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Abstract

Genetic variation in growth over the course of the season is a major source of grain yield variation
in wheat, and for this reason variants controlling heading date and plant height are among the
best-characterized in wheat genetics. While the major variants for these traits have been cloned,
the importance of these variants in contributing to genetic variation for plant growth over time
is not fully understood. Here we develop a biparental population segregating for major variants
for both plant height and flowering time to characterize the genetic architecture of the traits and
identify additional novel QTL. We find that additive genetic variation for both traits is almost
entirely associated with major and moderate-effect QTL, including four novel heading date QTL
and four novel plant height QTL. FT2 and Vrn-A3 are proposed as candidate genes underlying
QTL on chromosomes 3A and 7A, while Rht8 is mapped to chromosome 2D. These mapped QTL
also underlie genetic variation in a longitudinal analysis of plant growth over time. The oligogenic
architecture of these traits is further demonstrated by the superior trait prediction accuracy of
QTL-based prediction models compared to polygenic genomic selection models. In a population
constructed from two modern wheat cultivars adapted to the southeast U.S., almost all additive
genetic variation in plant growth traits is associated with known major variants or novel moderate-
effect QTL. Major transgressive segregation was observed in this population despite the similar plant
height and heading date characters of the parental lines. This segregation is being driven primarily by
a small number of mapped QTL, instead of by many small-effect, undetected QTL. As most breeding
populations in the southeast U.S. segregate for known QTL for these traits, genetic variation in plant
height and heading date in these populations likely emerges from similar combinations of major and
moderate effect QTL. We can make more accurate and cost-effective prediction models by targeted
genotyping of key SNPs.

1 Introduction1

Wheat is a major food crop, contributing nearly 20% of human calories and protein (FAO, 2020).2

Wheat yield is highly polygenic, with variation in yield emerging from variation in other phenotypes3

each with different genetic bases. Plant growth traits such as heading date (when the spike emerges4

from the flag leaf) and adult plant height affect yield by both altering resource partitioning between5
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tissues and changing how plants experience environmental factors. A plant’s height on a given date6

alters the physical position of the plant within its environment, influencing that plant’s interactions7

with environmental factors like wind, weed competitors, and rain-splashed pathogens. Differences8

in heading date change the temporal position of plants at a given developmental stage, exposing9

them to different weather conditions and disease pressures. Wheat breeders typically select for10

optimal values of plant height and heading date for a given environment and production system in11

early generations based on unreplicated head rows. Beyond this selection, improvements in yield12

resulting from modern plant breeding programs have largely been generated without considering its13

underlying genetic architecture, including the dependence of final plant yield on variation in plant14

growth trajectories. Understanding the plant development factors that generate genetic variation in15

yield is critical to increasing the rate of genetic gain in wheat.16
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Figure 1: Overview of the wheat flowering time pathway.
The gene network through which wheat plants receive and
integrate signal about environmental conditions to deter-
mine heading date are outlined. Other, intermediate genes
are not shown. Genes proposed as candidate for heading
QTL in this population are highlighted in green. Other im-
portant genes in the flowering time pathway are highlighted
in blue; Wheat CONSTANS (WCO), Triticum aestivum
HD1 (TaHD1), VERNALIZATION1 (VRN1), VERNAL-
IZATION2 (VRN2), and LEAFY (LFY ).

Allelic variation affecting core flowering time17

genes is strongly associated with the geographic18

distribution of wheat cultivars, and permits the19

cultivation of wheat in a wide range of envi-20

ronments. Winter wheat is sown in the fall,21

when it germinates but maintains the shoot22

apical meristem beneath the ground to pre-23

vent freeze damage. After the accumulation of24

signal through the vernalization (cold hours),25

photoperiod (night length), and earliness-per-se26

(plant age) pathways, plants release from win-27

ter dormancy and transition to reproductive de-28

velopment. Allelic series in the Vernalization129

(Vrn1 ) loci on the three chromosome 5 homeo-30

logues condition a spring or winter growth habit31

by controlling the sensitivity of plants to ver-32

nalization (Fig. 1) (Yan et al., 2004; Fu et al.,33

2005; Li et al., 2013). Additional alleles at these34

loci, some associated with copy number varia-35

tion, may also modulate vernalization response in vernalization-sensitive winter lines (Fu et al.,36

2005; Dı́az et al., 2012; Guedira et al., 2014, 2016; Kippes et al., 2018). Photoperiod1 (Ppd1 ) is an-37

other core flowering time gene which integrates signals due to length of nights and allows plants to38

time flowering based on photoperiod. Variants affecting homeologous Ppd1 loci on all three genomes39

lead to constitutive over-expression of Ppd1 and a photoperiod-insensitive, earlier flowering habit40

(Beales et al., 2007; Nishida et al., 2013; Guedira et al., 2016). Breeding for an optimal heading41

date for a given environment allows plants enough time to add additional spikelets per spike prior42

to heading, which increases grain number, and to accumulate carbohydrates and fill grain, which43

increases grain size. Non-optimal flowering can expose plants to temperatures below freezing early44

in the season, or to excessive heat and drought late in the growing season. In southern U.S. field45

sites, Vrn1 and Ppd1 alleles have strong effects on final grain yield of winter wheat (Addison et al.,46

2016).47

Introduction of ”green revolution”dwarfing genes Rht-B1 and Rht-D1 – knock-out mutations in48

DELLA proteins – into US and CIMMYT germplasm dramatically improved yields by increasing49

wheat harvest index and preventing lodging due to applied inorganic nitrogen fertilizer (Hedden,50

2003). The effect of the Rht1 genes is conditional on the environment and the quantity of assimilate51

produced by the variety, and has been associated with larger grain number but smaller grain size and52

weight (Borner et al., 1993). Rht1 alleles disable plants’ ability to respond to giberellic acid (GA-53
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insensitivity), which may have negative effects on coleoptile length and early plant vigor that can54

decrease yield in some environments (Rebetzke and Richards, 2000). Increase in seed number and55

grain yield seems to be related not to ear development but to the greater availability of assimilates56

during grain-fill with reduced biomass partitioned into stalks (Youssefian et al., 1992). Breeders57

generally select plants near some optimal height value, as too-short plants have a generally lower58

yield compared to semi-dwarfs characteristic of having only one Rht allele (Fischer and Quail, 1990).59

An increasing number of dwarfing genes in wheat have been fine-mapped, and many, though not60

most, have been cloned.61

Genomic selection is restructuring modern wheat breeding programs. The ability to leverage data62

from past years to predict unobserved lines has tremendous potential to increase the rate of genetic63

gain. Beyond yield predictions, heading date and plant height predictions are valued by breeders,64

allowing them to exclude phenotypically extreme individuals without having to dedicate resources65

to planting and phenotyping in multiple environments. Standard GBLUP and rrBLUP models are66

optimized for highly polygenic traits like yield, but will underestimate QTL effect sizes and perform67

poorly with traits dominated by a smaller number of larger-effect QTL. Explicitly characterizing68

and taking into account large-effect QTL in traits where these QTL explain a substantial portion of69

additive genetic variation can increase prediction accuracy (Bernardo, 2014; Sarinelli et al., 2019).70

