
i
i

“main” — 2021/5/21 — 9:13 — page 1 — #1 i
i

i
i

i
i

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Application Notes

System Biology

Python Interfaces for the Smoldyn Simulator
Dilawar Singh 1, Steven S. Andrews 2*

1Subconscious Compute Pvt. Ltd. Bangalore, India, and
2Department of Bioengineering, University of Washington, Seattle, WA, US.

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Smoldyn is a particle-based biochemical simulator that is frequently used for systems biology
and biophysics research. Previously, users could only define models using text-based input or a C/C++
applicaton programming interface (API), which were convenient, but limited extensibility.
Results: We added a Python API to Smoldyn to improve integration with other software tools such as
Jupyter notebooks, other Python code libraries, and other simulators. It includes low-level functions that
closely mimic the existing C/C++ API and higher-level functions that are more convenient to use. These
latter functions follow modern object-oriented Python conventions.
Availability: Smoldyn is open source and free, available at http://www.smoldyn.org, and can be
installed with the Python package manager pip. It runs on Mac, Windows, and Linux.
Contact: steven.s.andrews@gmail.com
Supplementary information: Documentation is available at http://www.smoldyn.org/

SmoldynManual.pdf and https://smoldyn.readthedocs.io/en/latest/python/api.html.

1 Introduction
Smoldyn is a biochemical simulator that represents proteins and other
molecules of interest as individual spherical particles [6]. These particles
diffuse, exclude volume, undergo reactions with each other, and interact
with surfaces, much as real molecules do. Smoldyn is notable for its high
accuracy, fast performance, and wide range of features [4]. Users typically
interact with Smoldyn through a text-based interface [2] but Smoldyn can
also be run through a C/C++ application programming interface (API) [3]
or as a module within the Virtual Cell [9] or MOOSE simulators [13].

Smoldyn’s text-based input method is relatively easy to use, but has
the drawbacks of not being a complete programming language and being
difficult to interface with other tools. To address these issues, we developed
a Python scripting interface for Smoldyn. Python is widely used in science
and engineering because it is simple, powerful, and supported by a wide
range of software libraries. Also, Python code is interpreted rather than
compiled, which allows for interactive use and generally reduces time
between development and application. Our Python API enables Smoldyn
to be run as a physics engine with other user interfaces, to be linked to
complementary simulators to support multi-scale modeling, or to be run
within a notebook environment such as Jupyter.

2 Implementation and features
Smoldyn’s Python API is assembled in three levels. At the bottom, the
previously existing C/C++ API [3], which is written in C, provides access
to most of Smoldyn’s internal data structures and functions. This API is
primarily composed of functions for getting and setting Smoldyn model
components, setting simulation parameters, and running simulations. The
middle level, written in C++, uses the PyBind11 library [12] to create
a Python wrapper for the C/C++ API, thus making all of the C/C++
functions and data accessible from Python. PyBind11 is a simple open-
source header-only C++ library that was designed primarily for this task
of adding Python bindings to existing C++ code; it takes care of reference
counting, object lifetime management, and other basic utilities. The top
level or “user API,” which is written in Python, exposes a set of Python
classes to the user. They offer functions for building and simulating models
using object-oriented programming, including standard Python features
such as error handling and default parameters. They work by calling the
low-level Python API, which calls the C/C++ API.

The classes in the user API represent key model elements. These
include a “simulation” class for the entire simulated system, a “species”
class for chemical species, a “reaction” class for chemical reactions, a
“surface” class for biological membranes or other physical surfaces, a
“compartment” class for defined volumes of space, and others. A user
creates a model by creating a simulation class first and then adding

© The Author 2021. 1

review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was not certified by peerthis version posted May 21, 2021. ; https://doi.org/10.1101/2020.12.15.422958doi: bioRxiv preprint

http://www.smoldyn.org
steven.s.andrews@gmail.com
http://www.smoldyn.org/SmoldynManual.pdf
http://www.smoldyn.org/SmoldynManual.pdf
https://smoldyn.readthedocs.io/en/latest/python/api.html
https://doi.org/10.1101/2020.12.15.422958

i
i

“main” — 2021/5/21 — 9:13 — page 2 — #2 i
i

i
i

i
i

2 Singh et al.

Smoldyn simulation of molecule clustering

import smoldyn

import matplotlib.pyplot as plt

import numpy as np

s=smoldyn.Simulation(low=[-10,-10,-10],high=[10,10,10])

B=s.addSpecies(’B’,color=’blue’,difc=1,display_size=0.3)

R=s.addSpecies(’R’,color=’red’,difc=0,display_size=0.3)

B.addToSolution(200)

