://uk.mathworks.com/) using SamSrf7 (7.05; https:630

//github.com/samsrf/samsrf/tree/3c7a0e25090e9097d5e2fd95696c00774acd26d6).631

The canonical HRF we adopted is implemented in SamSrf7.632

9Note that j:i:k stands for a regularly-spaced vector where i reflects the increment between j and k.
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Supplementary figures633

x-axis

y-
ax
is

outwards?
inwards?

ecc=0.25°

ecc=0.5°

Interest
Baseline

Figure S1. Interpretation of changes in eccentricity. The same as Figure 2, although here, the pRF shifts from
one visual field quadrant to another in the Interest compared to the Baseline condition. This can happen due to
noise or when visual field maps partially cover the ipsilateral hemifield. In such cases, an increase or decrease in
eccentricity does not necessarily correspond to an outwards or inwards shift in the traditional sense. For instance,
imagine that a pRF sits at x0 = -0.18 dva and y0 = -0.18 dva in the Baseline condition (ecc = 0.25 dva) but at
x0 = 0.36 dva and y0 = 0.36 dva in the Interest condition (ecc = 0.51 dva). This would result in an increase in
eccentricity, which might be interpreted as an outwards shift, although the pRF shifts effectively radially inwards
until it reaches the origin and then outwards. We can likewise imagine that the pRF shifts horizontally to x0 = 0.36
dva and y0 = -0.36 dva in the Interest condition. Importantly, removing such shifts would bias noise components
(see condition cross-thresholding in the main text and Figure 5, B. and C. as well as Figure S2-S3) and therefore,
does not seem a valid option. Dva = Degrees of visual angle.
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Simulated null effect - Cross-thresholding (Baseline)
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Figure S2. Simulated 2D post hoc binning analysis on x0 and y0 | Null effect — Cross-thresholding (Baseline).
The same as in Figure 7, although here, condition cross-thresholding was applied, i.e., simulated observations falling
outside a certain eccentricity range (≥ 0 and ≤ 6 dva) in the Baseline condition were removed from all conditions.
(Condition) cross-thresholding = The pair-wise or list-wise deletion of observations across conditions.
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Simulated null effect - Cross-thresholding (Baseline and Interest)
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Figure S3. Simulated 2D post hoc binning analysis on x0 and y0 | Null effect — Cross-thresholding (Baseline
and Interest). The same as in Figure S2, although here, condition cross-thresholding was based on both the
Baseline and Interest condition.
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Simulated null effect - Eccentricity-dependent noise
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Figure S4. Simulated 2D post hoc binning analysis on x0 and y0 | Null effect — Eccentricity-dependent
noise. The same as in Figure 7, although here, original observations having smaller eccentricities (≥ 0 and < 3
dva) were disturbed by random Gaussian noise with a smaller standard deviation (SD = 0.25 dva) and those having
larger eccentricities (≥ 3 dva) by random Gaussian noise with a larger standard deviation (SD = 2 dva).
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Simulated true effect - Radial shift
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Figure S5. Simulated 2D post hoc binning analysis on x0 and y0 | True effect — Radial shift. The same as in
Figure 7, although here, we simulated a true effect, that is, a radial increase in eccentricity of 2 dva in the Interest
as compared to the Baseline condition. Note that the eccentricity bins ranged from 0 to 22 dva here (instead of 0
to 20 dva).
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A. Empirical repeat data | 25th %ile | Dorsal
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B. Empirical repeat data | 25th %ile | Dorsal – Cross-thresholding (Baseline)
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C. Empirical repeat data | 25th %ile | Dorsal – Cross-thresholding (Baseline and Interest)
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Figure S6. Caption on next page.
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Figure S6. Empirical 1D post hoc binning analysis on eccentricity | Repeat data | 25th %ile participant | Dorsal
— Without and with cross-thresholding. Bin-wise eccentricity values and means in the Interest and Baseline
condition for repeat data from the HCP belonging to the 25th %ile participant of the median R2 distribution and
different data binning scenarios. A. Data from the dorsal complex (V3A/B and IPS0–5) without condition cross-
thresholding. B. Same as A., but with condition cross-thresholding. To this end, eccentricity values falling outside
a certain eccentricity range (≥ 0 and ≤ 8 dva) and below a certain R2 cut-off (≤ 2.2%) in the Baseline condition
were removed from both conditions. C. Same as B., although here, condition cross-thresholding was based on both
the Baseline and Interest condition. The eccentricity values in the Baseline and Interest condition were either binned
according to eccentricity values in the Baseline (1st column in A.-C.) or Interest (2nd column in A.-C.) condition.
The gray marginal histograms (bin width = 0.5 dva; y-axis: relative frequency) show the eccentricity distributions
for each condition. Note that the range of the marginal y-axis is the same for all histograms. The red crosshair
indicates the location of the overall mean for the Interest and Baseline condition. The red dashed line corresponds
to the identity line. Dark brown colors correspond to lower and dark blue-green colors to higher decile bins. The
smaller colorful dots represent individual data points and the larger colorful dots with the black outline bin-wise
means. The maximal eccentricity of the stimulated visual field area subtended 8 dva. HCP = Human Connectome
Project. Dva = Degrees of visual angle. Ecc = Eccentricity. %ile = Percentile. (Condition) cross-thresholding =
The pair-wise or list-wise deletion of observations across conditions.
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C. Empirical repeat data | 25th %ile | Posterior – Cross-thresholding (Baseline and Interest)
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Figure S7. Empirical 1D post hoc binning analysis on eccentricity | Repeat data | 25th %ile participant |
Posterior — Without and with cross-thresholding. The same as in Figure S6, although here, we used data from
the posterior complex (V1-V3).
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B. Empirical repeat data | 75th %ile | Dorsal – Cross-thresholding (Baseline)