This may have even more promise in biparental populations where the number of segregating causal71

variants is much smaller. If traits are mostly controlled by a few major variants, models using72

markers for just those variants can be predictive and more cost-effective.73

Here we set out to understand the genetic basis of plant growth traits in a biparental common74

wheat population. Parents were chosen to generate major additive genetic variation for plant height75

and heading date and to characterize novel QTL for these traits. Parent SS-MPV57 carries the large-76

effect earliness allele Ppd-D1a as well as the smaller-effect allele Ppd-A1a.1, but no known dwarfing77

genes. Parent LA95135 caries the major dwarfing allele Rht-D1b but no known earliness genes except78

the smaller-effect Ppd-A1a.1 allele. This parental selection contrasts with typical mapping studies,79

where the two parents generally differ for the trait of interest. Here, due to our understanding80

of already characterized major variants, we developed a population with the goal of generating81

transgressive segregation for our target phenotypes. A high-density sequence-based linkage map was82

supplemented with single SNP assays for putative causal variants in order to map novel QTL and83

study marker-trait associations for known variants. Phenotypic variation in each environment was84

partitioned into components associated with mapped QTL and the polygenic background in order85

to assess the relative importance of identified QTL. Different models were tested for prediction of86

both traits to determine if a simple QTL model would be sufficient in the context of a breeding87

program. Finally, a longitudinal analysis of multiple measures of plant height over time was used to88

determine QTL effects over the course of plant growth in a field season.89

2 Materials and Methods90

Population Development91

Soft-red winter wheat lines developed by southeastern public-sector breeding programs were screened92

for alleles at known plant height and heading date variants using Kompetitive Allele-Specific PCR93

(KASP) markers. Louisiana State University forage cultivar LA95135 (CL-850643/PIONEER-94

2548//COKER-9877/3/FL-302/COKER-762) was chosen as a parent lacking major early-flowering95

alleles at the Ppd-D1 or Vrn-1 loci, but with a mid-season heading date when grown in North96

Carolina. Cultivar SS-MVP57 (FFR555W/3/VA89-22-52/TYLER //REDCOAT*2/GAINES) de-97

veloped at Virginia Polytechnic Institute and State University displayed semi-dwarf stature but98

3

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.12.16.422696doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.16.422696
http://creativecommons.org/licenses/by-nc/4.0/


lacked dwarfing alleles at the Rht1 loci. SS-MPV57 carries the Ppd-D1a allele conferring photope-99

riod insensitivity, and LA95135 has the Rht-D1b allele conferring semi-dwarfism. Parent lines were100

crossed, and F1 plants were selfed to generate an F2 population (hereafter referred to as the LM101

population). The F2 and later generations were inbred via the single-seed descent method until the102

F5 generation, producing 358 F5-derived recombinant inbred lines (RILs).103

Phenotyping104

During the winter of 2016-2017, an experiment was conducted in the greenhouse to evaluate heading105

date. Imbibed seeds from each RIL were placed in a cold chamber kept at 4◦C for 8 weeks and were106

transplanted into plastic cones (volume 0.7L, 6.5 cm in diameter and 25 cm depth) containing soil107

mix. Plants were grown in a completely randomized design with four replications in a greenhouse108

set at 16 hr photoperiod and 20◦C /15◦C (day/night) temperature.109
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Figure 2: Plant growth over time. For each 1-m row plot
(differently colored line), a total of three plant height values
was collected in Raleigh in 2019. All plots are shown (A),
as well as a random subset to better visualize plant growth
(B). Mean plant growth follows a roughly linear pattern
corresponding to the date collected, with different slopes
and intercepts for each plot.

To evaluate the impact of vernalization on110

the genetic architecture of heading date and on111

effects of individual QTL, the greenhouse ex-112

periment was repeated with a low-vernalization113

treatment in the winter of 2017-2018. This ex-114

periment was performed as above, except that115

imbibed seeds were placed in the cold chamber116

for only four weeks prior to transplanting. In117

addition, the LM RIL population was evaluated118

in the field at Raleigh, NC and Kinston, NC119

during the 2017-2018 season, and in Raleigh,120

Kinston, and Plains, GA in the 2018-2019 sea-121

son, sown in the fall at the locally recommended122

times for commercial winter wheat production.123

The 358 RILs were grown using an augmented124

set within replications design to facilitate plant-125

ing of this large population. RIL experiments126

consisted of two fully replicated blocks of all127

358 lines organized into five sets of 71 or 72128

RILs. The order of the sets within each repli-129

cation and the order of the RILs within each130

set were randomized at each location. Three131

parental checks were planted at the beginning132

of each set of RILs, along with four or five addi-133

tional parental checks randomized within each134

set.135

Plots consisted of 1-m rows spaced 30 cm136

apart. Adult plant height was measured as the137

distance from the ground to the top of the spikes138

of a sample of tillers from the center of each row,139

excluding the awns. Heading date was measured140

as the day on which approximately half of the heads in each row had fully emerged from the flag141

leaf, typically a few days prior to anthesis. To study plant development over time, three measures of142

plant height were collected for each row plot in Raleigh in 2019, with two to four blocks measured143

roughly every ten days starting on March 29th and ending on April 25 (when most plants had fully144
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headed). In this case, plant height at each time point was calculated as the mean of the height of145

three randomly chosen primary tillers from the ground to the base of the apical leaf sheath (Fig. 2).146

All measurements were collected on an android tablet with the Fieldbook app (Rife and Poland,147

2014).148

Analysis of Phenotypes149

For the greenhouse experiments where plants had been completely randomized within greenhouses,150

genotype values for RILs were calculated as the mean of the four replications of each line. For field151

experiments, best linear unbiased estimates (BLUEs) were calculated adjusting for these spatial152

effects. The software ASReml-R (Butler et al., 2017) was used to calculate BLUEs with an AR1xAR1153

correlated residuals model:154

Yik ∼ µ+Gi + uik + eik

Where Yik is the observed phenotype for an individual row plot, µ is the intercept, Gi is the155

fixed effect of genotype i, uik is the unit or ”nugget”random residual effect for each observation k156

representing the component of the variance due to observation or measurement instead of spatial157

correlation, drawn from a distribution u ∼ iidN(0, σ2
e), and eik is the spatially-correlated residual158

drawn from the distribution e ∼ N(0, σ2
eΣr(ρr) ⊗ Σc(ρc)), whose variance is the direct product of159

an r× r auto-correlation matrix Σr(ρr) representing autoregressive correlations in the row direction160

and c× c correlation matrix Σc(ρc) representing autoregressive correlations in the column direction.161

For all environments and phenotypes, a full model with autocorrelated columns and rows was found162

to have a lower BIC and higher log likelihood than models with just the column autocorrelation or163

no spatial correction. BLUEs were calculated as the sum of the genotype effect and the intercept164

for each phenotype in each environment.165

Genotyping and Linkage Map Construction166

Tissue was collected from the F5 greenhouse experiment, and seeds of the four F5:6 plants from each167

line were bulked. Genotyping by sequencing (GBS; (Elshire et al., 2011)) was performed according168

to Poland et al. 2012 (Poland et al., 2012), with ninety-six individual samples barcoded, pooled169

into a single library, and sequenced on an Illumina HiSeq 2500. Tassel5GBSv2 pipeline version170

5.2.35 (Glaubitz et al., 2014) was used to align raw reads to the International Wheat Genome171

Sequencing Consortium (IWGSC) RefSeqv1.0 assembly (https://wheat-urgi.versailles.inra.fr/Seq-172

Repository) using Burrows-Wheeler aligner (BWA) version 0.7.12 to call SNPs (Li et al., 2009).173

