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Abstract 

Summary 
Genome-wide association studies (GWAS) have revealed thousands of genetic loci for common 
diseases. One of the main challenges in the post-GWAS era is to understand the causality of 
the genetic variants. Expression quantitative trait locus (eQTL) analysis has been proven to be 
an effective way to address this question by examining the relationship between gene 
expression and genetic variation in a sufficiently powered cohort. However, it is often tricky to 
determine the sample size at which a variant with a specific allele frequency will be detected to 
associate with gene expression with sufficient power. This is particularly demanding with single-
cell RNAseq studies. Therefore, a user-friendly tool to perform power analysis for eQTL at both 
bulk tissue and single-cell level will be critical. Here, we presented an R package called 
powerEQTL with flexible functions to calculate power, minimal sample size, or detectable minor 
allele frequency in both bulk tissue and single-cell eQTL analysis. A user-friendly, program-free 
web application is also provided, allowing customers to calculate and visualize the parameters 
interactively.  

Availability and implementation 
The powerEQTL R package source code and online tutorial are freely available at CRAN: 
https://cran.r-project.org/web/packages/powerEQTL/. The R shiny application is publicly hosted 
at https://bwhbioinfo.shinyapps.io/powerEQTL/. 

Contact 
Xianjun Dong (xdong@rics.bwh.harvard.edu), Weiliang Qiu (weiliang.qiu@sanofi.com) 

Supplementary information 
Supplementary data are available at Bioinformatics online. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.12.15.422954doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422954
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Introduction 
Genome-wide association studies (GWAS) have revealed genetic risk loci for thousands of traits 
or diseases (MacArthur et al., 2017; Buniello et al., 2019). Nearly 90% of the GWAS loci are 
located in non-coding regions (Edwards et al., 2013), suggesting that they may play a role by 
influencing gene expression. One of the main challenges in the post-GWAS era is 
understanding how these genetic variants cause the phenotype, for example, by regulating the 
expression of disease-associated or tissue-specific genes. Expression quantitative trait locus 
(eQTL) analysis has provided such a framework to test the effect of genetic variation on gene 
expression (Nica and Dermitzakis, 2013). For instance, the Genotype-Tissue Expression 
(GTEx) project has performed eQTL analysis between genetic variation and genome-wide gene 
expression in 54 non-diseased tissue sites across nearly 1000 individuals, providing a 
comprehensive public resource to understand the effect of genetic variants in a wide spectrum 
of tissue bank samples (GTEx Consortium, 2013, 2015). Enhancing GTEx (eGTEx) further 
extended this effort to include more intermediate molecular phenotypes other than gene 
expression (eGTEx Project, 2017). Recent increases in single-cell genomics will allow mapping 
eQTLs across different cell types, in dynamic processes, and in 3D spaces, many of which are 
obscured when using bulk methods (van der Wijst et al., 2018, 2020). One of the critical steps 
common to all eQTL experiments is to determine the minimum sample size with enough power 
to detect variants with a low frequency (e.g., minor allele frequency less than 5%) but a 
substantial effect on gene expression. However, there is no such tool available for sample size 
and power calculation for eQTL analysis.  

Here we developed equation-based statistical models to calculate sample size and 
power for an eQTL analysis in both bulk tissue and single-cell settings. The tool, called 
powerEQTL, was implemented in both an R package and an interactive online application.  

Materials and methods 

Bulk tissue eQTL 
Bulk tissue eQTL is to identify the downstream effects of disease-associated genetic variants on 
the gene expression measured at the bulk tissue level. Because of the affordable price 
(compared to a single-cell experiment) and the convenience to get enough volume of RNAs 
from bulk tissue, bulk RNA-sequencing is still the most widely used technique to profile the 
transcriptome of a tissue nowadays. Gene expression values were quantified on tissue 
homogenates, usually one sample per subject, for a number of subjects. Normalized gene 
expressions were then compared among groups of subjects with different genotypes. Since the 
effect sizes of eQTL are usually small and the large number of gene-SNP pairs leads to a 
multiple-testing issue (Huang et al., 2018), a proper power analysis including sample size and 
power calculation is needed before performing experiments.  