0 8 16

Baseline (ecc)

0

8

16

In
te

re
st

 (
ec

c)

Binning: Baseline

0.3 0 8 16

Baseline (ecc)

0

8

16

In
te

re
st

 (
ec

c)
Binning: Interest

0.3

C. Empirical repeat data | 75th %ile | Dorsal – Cross-thresholding (Baseline and Interest)
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Figure S8. Empirical 1D post hoc binning analysis on eccentricity | Repeat data | 75th %ile participant |
Dorsal — Without and with cross-thresholding. The same as in Figure S6, although here, we used the 75th %ile
participant of the median R2 distribution.
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C. Empirical repeat data | 75th %ile | Posterior – Cross-thresholding (Baseline and Interest)
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Figure S9. Empirical 1D post hoc binning analysis on eccentricity | Repeat data | 75th %ile participant |
Posterior — Without and with cross-thresholding. The same as in Figure S7, although here, we used the 75th

%ile participant of the median R2 distribution.
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B. Empirical repeat data | 25th %ile | Dorsal – Cross-thresholding (Baseline)
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C. Empirical repeat data | 25th %ile | Dorsal – Cross-thresholding (Baseline and Interest)
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Figure S10. Caption on next page.
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Figure S10. Empirical 2D post hoc binning analysis on x0 and y0 | Repeat data | 25th %ile participant |
Dorsal — Without and with cross-thresholding. Bin-wise x0 and y0 means in the Interest and Baseline condition
for repeat data from the HCP belonging to the 25th percentile participant of the median R2 distribution and
different data binning scenarios. A. Data from the dorsal complex (V3A/B and IPS0–5) without condition cross-
thresholding. B. Same as A., but with condition cross-thresholding. To this end, eccentricity values falling outside
a certain eccentricity range (≥ 0 and ≤ 8 dva) and below a certain R2 cut-off (≤ 2.2%) in the Baseline condition
were removed from both conditions. C. Same as B., although here, condition cross-thresholding was based on
both the Baseline and Interest condition. The x0 and y0 values in the Baseline and Interest condition were either
binned according to eccentricity and polar angle values in the Baseline (1st column in A.-C.) or Interest (2nd column
in A.-C.) condition. The marginal histograms (bin width = 0.5 dva; y-axis: relative frequency) show the x0 and
y0 distributions for each condition. Magenta histograms correspond to the Interest condition and gray histograms
to the Baseline condition. Note that the range of the marginal y-axis is the same for all histograms. The large
magenta dots (arrow tip) correspond to the means in the Interest condition and the endpoint of the gray line (arrow
knock) to the mean in the Baseline condition. The gray line itself (arrow shaft) depicts the shift from the Baseline
to the Interest condition. The magenta crosshair indicates the location of the overall x0 and y0 means for the
Interest condition and the gray crosshair the location of the overall means for the Baseline condition. Note that for
subtle differences between the Baseline and Interest condition, the histograms and crosshairs almost coincide (see
Figure S11 and Figure S13). The light gray polar grid demarks the bin segments. Polar angle bins ranged from
0° to 360° with a constant bin width of 45° and eccentricity bins from 0 to 18 dva with a constant bin width of 2
dva. The maximal eccentricity of the stimulated visual field area subtended 8 dva. HCP = Human Connectome
Project. Dva = Degrees of visual angle. %ile = Percentile. (Condition) cross-thresholding = The pair-wise or
list-wise deletion of observations across conditions.
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B. Empirical repeat data | 25th %ile | Posterior – Cross-thresholding (Baseline)
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C. Empirical repeat data | 25th %ile | Posterior – Cross-thresholding (Baseline and Interest)
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Figure S11. Empirical 2D post hoc binning analysis on x0 and y0 | Repeat data | 25th %ile participant |
Posterior — Without and with cross-thresholding. The same as in Figure S10, although here, we used data
from the posterior complex (V1-V3).
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B. Empirical repeat data | 75th %ile | Dorsal – Cross-thresholding (Baseline)
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C. Empirical repeat data | 75th %ile | Dorsal – Cross-thresholding (Baseline and Interest)
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Figure S12. Empirical 2D post hoc binning analysis on x0 and y0 | Repeat data | 75th %ile participant |
Dorsal — Without and with cross-thresholding. The same as in Figure S10, although here, we used the 75th

%ile participant of the median R2 distribution.
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B. Empirical repeat data | 75th %ile | Posterior – Cross-thresholding (Baseline)
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C. Empirical repeat data | 75th %ile | Posterior – Cross-thresholding (Baseline and Interest)
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Figure S13. Empirical 2D post hoc binning analysis on x0 and y0 | Repeat data | 75th %ile participant |
Posterior — Without and with cross-thresholding. The same as in Figure S11, although here, we used the 75th

%ile participant of the median R2 distribution.
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