SNPs were filtered to retain samples with ≤ 20 percent missing data, ≥ 30 percent minor allele174

frequency and ≤ 10 percent of heterozygous calls per marker.175

KASP markers taken from the literature or designed from exome capture data of the parents176

(triticeaetoolbox.org/wheat; Additional file 1: Table S1) were added to the GBS SNP data for177

chromosome regions with low marker density and for causal variants segregating in the population.178

Filtered SNPs were separated into chromosomes and ordered via alignment to the reference genome,179

and a custom script was run to filter out genotyping errors that would result in a false double180

recombination due to under or mis-calling of heterozygotes. The R package ASMap was used to181

construct the maps as an F5 RIL population (Taylor and Butler, 2017).182
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QTL Analysis183

QTL mapping was performed in the R package r/QTL (Broman et al., 2003). Composite interval184

mapping was used for initial QTL identification, and intervals were narrowed using a multiple QTL185

model (MQM) as implemented in the refineqtl function. The addqtl function was used to identify186

additional QTL using identified QTL as covariates. Empirical significance thresholds for a genome-187

wide α = 0.05 were determined using 1000 permutations for each trait. QTL effects were estimated188

for significant QTL in each environment based on the estimated MQM positions using the fitqtl189

functions, which fits a multiple regression where for genotype values Yi for each individual i, and n190

QTL Q, Yi ∼
n∑

h=1

Qih + ei.191

Major variants Ppd-D1 and Rht-D1 alter functions of core genes in the flowering time and192

giberellic-acid response pathways, respectively, suggesting that their presence may alter the effects193

of other variants impacting those pathways. Taking advantage of the large number of lines in the LM194

population, two sub-populations of roughly 160 lines – each divided by genotype at the major-effect195

QTL – were created for mapping of each phenotype. Lines called as heterozygous for the major-196

effect QTL were excluded. The QTL mapping analysis was repeated for both of the sub-populations.197

Identified QTL interactions discovered this way were validated by modifying the above fitqtl model198

with a main effect for the identified QTL and an effect for its interaction with the major classifying199

QTL.200

Variance analysis was performed in the R package lme4qtl, which allows for the fitting of random201

effects with supplied covariance matrices (Ziyatdinov et al., 2018). For known variants for which202

KASP marker genotypes of the causal polymorphisms were available, the genotypes were used di-203

rectly, and for novel QTL genotype probabilities from the refineqtl object were used. For testing204

QTL, alleles were encoded in terms of the allele dosage of the LA95135 allele (0, 1, 2) without205

estimating a dominance effect.206

While BLUEs estimated using the correlated errors model were used for QTL mapping, to207

estimate the relative importance of identified QTL in determining total phenotypic variation at the208

level of individual plots models were re-fit in each environment using the unadjusted phenotypes as209

the response. For each environment and phenotype, QTL effects and variance components for each210

the additive and non-additive effects of genotypes were specified with the mixed model:211

Yik ∼
n∑

h=1

Qih + gAi + gIi + eik

Where for each phenotype Y of genotype i in row plot k, fixed effects for each QTL h were fit212

as regressions of allele dosage on phenotypes. gAi represents the random additive effect of genotype213

i with a variance specified by the realized relationship matrix (gA ∼ N (0,Gσ2
g)), calculated using214

the A.mat function in the R package rrBLUP from the scaled GBS marker matrix (G = WW′

c ,215

where W is the scaled marker matrix calculated as Wik = Xik + 1 − 2pk from the frequency of216

the 1 allele at marker k (pk) and the marker matrix Xik. c is a normalization value calculated as217

c = 2Σkpk(1 − pk)) (Endelman, 2011). gIi represents the non-additive random effect of genotype i218

with an independent variance (gI ∼ N (0, Iσ2
g)).219

A modified method from Nakagawa and Schielzeth 2013 (Nakagawa and Schielzeth, 2013) was220

used to estimate variances associated with QTL and variance components from the specified model.221

Estimated coefficients for fixed effects are multiplied by the value of that effect (in this case, the222

allele dosage), and the variance of these values is taken as the variance associated with that fixed223

effect. This R2-like estimator for mixed models is defined as:224
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R2
LMM =

σ2
f

σ2
f + σ2

r + σ2
e

Where σ2
r is the variance of the random effects and σ2

f is a variance of independent fixed effects225

calculated as σ2
f =

n∑
h=1

V ar(βhxhk) for coefficients and effects h and observations k. For both traits,226

all QTL were mapped to separate chromosomes, satisfying the assumption of independence. Using227

this approach, narrow-sense heritability in this population with n QTL in i individuals in k head228

rows is calculated as:229

h2 =

n∑
h=1

V ar(βhQhk) + σ2
A

n∑
h=1

V ar(βhQhk) + σ2
A + σ2

I + σ2
e

Where we calculate per-observation QTL effects as the allele dosage of QTL h in plot k (Qhk)230

times the estimated coefficient of each QTL (βh), and the phenotypic variance associated with that231

QTL as the variance of these estimates. The total variance associated with all QTL is taken as the232

sum of these individual QTL variances, as all mapped QTL are located on separate chromosomes233

and are independent of one another. σ2
A is the variance component associated with the random234

gA genotype term fit with the relationship matrix, and σ2
I as the variance component associated235

with the random independent gI genotype term, which represents some combination of epistatic236

effects, lack of linkage between observed markers and underlying causal variants, and deviation of237

the estimated genotype values from the true genotype values. Constructing the model in this way,238

we estimate the proportion of additive genetic variation associated with a QTL h (pA) as:239

pA =
V ar(βQk)

n∑
h=1

V ar(βhQhk) + σ2
A

Where pA is taken as the variance of the product of an estimated QTL effect by the allele dosage240

of that QTL in k rows, over the total additive genetic variation.241

For investigating the effect of QTL on plant height variation over time, individual slopes of plant242

height over time measured multiple times for each row were calculated with a fixed intercept and a243

random intercept and time slope for each head row. The model was used to estimate plant height244

values for each row every day over the course of the month data was collected. A linear model fitting245

all relevant plant height and heading date QTL on plant height on every day was fit, and the partial246

R2 values of each QTL calculated for each day were used to estimate the relative importance of each247

QTL at each time point.248

Prediction of Phenotypes249

Different prediction models were assessed to identify an optimal model for heading date and adult250

plant height. All models except for the simple QTL multiple regression model were fit in the R251

package BGLR (Pérez and De Los Campos, 2014), which allows for flexible fitting of a variety of252

Bayesian and mixed effects models. A GBLUP model was fit solving the equation y ∼ µ+ u+ e for253

u. y is a vector of BLUEs across environments for all RILs, with unobserved RILs assigned missing254

values, and u is a vector of random genotype effects with a variance u ∼ N (0,Gσ2
u), where G is the255

realized relationship matrix calculated previously from GBS markers.256
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A simple multiple-regression QTL model based on identified QTL was fit solving the equation257

y ∼ µ+
n∑

h=1

αhQh + e for n QTL, where Qh encodes the LA95135 allele dosage for each QTL h in258

each individual, and αh is the allele effect of QTL h.259

A combined model was also fit specifying both a multiple-regression fixed-effects component for260

QTL effects, and random effects for each genotype constrained by the additive relationship matrix261