We implemented the power analysis of bulk tissue eQTL based on two different models, 
one-way unbalanced ANOVA and simple linear regression (see Online Supplementary 
Document). They both test for the potential association between genotype and gene expression. 
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The difference lies in that ANOVA test treats the genotype as a categorical data (e.g., AA, AB, 
and BB) and tests the potential non-linear association, while simple linear regression treats 
genotype as continuous variable using additive coding (e.g., 0 for AA, 1 for AB, and 2 for BB, 
where B is the minor allele) and tests the linear association. GTEx project used the one-way 
unbalanced ANOVA model in their analysis (GTEx Consortium, 2013). We implemented the two 
models in functions of powerEQTL.ANOVA and powerEQTL.SLR in our R package, 
respectively. Note that if we know the association is linear, powerEQTL.SLR would be more 
powerful than powerEQTL.ANOVA. This is because categorizing a continuous-type variable to a 
set of nominal-type variables would lose information. 

Since type I error rate (α), type II error rate (β or 1-power), effect size, and sample size 
are interrelated in power analysis, we could calculate any one of them if we know the rest three. 
So, we also implemented the functions like that, e.g., calculating one of the 4 parameters 
(power, sample size, slope, and minimum allowable MAF) by setting the corresponding 
parameter as NULL and providing values for the other three parameters in powerEQTL.SLR.  

Single-cell eQTL 
Unlike bulk tissue RNAseq, single-cell RNAseq usually profiles thousands of cells per sample, 
which provides a better representation for the gene expression distribution of a tissue than a 
single value from bulk RNAseq. However, the gene expressions among cells within a sample 
are not independent, e.g., cells from one tissue sample are assumed more correlated than cells 
between samples. The structured data requires a different model for power analysis. We 
implemented the single-cell eQTL by modeling the single-cell RNA expression and genotype in 
a linear mixed effects model: yij =β0i + β1∗xi + εij, where yij is the gene expression level for the jth 
cell of the ith subject, xi is the genotype for the ith subject using additive coding (e.g., 0, 1, and 2. 
See Online Supplementary Document for details). The power to test if the slope β1 is equal to 
zero is implemented in the function powerEQTL.scRNAseq with parameters of subject size (n), 
number of cells per subject (m), slope (β1), standard deviation of the gene expression (σy), MAF, 
intra-subject correlation (i.e., correlation between yij and yik for the jth and kth cells of the ith 
subject, ρ), and number of SNP-gene pairs (nTest). Similarly, the function can be used to 
calculate one of the 4 parameters (power, sample size, minimum detectable slope, and 
minimum allowable MAF) by setting the corresponding parameter as NULL and providing values 
for the other 3 parameters.  

Result 
The powerEQTL R package is available in CRAN and has been downloaded over 10,000 times 
since its first deployment (see Figure 1).  We also implemented the functions for power and 
sample size calculation in an online, interactive, program-free web application using R Shiny. 
Power curves of different MAFs for multiple sample sizes are visualized and downloadable for 
both bulk tissue and single-cell eQTL. The calculator pages allow users to freely play with the 
parameters for tissue and single-cell eQTL power analysis. 
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Figure 1. (A) eQTL schema. (B) The main models and functions in the powerEQTL package. (C) Downloads 
summary of powerEQTL since its original repository on CRAN (data generated by cranlog R package). (D) 
Screenshot of powerEQTL R shiny application.  

Discussion 
While several R or Bioconductor packages are available for omics sample size and power 
calculation, such as sizepower (equation-based, 2006), RNASeqPower (equation-based, 2013), 
PROPER (simulation-based, 2015), powsimR (simulation-based, 2017), RnaSeqSampleSize 
(2018), ssizeRNA (equation-based, 2019), PowerSampleSize, pwrEWAS, and 
powerGWASinteraction, none are for eQTL analysis yet that we are aware of. To apply 
powerEQTL to RNAseq data, appropriate data transformation, such as voom (Law et al., 2014) 
and countTransformers (Zhang et al., 2019), is needed to convert counts to continuous data. In 
addition to scRNAseq, other structured data, such as scATACseq, single-cell methylation, 
grouped cell lines etc. can also be applied to this eQTL model. 
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