R.addToSolution(1,pos=[0,0,0])

rxn=s.addReaction(name=’r’,subs=[B,R],prds=[R,R],rate=20)

rxn.productPlacement(method=’bounce’,param=0.6)

s.addOutputData(’counts’)

s.addCommand(cmd=’molcount counts’,cmd_type=’E’)

s.setGraphics(’opengl_good’,1)

s.run(200,dt=0.1)

data = s.getOutputData(’counts’, 0)

dataT = np.array(data).T.tolist()

plt.plot(dataT[0],dataT[2],"r")

plt.xlabel("time")

plt.ylabel("cluster size")

plt.show()

Fig. 1. (Top) Complete Python code for a simple model of molecule clustering in which
blue molecules (‘B’) diffuse freely, but then convert to immobile red molecules (‘R’) upon
collision with a red molecule. (Left) A snapshot of a simulation from this model. (Right)
The number of red molecules over time, from the same script.

Adsorption coefficient (µm/s)

0.00 0.02 0.04 0.06 0.08 0.10

500

450

400

350

M
ed

ia
n

bi
nd

in
g

tim
e

(s
)

Fig. 2. (Left) Model to investigate reduction of dimensionality effects. 1000 black
molecules start at the center of a 10 µm radius sphere and diffuse in the cytoplasm or
on the membrane with diffusion coefficient 1 µm2s−1 until reaching the 1 µm radius
target, in red. (Right) Median target binding time as a function of membrane adsorption
coefficient; error bars represent 1 standard deviation, for 10 runs.

components to it, such as species, surfaces, and reactions. Once it’s
complete, the user tells the simulation class to run the model, typically
displaying the results to a graphical output window in the process. An entire
simulation is encapsulated by its own object, so users can define multiple
simulations at once and even have them interact with each other. Figure 1
illustrates this design with a molecule clustering simulation, showing the
Python source code, graphical output, and quantitative output.

Figure 2 shows a study of how reduction of dimensionality reduces
ligand binding times [1]. The Python API simplified this study because we
could run many simulations in a row, with different adsorption coefficients,
and then process and graph the data, all with a single script.

As part of improving extensibility, we included callback functions in
the Python user’s API. They can be used to update the Smoldyn simulation

environment to states that are generated by other software, perhaps while
using prior Smoldyn output to help determine that state. For example, we
combined Smoldyn with the MOOSE software to simulate a simple model
of pre-synaptic vesicle release. Here, MOOSE computes the membrane
potential, Vm, which Smoldyn then imports at every 1 ms to update the
reaction rates. Internally, callbacks get registered with the Smoldyn code
before a simulation starts and are then called by Smoldyn at every n’th
cycle through the main simulation loop.

Smoldyn can compute a wide range of quantitative data during
simulations, such as molecule counts in specific regions, radial distribution
functions, and tracks of individual molecules. Previously, these data could
only be written to text files, which could then be loaded into other software
and analyzed. Now, the C/C++ and Python APIs also allow these data to
be exported directly to other software. In both figures, for example, we
transferred simulation results directly to the matplotlib graphing software.

The principal limitation of the Python API is that it does not support
rule-based modeling using wildcards [5]. Additionally, Python scripts on
Macintosh computers that use real-time graphical output stop executing
when simulations are complete. This arises from limitations with the
OpenGL graphics library versions that are available for Macs.

The Smoldyn download package includes about 15 Python scripts
that demonstrate most of the Python API features. They include
the three examples described above, which are called “cluster.py”,
“DimensionalityEffect.py”, and “integrate_with_moose.py”.

3 Discussion
A particular benefit of our Python API is that it enables simple
interoperability between Smoldyn and existing software libraries. We took
advantage of this for the figures shown here, in both cases combining
functions from Smoldyn, Numpy, and Matplotlib, where the latter
two addressed data manipulation and plotting. SciPy and Pandas are
other particularly useful libraries for scientific computing. With them, it
would be straightforward to, for example, perform statistical inference
on biochemical models using the stochastic results from well-defined
Smoldyn models, adjust parameters to achieve some optimal simulation
result, or simulate fluorescence microscopy images from model systems.

Several options are available for adding Python bindings to existing
C/C++ APIs, including the Cython language [8], the SWIG automatic
conversion tool [7], and Pybind11 [12]. We chose Pybind11 for several
reasons. Its small size and headers-only design meant that it could be
included with the main code rather than being linked, which improved
software robustness and cross-platform compatibility. Also, it did not
require adding an additional language to the project. Additionally, it
enabled us to customize our API as desired; for example, we defined
the “smoldyn.Simulation” function to accept either boundary values or an
input file name, with optional arguments, and it includes a docstring with
usage information.