(y ∼ µ+
n∑

h=1

αhQh + Iu+ e, where u ∼ N (0,Gσ2
u)).262

BayesB and Bayesian LASSO models were both fit with the general model y ∼ µ+Xu+e, where263

X is a design matrix of markers coded by allele dosage of the LA95135 allele, and u is a vector of264

random marker effects. In the BayesB model, a certain proportion of markers given by the prior265

probability π (ui|σ2
i , π) are assumed to have an effect size of 0, with the remainder having effects266

following a scaled-t distribution (Pérez and De Los Campos, 2014). In the Bayesian LASSO, marker267

effects were estimated with a double exponential prior distribution that assumes a greater frequency268

of both larger marker effects and marker effects closer to zero than a normal distribution (Pérez and269

De Los Campos, 2014). In both models, estimated genotype values are calculated as the sum of270

marker effects Ŷi = µ̂ +
n∑

j=1

xij ûj , where xij is the allele dosage of marker j in individual i, and ûj271

is the estimated marker effect.272

A five-fold cross validation approach was used to compare the five models. RILs were randomly273

assigned to one of five folds, and genotype values from each environment from lines in four of the folds274

were used to predict the values of lines in the fifth fold, repeating for each fold in each environment275

for each model. Within each fold, QTL detection was re-performed as described in the QTL analysis276

section to identify the QTL used in the QTL regression and combined QTL and GBLUP model.277

This process was then repeated 40 times to get distributions of prediction abilities, calculated as the278

Pearson’s correlation between predicted and observed genotype values across all five folds.279

Results280

Genetic Map Construction281

After filtering, 5691 markers were assigned to 21 linkage groups representing 21 wheat chromosomes.282

Average chromosome map length was 208.3 cM, with a maximum individual chromosome length of283

319.1 cM for chromosome 3B. Marker density on the D genome tended to be much lower than marker284

densities on the A and B genomes, as expected given the much lower D genome diversity in hexaploid285

wheat (Akhunov et al., 2010).286

Population Characterization287

Generally, wheat cultivars’ flowering habits are described by their genotypes at major heading date288

loci, but SS-MPV57 flowered later than LA95135 in all locations despite carrying the major earliness289

allele Ppd-D1a (Table 1). The difference in heading date was especially pronounced in the low-290

vernalization treatments both in the greenhouse (GH 2018) and in the field (Plains 2019), where291

SS-MPV57 flowered five and six days later, respectively, than LA95135. A similar pattern was292

observed for plant height: although LA95135 was the only parent genotyped for a major dwarfing293

allele (Rht-D1b), SS-MPV57 was substantially shorter in all locations (Table 1). For heading date294

in all locations, the mean genotype value of the RILs was approximately the mid-parent value. For295

plant height in Raleigh 2018 and Kinston 2018, the mean genotype value of the RILs was closer to296
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the SS-MPV57 parent than the mid-parent value. The ranges of genotype values in Raleigh and297

Kinston were similar, but the range in heading date in Plains 2019 (26 days) was much larger. This298

is likely a result of the warmer winter temperatures at that site, delaying heading of lines with a299

greater vernalization requirement.300

Table 1: Population characteristics. Means and ranges of estimated genotype values for all RILs, as well as parental
values and plot-basis heritabilities (H), for site-year-phenotype combinations. Heading date for the GH experiments
is recorded as days since transplanting (four weeks (HD4W ) or eight weeks (HD8W ) after vernalization), and for the
field experiments time as day of year (DOY).

Loc. Year Pheno µLA µMPV µRILs Range H

GH 2017 HD8W NA NA 45.6 32-61 0.50
GH 2018 HD4W 71.1 76.12 77.1 59-97 0.76
Ral 2018 HD 112.3 112.9 112.3 107-120 0.73
Kin 2019 HD 103.1 104.9 103.6 97-109 0.63
Pla 2019 HD 100.7 106.6 103.1 90-116 0.63
Ral 2018 PH 100.1 92.5 93.7 68-127 0.84
Kin 2018 PH 101.0 94.0 96.0 67-122 0.71
Kin 2019 PH 99.1 94.9 97.5 69-129 0.67

Known Variants and Novel QTL Impact Plant Growth301

Genetic variation in quantitative traits like those measured in this study may result from the seg-302

regation of an unquantifiable number of small-effect QTL. Despite this, for both heading date and303

adult plant height the vast majority of additive genetic variation was associated with a small number304

of major QTL, some of which have been previously described and some of which are novel.305

Heading Date306

The RIL population was developed with the expectation that the major photoperiod-insensitive307

allele Ppd-D1a inherited from SS-MPV57 would segregate, and that potential novel early-flowering308

QTL from LA95135 could be mapped. Two preliminary greenhouse experiments were conducted to309

investigate the effect of vernalization treatments on heading date genetic architecture, with imbibed310

seeds given only four weeks of vernalization in the first experiment and a full eight weeks in the311

second. In addition, heading date notes were collected in three separate field experiments in Raleigh312

in 2018, and Kinston and Plains, GA in 2019. QTL were declared significant at α = .05 based on313

1000 permutations of the scanone function, but for all phenotypes significance values were near a314

LOD of 3.5. Together, Ppd-D1, Rht-D1, and four early-flowering alleles inherited from LA95135315

were associated with differences in heading date in this experiment (Table 2, Table 3).316

A heading date QTL on chromosome 2D co-localized with a known major-effect variant altering317

expression of the D-genome copy of pseudo-response regulator gene Photoperiod-1 (Ppd-D1a) (Beales318

et al., 2007). This was the major QTL mapped in this experiment, associated with by far the highest319

LOD score in both the field environments (Table 3) and the eight week greenhouse treatment (Table320

2). In the four week treatment the relative importance of Ppd-D1 was diminished, primarily as a321

result of changes in the effects of other QTL.322

A QTL in the centromeric region of chromosome 3A is mapped with low physical resolution (>323

400 Mb), owing to the low recombination rates found in these regions in wheat (Table 2, Table 3).324
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Table 2: Significant heading date QTL for four and eight week vernalization greenhouse experiments. The chromosome
on which each QTL is found is indicated in the QTL name. For each QTL, the average difference in phenotype between
two RILs homozygous for alternate alleles is given as twice the estimated allele effect of the LA95135 allele (2α), along
with proportion of additive variation associated with each QTL (pA). The most significant markers for each QTL with
a proposed candidate gene was a KASP marker associated with a previously identified causal polymorphism affecting
that gene. Physical positions are given based on mapping of GBS markers to the IWGSC RefSeqv1.0 assembly.

Treatment QTL Name Candidate Gene Peak Marker Position CI LOD 2α (days) pA

4 Wk Qncb.HD-2D Ppd-D1 Ppd-D1 32-43 Mb 11.5 5.2 0.15
4 Wk Qncb.HD-3A FT2 FT2 118-478 Mb 21.2 6.5 0.25
4 Wk Qncb.HD-4D Rht-D1 Rht-D1 0-352 Mb 22.2 7.2 0.39
4 Wk Qncb.HD-5A NA S5A 395681218 46-438 Mb 5.65 3.2 0.05
4 Wk Qncb.HD-5B NA S5B 462554252 427-523 Mb 4.63 3.6 0.08
8 Wk Qncb.HD-2D Ppd-D1 Ppd-D1 33-44 Mb 15.9 3.9 0.60
8 Wk Qncb.HD-3A FT2 FT2 71-435 Mb 6.67 2.3 0.22
8 Wk Qncb.HD-5B NA S5B 518684640 511-537 Mb 5.17 2.1 0.14

FT-A2 Late

Ppd-D1a (Early)

FT-A2 Early FT-A2 Late

Ppd-D1b (Late)

FT-A2 EarlyFT-A2 Late

Ppd-D1a (Early)

FT-A2 Early FT-A2 Late

Ppd-D1b (Late)

FT-A2 Early

Heading Date Differences in Greenhouse Experiments

4 Week Vernalization Treatment 8 Week Vernalization Treatment

Figure 3: Effect of Qncb.HD-3A and Ppd-D1 QTL on heading date in two different vernalization treatments. Density
plots of BLUEs for heading date in two experiments, with RILs grouped by their genotype at Ppd-D1 and a marker
close to FT-A2. The allele effect of Ppd-D1 is larger than that of FT-A2 in the 8 week vernalization treatment (2.0
days versus 1.2), but the effect of the FT-A2 marker is larger in the 4 week vernalization treatment (2.6 days vs 3.3
days).

Contained in this interval is FT-A2, an ortholog of FT previously described by Shaw et al. (Shaw325

et al., 2019) as an important component of the wheat flowering time pathway (Fig. 1). A KASP326

assay designed from a polymorphism within FT-A2 was the peak marker for this QTL in both327

greenhouse experiments (Table 2), and had a much greater effect in the four week vernalization328

treatment than in the eight week treatment (Fig. 3). Qncb.HD-3A was also identified as significant329

in all field experiments, but with alternate peak markers in the long arm of chromosome 3A (Table330

3).331

In addition, two novel early-flowering alleles were identified on chromosomes 5A and 5B (Table332

3). Both QTL are significant in all environments (Additional file 2: Table S3). Qncb.HD-5A is the333

third-most important QTL in most environments, but has an especially large effect in the Plains, GA334

field experiment. The QTL is also significant in the four week vernalization greenhouse treatment,335

but not the eight week treatment. The increased QTL effect in these two environments having336

shorter duration of cold temperature exposure suggests that Qncb.HD-5A may interact with genes337

involved in vernalization response. Due to its centromeric position, the confidence interval for the338
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Table 3: Significant heading date QTL information from best environment. For each QTL, information from the
experiment where that QTL had the largest estimated effect (Best Env) is given. The average difference in phenotype
between two RILs homozygous for alternative alleles at each QTL is given as twice the estimated allele effect of the
LA95135 allele (2α), along with proportion of additive variation associated with each QTL (pA). Vrn-A3 only has a
significant effect within the half of the population homozygous Ppd-D1b.

QTL Name Candidate Gene Best Env Peak Marker Position CI LOD 2α (days) pA

Qncb.HD-2D Ppd-D1 Ral 19 Ppd-D1 59-64 Mb 48.6 3.4 0.67
Qncb.HD-3A FT2 Pla 19 S3A 434822203 121-571 Mb 13.0 -2.6 0.12
Qncb.HD-4D Rht-D1 Kin 19 Rht-D1 0-352 Mb 4.85 0.9 0.06
Qncb.HD-5A NA Pla 19 S5A 169302619 51.6-435 Mb 14.1 -2.7 0.15
Qncb.HD-5B NA Kin 19 S5B 511010094 436-476 Mb 7.7 -1.3 0.08
Qncb.HD-7A Vrn-A3 Ral 18 (Ppd-D1b) S7A 72104395 57.7-85.9 Mb 4.23 NA NA

QTL contains 383 Mb of chromosome 5A (Table 3). Notably, despite the response of this QTL to339

vernalization treatment, this interval does not encompass the Vrna-A1 locus.340
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Figure 4: Major variants diminish effects of other QTL.
Vrn-A3 alters heading date in most environments, but only
in a Ppd-D1 sensitive background. The dwarfing effect of
Qncb.PH-3D is greater in an Rht-D1a (tall) background.

Qncb.HD-5B is located in a more distal po-341

sition on the long arm of the chromosome and342

was mapped to an interval of 61 Mb. This in-343

terval is proximal to Vrn-B1, excluding that lo-344

cus as a candidate gene. Unlike Qncb.HD-5A,345

significance and effect sizes of Qncb.HD-5B are346

similar in both the four and eight week vernal-347

ization treatments (Table 2).348

The major plant height QTL Rht-D1 was349

also identified as having a pleiotropic effect on350

heading date in this population. In most envi-351

ronments the effect on heading date was minor,352

and not significant in the eight week greenhouse353

treatment or in Plains in 2019. However, in the354

four week greenhouse treatment Rht-D1 was a355

highly significant QTL, with an average differ-356

ence of over seven days between plants homozy-357

gous for wild type or semi-dwarf alleles (Table358

2).359

A benefit of large population sizes is the360

ability to subset the population by major-ef-361

fect variant allele and perform QTL analyses on362

the sub-populations. In the case of the Ppd-363

D1a insensitive allele, constitutive over-expres-364

sion of Ppd-D1 may obscure effects of variation365

elsewhere in the flowering pathway. After di-366

viding the population by Ppd-D1 allelic class367

and performing QTL analyses on the sub-popu-368

lations, an additional early-flowering allele from369

LA95135 was identified on the short arm of chro-370

mosome 7A only in a Ppd-D1b photoperiod-sen-371

sitive background, and only in the field exper-372

iments (Table 3). The confidence interval for373
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this QTL contains the Vrn-A3 locus. Vrn3 in wheat was identified as an FT ortholog (TaFT1 ),374

and serves as the primary integrator of flowering time signal, being translocated from the leaves to375

the shoot apical meristem to initiate the transition to reproductive growth (Fig. 1) (Yan et al.,376

2006). A variant in the D-genome copy of this gene, Vrn-D3a, was identified by (Chen et al., 2010)377

as a determinant of flowering time in winter wheat. A deletion of a GATA box in the promoter re-378

gion of Vrn-A3 has been recently associated with delayed flowering time in tetraploid durum wheat379

(Nishimura et al., 2018), and an additional polymorphism linked to differences in heading date and380

spikelets-per-spike has also been identified in common wheat (Chen et al., 2020). Screening the381

population with a KASP marker developed around the GATA box deletion (Additional file 1: Ta-382

ble S1) reveals that the population segregates for the deletion, with SS-MPV57 contributing the383

late-flowering deletion allele. While Qncb.HD.7A has a relatively small additive effect, it strongly384

interacts with Ppd-D1a (Fig. 4). In a background containing the insensitive over-expression Ppd-D1385

allele, there is no difference in heading date between lines with and without the Vrn-A3 promoter386

deletion. In a Ppd-D1b background, however, the GATA box deletion is associated with significantly387

delayed heading date of approximately one day (Fig. 4). In wheat, Ppd1 acts to trigger expression388

of Vrn3 through signaling intermediates (Fig. 1), thus an interaction between the two fits with389

our understanding of their placement in a common pathway. This promoter deletion is a strong390

candidate for the variant underlying the chromosome 7A heading date QTL.391

Table 4: Significant plant height QTL information from best environment. For each QTL, information from the
experiment where that QTL had the largest estimated effect (Best Env) is given. The average difference in phenotype
between two RILs homozygous for each QTL is given as twice the estimated allele effect of the LA95135 allele (2α),
along with proportion of additive variation associated with each QTL (pA). The confidence interval for Rht8 is
consistent with prior studies placing the QTL distal to Ppd-D1.