Smoldyn is written in a combination of C, C++, and Python, which is
partly a result of its development history, but also represents good design.
The vast majority of Smoldyn’s computational effort typically occurs in
core algorithms that check for molecule collisions with each other or with
surfaces, and that address those collisions. We were able to make these
routines fast and memory-efficient by writing them in C, which has very
low computational overhead costs. The C++ code in the C/C++ API works
well because of its compatibility with other C++ code, including PyBind11,
and is a good intermediate between C and Python. Finally, the Python code
in the user’s API is easy to use, fast to write and test, and an ideal interface
to many other software libraries. This code is less efficient than the C code,
due to Python being a high-level and interpreted language, but this has a

review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was not certified by peerthis version posted May 21, 2021. ; https://doi.org/10.1101/2020.12.15.422958doi: bioRxiv preprint

http://www.smoldyn.org/archive/Singh_Andrews_2021/cluster.txt
http://www.smoldyn.org/archive/Singh_Andrews_2021/DimensionalityEffect.txt
http://www.smoldyn.org/archive/Singh_Andrews_2021/integrate_with_moose.txt
https://doi.org/10.1101/2020.12.15.422958

i
i

“main” — 2021/5/21 — 9:13 — page 3 — #3 i
i

i
i

i
i

Smoldyn and Python 3

negligible impact on total simulation times because only a tiny fraction of
the total computational effort is spent here.

In some ways, Python has become the universal language of systems
biology modeling because it is widely supported by a wide range of
simulators, along with many high quality numerical and scientific code
libraries. As a result, a single Python script can easily run multiple
simulations that interact with each other. However, Python compatibility
does not solve the problem of how to run a single model with different
simulators because each one requires different Python code. The only
viable solution is that simulators need to support systems biology standards
for describing models, such as the Systems Biology Markup Language [11]
for general systems biology problems, and the MUSIC language [10] for
neuroscience modeling. Smoldyn does not support these standards yet but,
when we add this capability, the new Python API will simplify the task.

Acknowledgements
SSA thanks Herbert Sauro for helpful discussions and Shawn Garbett for
prior work on a Python API for Smoldyn.

References
[1]G. Adam and M. Delbrück. Reduction of dimensionality in biological

diffusion processes. Structural chemistry and molecular biology,
198:198–215, 1968.

[2]S. S. Andrews. Spatial and stochastic cellular modeling with the
Smoldyn simulator. In Bacterial Molecular Networks, pages 519–542.
Springer, 2012.

[3]S. S. Andrews. Smoldyn: particle-based simulation with rule-based
modeling, improved molecular interaction and a library interface.

Bioinformatics, 33(5):710–717, 2017.
[4]S. S. Andrews. Particle-based stochastic simulators. Encyclopedia of

Computational Neuroscience, 10:978–1, 2018.
[5]S. S. Andrews. Rule-based modeling using wildcards in the smoldyn

simulator. In Modeling Biomolecular Site Dynamics, pages 179–202.
Springer, 2019.

[6]S. S. Andrews, N. J. Addy, R. Brent, and A. P. Arkin. Detailed
simulations of cell biology with smoldyn 2.1. PLoS Comput Biol,
6(3):e1000705, 2010.

[7]D. M. Beazley. SWIG: An easy to use tool for integrating scripting
languages with C and C++. Tcl/Tk Workshop, 43:74, 1996.

[8]S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and
K. Smith. Cython: The best of both worlds. Computing in Science &
Engineering, 13(2):31–39, 2010.

[9]A. E. Cowan, I. I. Moraru, J. C. Schaff, B. M. Slepchenko, and L. M.
Loew. Spatial modeling of cell signaling networks. In Methods in cell
biology, volume 110, pages 195–221. Elsevier, 2012.

[10]M. Djurfeldt, J. Hjorth, J. M. Eppler, N. Dudani, M. Helias, T. C.
Potjans, U. S. Bhalla, M. Diesmann, J. H. Kotaleski, and Ö. Ekeberg.
Run-time interoperability between neuronal network simulators based
on the music framework. Neuroinformatics, 8(1):43–60, 2010.

[11]M. Hucka, A. Finney, H. M. Sauro, and others. The systems biology
markup language (sbml): a medium for representation and exchange of
biochemical network models. Bioinformatics, 19(4):524–531, 2003.

[12]W. Jakob, J. Rhinelander, and D. Moldovan. pybind11–seamless
operability between c++ 11 and python, 2017.

[13]S. Ray, R. Deshpande, N. Dudani, and U. S. Bhalla. A general
biological simulator: the multiscale object oriented simulation
environment, MOOSE. BMC Neuroscience, 9(Suppl 1):P93, 2008.

review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was not certified by peerthis version posted May 21, 2021. ; https://doi.org/10.1101/2020.12.15.422958doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.15.422958

	Introduction
	Implementation and features
	Discussion