QTL Name Candidate Gene Best Env Peak Marker Position CI LOD 2α (cm) pA

Qncb.PH-1A NA Kin 19 S1A 517409836 513-533 mb 4.01 3.6 0.03
Qncb.PH-2B NA Kin 18 S2B 662556874 530-691 mb 3.41 2.9 0.05
Qncb.PH-2D Rht8 Kin 18 S2D 32151744 23.3-32.2 mb 27.9 9.4 0.32
Qncb.PH-3D NA Ral 18 S3D 476608044 477-527 mb 10.0 5.4 0.08
Qncb.PH-4D Rht-D1 Kin 19 Rht-D1 0-352 mb 71.9 -19.6 0.68
Qncb.PH-5B NA Kin 18 S5B 511010094 463-524 mb 7.51 -5.6 0.05

Adult Plant Height392

Major QTL for plant height were initially mapped to chromosomes 4D, 2D, and 3D (Table 4).393

Using the MQM model, additional adult plant height QTL on chromosomes 1A, 2B, and 5B were394

also identified (Table 4). As expected, known variant Rht-D1b inherited from LA95135 was by far395

the largest-effect QTL across environments. Except for Qncb.PH-5B, all other reduced plant height396

alleles were inherited from SS-MPV57.397

The mapped position of the plant height QTL located on chromosome 2D is consistent with398

reported positions for Rht8 (Gasperini et al., 2012). After the two major gibberellic-acid insensitive399

dwarfing genes Rht-D1b and Rht-B1b, the most commonly used gene is Rht8, which is tightly linked400

to Ppd-D1 (Worland et al., 1998). In most environments, the marker most closely associated with401

QPH.ncb-2D is mapped closely distal to Ppd-D1. In an effort to tease apart the effects of photoperiod402

insensitivity and Rht8 on plant height, we evaluated a terminal spike-compaction phenotype often403

associated with Rht8 segregating in the LM population. This trait was rated in the field in Raleigh in404

2019, and the major QTL was co-located with the plant height locus on the short arm of chromosome405
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Figure 5: Variance associated with QTL and variance components for heading date and plant height in multiple
environments. Non-additive genetic variation may be a result of epistatic interactions between QTL or mis-estimation
of genotype values. Ppd-D1 and Rht-D1 dominate additive genetic variation for their respective phenotypes, but
other mapped QTL explain a substantial portion of genetic variation. The scaling of total additive genetic variation
is in large part due to the expression of Ppd-D1 or Rht-D1 effects.

2D (Additional file 1: Figure S1). We did not observe any significant interaction between Rht8 and406

Rht-D1.407

We identified Qncb.PH-3D as a novel plant height QTL, with a smaller effect than either Rht-D1408

or Rht8 (Table 4). Despite the low marker density on chromosome 3D, Qncb.PH-3D was consistently409

localized to a 50-Mb interval on the long arm. Rht-D1b alters the function of an important component410

of the giberellic acid response pathway, so we may expect differential QTL effects in different Rht-411

D1 backgrounds. We find that while Qncb.PH-3D was identified in all environments, the effect on412

plant height is much greater in a Rht-D1a (tall) background (Fig. 4). As SS-MPV57 is responsive413

to giberellic acid, the observed interaction between Rht-D1 and Qncb.PH-3D will require further414

study, and may point to the identification of candidate genes for this QTL.415

Three additional QTL (Qncb.PH-1A, Qncb.PH-2B, and Qncb.PH-5B) were also identified in416

one environment each, but when fit in the combined multiple QTL model all were significant with417

p < .001 in all environments (Additional file 2:Table S4).418
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QTL with Major and Moderate Effects Explain Most of Additive Genetic419

Variation and Generate Transgressive Segregation420

Within-field phenotypic variance was partitioned in order to assess the genetic architecture of plant421

growth traits in this population and the relative importance of different mapped QTL in explaining422

observed differences (Fig. 5). For both heading date and adult plant height, major effect QTL423

dominate additive genetic variation in most environments. Major-effect variant Ppd-D1 was asso-424

ciated with a majority of additive genetic variation for heading date, except in the southern-most425

location of Plains, GA in 2019 (Fig. 5). In this environment, the polygenic additive genetic vari-426

ation for heading date was similar to that associated with Ppd-D1. The modified architecture in a427

distinct environment suggests the presence of QTL with smaller effects conditional on photoperiod428

and vernalization signal. FT2 and Qncb.HD-5A also increased in importance in the Plains 2019429

environment, indicating that the effects of these moderate-effect QTL may also vary based on en-430

vironmental conditions. Major-effect variant Rht-D1 explained a majority of the additive genetic431

variation for plant height except in Kinston, NC in 2018 where Rht8 explained a similarly sized432

proportion of variation (Fig. 5). The relative expression of these QTL in specific environments433

plays a large role in determining the observed variation both in genotype values and in phenotypes.434
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Figure 6: Heading date and plant height characters of parental lines are mostly determined by major QTL. For both
heading date and plant height, the most phenotypically extreme individual was considered as the baseline for each
environment and compared to both the distribution of genotype values and estimated QTL effects for the difference
between two inbred lines (2α). Observed genotype values for the parental lines in each environment (dashed lines)
are compared to the cumulative effects of their alleles.

A central question of this study is if variation in these plant growth traits is largely attributable435
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to segregation of large-effect variants, or if identified variants are instead only contributing to largely436

polygenic differences in heading date and plant height. The plant height and heading date characters437

of the parental lines were found to be almost entirely determined by either major Ppd-D1 and Rht-438

D1 alleles, or cumulative effects of the stable, moderate-effect QTL identified in this study (Fig. 6).439

The transgressive segregation observed in this study, where both parents are phenotypically similar440

in terms of heading date and plant height, is being driven primarily by segregation of these major441

and moderate-effect QTL.442

For heading date, the effects of Ppd-D1 and Rht-D1 were mostly sufficient to explain the observed443

phenotypes of SS-MPV57, and the phenotypes of LA95135 were mostly explained by the QTL effects444

of earliness alleles inherited from that parent (Fig. 6). In Raleigh in 2018, Ppd-D1 has the largest445

effect, visible in the apparent bimodal distribution of genotype values. Plants in this environment446

experienced the coolest winter temperatures and had the latest mean heading dates (Table 1).447

The differences between the two parents is greatest in Plains in 2019, where the effect of Ppd-448

D1 is relatively reduced and larger effects are observed for earliness alleles inherited from LA95135.449

Plants in this environment experienced the warmest winter temperatures and had the greatest range450

in heading dates.451

For plant height, the effect of Rht-D1b largely determines the semi-dwarf character of LA95135,452

along with some contribution from novel plant height QTL on chromosome 5B. The semi-dwarf453

character of parent SS-MPV57 is largely generated by known dwarfing QTL Rht8 and the novel454

QTL on chromosome 3D, with some contribution from novel QTL on chromosomes 1A and 2B.455

QTL Models Out-Perform Genomic Selection for Oligogenic Traits456

To assess the implications of the apparent oligogenic architecture of plant growth traits, a five-457

fold cross validation approach was used comparing a standard GBLUP model using genome-wide458

GBS markers to a simple multiple-regression QTL model based on previously estimated QTL effects459

(Table 5, Table 6).460

Table 5: Prediction accuracies for heading date. Mean prediction abilities and their standard deviations estimated
from 40 replications of five-fold cross validations using QTL regression, GBLUP, QTL fixed effects plus GBLUP, Bayes
B, and Bayesian Lasso models.

Model Ral18 Kin19 Pla19
µ sd µ sd µ sd

QTL Regres. 0.67 0.010 0.63 0.015 0.60 0.004
GBLUP 0.38 0.025 0.39 0.025 0.53 0.021
QTL/GBLUP 0.70 0.008 0.66 0.010 0.64 0.008
Bayes B 0.71 0.012 0.68 0.018 0.64 0.016
Bayes Lasso 0.63 0.018 0.58 0.024 0.63 0.022

Across all environments for both phenotypes, the simple QTL regression model is nearly as pre-461

dictive as the top-performing model incorporating genome-wide marker information. The GBLUP462

model commonly used in applied wheat breeding is comparatively ineffective in predicting heading463

date and especially plant height within the biparental population. Incorporation of genomic relation-464

ship information into the QTL regression model only offers slight performance increases compared465

to the base model, suggesting the genomic relationships do not add much additional information.466

The Bayes B model, designed to allow for marker effects of zero, performs the best for heading date467

(Table 5). For plant height, the GBLUP model with QTL fixed effects is superior (Table 6). In468
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Table 6: Prediction accuracies for plant height. Mean prediction abilities and their standard deviations estimated
from 40 replications of five-fold cross validations using QTL regression, GBLUP, QTL fixed effects plus GBLUP, Bayes
B, and Bayesian Lasso models.

Model Ral18 Kin18 Kin19
µ sd µ sd µ sd

QTL Regres. 0.77 0.004 0.69 0.007 0.79 0.005
GBLUP 0.24 0.032 0.35 0.024 0.26 0.032
QTL/GBLUP 0.80 0.005 0.74 0.007 0.81 0.006
Bayes B 0.79 0.007 0.71 0.009 0.79 0.007
Bayes Lasso 0.67 0.015 0.50 0.030 0.70 0.014

general, the Bayesian Lasso model is superior to the GBLUP model but inferior to the other models,469

except for heading date in Plains in 2019 where the relative proportion of additive genetic variation470

associated with the polygenic background was the highest.471

Variation in plant growth is generated by major QTL472

Plant height variation before maturity is caused in part by differences in development related to473

heading date variation, and thus may be controlled by QTL for both mature plant height and474

heading date. Multiple measures of plant height were collected from the RIL population planted in475

Raleigh during the 2019 field season, and a longitudinal model was used to estimate plant height476

over the measured time window. Identified heading date and adult plant height QTL were fit in477

a multiple regression model to estimate the proportion of phenotypic variation in plant height on478

a given day associated with each QTL. Variation in simulated genotype values were normalized by479

total QTL variation explained, and plotted over time to assess the relative importance of QTL in480

variation in plant height over time (Fig. 7).481

As expected, the proportion of variation explained by the three adult plant height QTL (Rht-D1,482

Rht8, and Qncb.PH-3D) increases towards the end of the date range (March 29 to April 29, from near483

winter dormancy release to heading). Heading date QTL are more important than adult plant height484

QTL for early season plant height, when plants transition from vegetative to reproductive growth.485

The four heading date loci (Ppd-D1, Qncb.HD-5A, FT-A2, and Vrn-A3 ) continue to explain a large486

portion of variation in plant height as plants near heading, although their contribution diminishes487

as plants mature. Interestingly, the proportion of variation explained by QTL associated with488

Vrn-A3 and Rht8 were relatively consistent throughout development. Rht-D1, mapped as both a489

heading date and adult plant height QTL in this population, is associated with a large proportion490

of phenotypic variation throughout the date range.491

Discussion492

Unexplained Parental phenotypes result from novel QTL493

Understanding the genetic basis of plant development is critical for understanding genetic variation494

for yield. In wheat, early flowering and plant height are understood to be largely determined495

by known large-effect variants; the mutations in the DELLA protein RHT1 (reduced height 1)496

on chromosomes 4B and 4D for plant height, and variation in vernalization-response Vrn1 and497

photoperiod-response Ppd1 genes for flowering time. Breeders generally select plants with plant498
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Figure 7: Relative importance of QTL for plant height over time. QTL associated with heading date (blue and green;
Ppd-D1, Qncb.HD-5A, FT2, and Vrn-A3 ) explain over half of plant height variation associated with QTL at the
beginning of data collection, but explain only approximately a quarter thirty days after data collecting began. The
relative importance of plant height QTL (orange; Rht-D1, Rht8, and Qncb.PH-3D) increases over time.

heights and heading dates near some optimal values for their target environments, so that most499

cultivars have one of Rht-B1b or Rht-D1b but not both. In the southeastern US, most cultivars500

have some combination of early-flowering winter alleles of the Vrn1 loci and one or more insensitive501

alleles of the Ppd1 loci. Despite this, some cultivars with near-optimal values for heading date and502

plant height do not carry any known early flowering time or dwarfism alleles (for example, the two503

parents used in this study), and the relative importance of these major QTL versus other, smaller504

effect QTL in generating genetic variation for plant height and heading date is not known.505

In other crop species such as maize, the majority of additive genetic variation in heading date and506

adult plant height is generated in a polygenic manner through the combination of many small-effect,507

unmapped QTL (Buckler et al., 2009; Peiffer et al., 2014). The importance of major-effect QTL in508

wheat (and other selfing species such as rice (Huang et al., 1996)) suggests that these traits may509

have a less polygenic basis in these species. Here we developed a biparental population by crossing510

cultivar LA95135, a cultivar with a normal flowering time but no early-flowering variants other than511

the weak photoperiod insensitive allele Ppd-A1a.1, to SS-MPV57, a cultivar with a normal height512

but no known Rht1 variants. Within this population, additive genetic variation for plant growth513

phenotypes emerges from known major-effect QTL and multiple novel moderate-effect QTL, instead514

of primarily from polygenic background effects of many small-effect QTL.515

We find one plant height QTL on chromosome 2D, mapped distal to Ppd-D1, that likely represents516

Rht8. Cultivars having the Rht8 dwarfing allele are responsive to gibberrellic-acid (Korzun et al.,517

1998), and the gene has a smaller effect on plant height than reported effects of Rht-B1 and Rht-D1,518

in agreement with the allele effects estimated in this study (Rebetzke et al., 2012). Additionally,519

we propose newly characterized variants in genes FT2 and Vrn-A3 as candidates underlying QTL520

on chromosomes 3A and 7A, respectively. Additional novel plant height QTL were mapped to521

chromosomes 3D, 1A, 2B, and 5B, and additional heading date QTL to chromosomes 5A and 5B.522

When considered jointly, the effects of these QTL and Ppd-D1 and Rht-D1 are mostly sufficient to523

explain the phenotypes of the parental lines. Our ability to identify these novel QTL despite their524

comparatively small effect size may be attributable to the large population size, twice that of many525
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winter wheat RIL populations.526

Combining these moderate-effect QTL can produce plants with a short enough height and an527

early enough heading date. Like other non-Rht1 dwarfing genes, Rht8 and Qncb.PH-3D do not528

confer GA-insensitivity to SS-MPV57 (data not shown). A major limitation of the GA-insensitive529

Rht1 genes is a reduced coleoptile length, which can lead to poor emergence and weak competition.530

While lines carrying Rht8 alone are often too tall, semi-dwarf lines like SS-MPV57 produced by531

stacking Rht8 with Qncb.PH-3D may perform better than Rht1 semi-dwarfs in certain environments532

(Worland et al., 1998). The insignificant effect on plant height of Qncb.PH-3D in an Rht-D1b (semi-533

dwarf) background also reduces the potential of producing transgressive segregants that are too534

short from crosses between Rht-D1b and Qncb.PH-3D-dwarf cultivars. The position of Qncb.PH-3D535

distally on the long arm facilitates its fine-mapping, and identification of a predictive marker or the536

underlying causal polymorphisms will facilitate marker-assisted selection of this QTL in developing537

GA-sensitive semi-dwarf cultivars.538

The use of major Ppd1 and Vrn1 variants in cultivar development also has associated drawbacks.539

In both cases, the early-heading character is a result of the plant losing its ability to receive signal540

from its environment – in wild-type photoperiod-sensitive genotypes, plants use information about541

changing night lengths to flower at an appropriate time, whereas photoperiod-insensitivity activates542

this pathway constitutively. Losing the ability to respond to environmental cues may incur yield543

penalties in some situations. For example, autumn sown wheat lines with little or no vernalization544

requirement that are insensitive to photoperiod are susceptible to late spring freeze. However,545

requiring a long period of cold to potentiate flowering in environments with warm winters can result546

in delayed heading, even in lines having photoperiod insensitive alleles. This effect was observed547

in this study with the proportionally decreased effect of Ppd-D1 in the Plains environment, which548

is farther south than the other locations and has shorter nights during the wheat growing season.549

A set of early flowering QTL with different environmental triggers or of more moderate effects,550

like those mapped here, provide breeders with additional tools to develop appropriate cultivars for551

various target environments. Fine-mapping and characterization of Qncb.HD-3A, Qncb.HD-5A, and552

Qncb.HD-5B will expand the flowering time toolbox for wheat breeders.553

The oligogenic trait architecture of plant growth traits in wheat554

In wheat, genetic variation in yield is dependent on yield components (e.g. kernel weight, kernel555

number per spike, spikelets per spike) that can be influenced by disease resistance, plant height,556

and heading date, among other traits. While yield variation itself is complex, this complexity557

may arise through a combination of variation in other traits which may not necessarily have a558

polygenic architecture. We observe only a small fraction of the total genetic variation for heading559

date and plant height in this population associated with lines’ polygenic background. Even when560

not considering major-effect alleles Rht-D1 and Ppd-D1, the remaining moderate-effect QTL explain561

more than twice the additive genetic variation as the polygenic background. While it is impossible562

to extend the results of this biparental study to wheat generally, the variation in heading date and563

plant height observed in this population is similar to the range of values observed in preliminary564

yield trials in breeding populations. It is likely the case that, while the particular variants differ565

from population to population, that the genetic architecture of plant height and heading date are566

similar across breeding populations in wheat.567
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Challenges and opportunities for genotype-based prediction of plant growth568

traits569

The genetic architecture of plant growth has important implications for modern wheat breeding570

programs. Yield is the primary target of wheat breeders, and standard genomic selection models571

perform well for this trait in southeast U.S. wheat breeding programs (Sarinelli et al., 2019; Ward572

et al., 2019). Standard models shrink estimated effects of large-effect variants closer to zero, which573

will reduce accuracy of models for traits mostly conditioned by relatively few large-effect variants574

(Bernardo, 2014). Given the effects of heading date and plant height variation on generating yield575

variation in wheat, if a handful of major QTL dominate these traits they may also have large effects576

on yield, complicating assumptions of these models. At the same time, heading date and plant577

height are themselves traits of interests to breeders, who screen biparental populations to remove578

transgressive segregants for these traits.579

We show that the majority of additive genetic variation for heading date and plant height is580

controlled by large-effect QTL, such that a simple QTL model is sufficient for accurate prediction581

of phenotypes. In this case given marker information for major and moderate-effect QTL and a582

genotyped training population, a simple QTL model is likely to be effective for eliminating trans-583

gressive segregants for heading date and plant height. This model has the added benefit of being584

much cheaper than genomic selection if markers for polymorphisms linked to variants are available.585

Instead of genotyping a population of a set size with genome-wide markers, making predictions with586

genomic selection models, and then removing transgressive segregants for plant height and heading587

date, breeders can instead screen larger populations initially with simple makers for major QTL,588

and focus genotyping resources on lines predicted to be near optimal values for those secondary phe-589

notypes. While QTL mapping was necessary to identify many important QTL for prediction in the590

QTL regression model in this population, this population was constructed specifically to segregate591

for novel heading date and plant height QTL. Our expanding knowledge of variants underlying these592

oligogenic traits results in the development of breeding populations where the major QTL will be593

known and predictions for heading date and plant height can be made. If we have genotypes for the594

causal polymorphisms underlying these QTL, we can make predictions in new populations regard-595

less of their relationship to the training population lines. Fine-mapping and marker development596

for these and further novel QTL will then improve prediction models.597

Plant growth QTL and variation for source traits598

In the past few years, a number of variants impacting yield component traits that generate variation599

in sink tissues have been identified and cloned (Wang et al., 2018; Dixon et al., 2018; Kuzay et al.,600

2019; DeWitt et al., 2020). However, increasing the frequency of variants associated with larger601

grain size and number will only increase yields if plants produce sufficient carbohydrates (”source”)602

to fill those grains. Similar characterization of important QTL underlying variation in physiological603

source traits will therefore also be critical to understand the components of yield variation. Variation604

in NDVI (normalized difference vegetation index) measurements or direct biomass samples, taken605

as proxies for source availability, is related to variation in the plant growth traits studied here. Both606

heading date and adult plant height can be viewed as components of the continuous phenotype of607

plant growth over time. While adult plant height is controlled by what are termed plant height608

QTL, juvenile plant height is often understood as winter dormancy release and is largely under the609

same genetic control as heading date (Guedira et al., 2014). To understand the genetic basis of610

plant growth in this population, we measured plant height over multiple days during development.611

We showed that variation in plant growth is influenced by a combination of heading date and plant612
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height QTL. Studies of plant source traits may find it useful to consider phenotyping experiments613

for plant height and heading date as well to distinguish between QTL for heading date and plant614

height, and true source or biomass QTL. Understanding how plant height and heading date QTL615

interact to generate variation in plant growth over time will be critical to understanding how they616

impact source traits and in characterizing novel plant source QTL that can be deployed for higher617

yielding genotypes.618

Conclusions619

The polygenic nature of wheat yield results in part from major and moderate QTL for adaptation620

traits and other phenotypes that influence yield. It is therefore useful to consider and select for com-621

ponent phenotypes like disease resistance and plant growth traits that can influence yield separately,622

and to properly model these traits we need to first understand their genetic architectures. Already623

the simple genetic basis of many disease resistance genes has made MAS for disease resistance in624

wheat very useful to breeders, a success story that could be replicated with plant growth traits given625

cost-effective predictions. Here, we show that component phenotypes of plant growth over time have626

an oligogenic basis dominated by QTL of major and moderate effect that allows for their prediction627

with simple QTL regression models. The movement towards genomic selection has called into ques-628

tion the utility of fine-mapping and positional cloning studies. We demonstrate the importance of629

major QTL and the poor performance of standard models in this study, illustrating the utility of630

understanding the important variants underlying these traits and others to crop improvement.631
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