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Highlights  

● MAPPER is a fully-automated, machine learning pipeline that segments and quantifies 
morphometric features of adult Drosophila wings and works across a broad range of 
imaging conditions.  

● MAPPER provides a detailed spatial quantification of multiple types of morphometric 
features with a two-order of magnitude speed increase with respect to other wing 
analysis pipelines. 
 

● MAPPER reveals perfect interspecific scaling along the wing’s proximal-distal axis across 
four different Drosophila species. Ecological and genetic changes may exert pressure on 
overall wing size while preserving a scaling relationship between length of the proximal-
distal axis and total wing area. 

● MAPPER discovers a role of the mechanosensitive Ca2+ channel, Piezo, in the 
establishment of symmetrical and robust wing size. 
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Summary:  

Phenomics requires quantification of large volumes of image data, necessitating high throughput 
image processing approaches. Existing image processing pipelines for Drosophila wings, a 
powerful model for studying morphogenesis, are limited in speed, versatility, and precision. To 
overcome these limitations, we developed MAPPER, a fully-automated machine learning-based 
pipeline that quantifies high dimensional phenotypic signatures, with each dimension representing 
a unique morphological feature. MAPPER magnifies the power of Drosophila genetics by rapidly 
identifying subtle phenotypic differences in sample populations. To demonstrate its widespread 
utility, we used MAPPER to reveal new insights connecting patterning and growth across 
Drosophila genotypes and species. The morphological features extracted using MAPPER 
identified the presence of a uniform scaling of proximal-distal axis length across four different 
species of Drosophila. Observation of morphological features extracted by MAPPER from 
Drosophila wings by modulating insulin signaling pathway activity revealed the presence of a 
scaling gradient across the anterior-posterior axis. Additionally, batch processing of samples with 
MAPPER revealed a key function for the mechanosensitive calcium channel, Piezo, in regulating 
bilateral symmetry and robust organ growth. MAPPER is an open source tool for rapid analysis 
of large volumes of imaging data. Overall, MAPPER provides new capabilities to rigorously and 
systematically identify genotype-to-phenotype relationships in an automated, high throughput 
fashion.  
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Introduction 
The challenge of phenomics in multicellular organs. The architectural maxim of L. Sullivan 
“form follows function” is rigorously observed in many biological structures where shape is a key 
determinant of function (Sullivan 1896). Mapping the functional relationships between genotypes 
and phenotypes involves translating phenotypic data typically available as an image into a high 
dimensional space that describes key morphometric features. Quantification and subsequent 
comparison of morphometric features is crucial for identifying and explaining gene conditions 
responsible for the phenotype. Advances in imaging and machine learning (ML) empower the 
application of phenomics in a high throughput fashion due to the ease of identification of patterns 
in features (Houle et al. 2017). 

The Drosophila wing has an excellent track record for genetic screening studies and is ideal for 
phenomic studies to uncover conserved biological processes relevant to human development and 
diseases. The Drosophila wing has successfully identified genes crucial for organ development 
and relevant to human health (Buchmann, Alber, and Zartman 2014; Narciso and Zartman 2018; 
Restrepo, Zartman, and Basler 2014; Strigini and Cohen 1999; Bier 2005; K. Kim et al. 2020; 
Brock, Seto, and Smith-Bolton 2017). Further, the developing wing imaginal disc has often been 
used for studying growth, development, and tissue regeneration (Jaszczak and Halme 2016; 
Smith-Bolton et al. 2009; Hariharan and Serras 2017). The Drosophila wing blade includes five 
longitudinal veins, two cross veins, intervein trichomes, and hairs along the surface and edge of 
the wing. These visual features provide a flat readout of conserved signaling pathway activity 
(Figure 1A, Figure S1) (Bier 2005). Wing development is a systems-level process that requires 
coordinated regulation of cellular processes such as proliferation, differentiation, and 
morphogenesis (Huizar et al. 2020; Restrepo, Zartman, and Basler 2014; Neto-Silva, Wells, and 
Johnston 2009; Diaz de la Loza and Thompson 2017; De Celis 2003; O’Connor et al. 2006). The 
final shape and size of the adult wing depends on the integration of both intrinsic genetic 
regulatory network and extrinsic environmental cues such as temperature, nutrition, and 
hormones (Johnston and Gallant 2002; Parker and Struhl 2020).  

The success of the Drosophila wing as a model system for genotype-phenotype studies is due to 
its balance between structural simplicity and functional complexity. Subtle changes in the shape 
and size of the wing provide insight into conserved signaling mechanisms that occur during wing 
development (Gibson and Dworkin 2004; Kawecki et al. 2012; Matamoro-Vidal et al. 2018). 
However, most of the phenotypic studies carried out using Drosophila wings as a model system 
produce a large volume of image data. Such data traditionally has been analyzed manually or 
aided by semi-automated pipelines. Manually quantifying phenotypic features is extremely time 
consuming for large data sets produced in phenomic studies. This makes manual extraction of 
key morphometric features, such as wing size, shape, trichome density, and trichome distribution, 
impractical over the large sample sizes required to obtain reproducible results. Previous efforts 
have developed algorithms to perform high throughput analysis of these features (Dobens and 
Dobens 2013; Houle et al. 2003). However, they are still limited by a lack of computational speed, 
accuracy, and versatility in the quantification of morphometric traits and only extract a limited 
number of morphometric traits.  
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The solution presented in MAPPER and why it’s transformative. To overcome the limitations 
of manual and semi-automated platforms, we developed the Multicellular Analysis Platform for 
Engineering Research (MAPPER), a fully-automated pipeline for insect wing segmentation and 
morphometric feature extraction. MAPPER is composed of two distinct modules that operate 
sequentially. First, the pipeline employs a deep learning (DL)-based image segmentation 
platform, where we trained a convolutional neural network, U-Net, for automated identification of 
different components of the wing. The trained DL model generates segmentation masks that 
define different regions of the wing, at a much faster rate compared to conventional image 
segmentation algorithms like active contours or image thresholding. Further, the model can also 
be re-trained with new images, easily making it more generalizable for datasets belonging to 
different imaging sources, thereby allowing versatility across various research labs. Alternatively, 
users can also use ILASTIK, a ML-based pixel classifier for the same task. Following the image 
segmentation pipeline, is a k-nearest neighbor (KNN)-based machine learning classifier (Cover 
and Hart 1967) that classifies and labels each intervein region. This facilitates high throughput 
feature extraction in an organized fashion. Identification and labelling of interveins allows 
MAPPER to extract hundreds of geometrical features in a systematic and high throughput 
manner. Together, these pipelines allow MAPPER to accurately and swiftly extract large amounts 
of phenotypic data from wing imaging datasets.  

Case studies demonstrating the capability, versatility, and implementation of MAPPER. To 
benchmark MAPPER with previous wing analysis packages, we used MAPPER to confirm the 
role of insulin receptors (InsR) in regulating Drosophila wings (Brogiolo et al. 2001). While insulin 
receptors are known to regulate size, MAPPER enabled discovery of the presence of a scaling 
pattern of intervein area along the anterior-posterior (AP) axis of the wing blade in InsR-mediated 
morphogenesis. MAPPER enabled a complete systematic analysis of how wing shape varies 
across four Drosophila species: D. ananassae, D. melanogaster, D. simulans, and D. virilis. 
MAPPER’s analysis revealed subtle differences, such as the scaling relationships between 
intervein regions, that would be very difficult to obtain from manual or semi-automated platforms. 
These observations shed light in the genetic regulatory processes underlying wing shape and 
size. Finally, we used MAPPER to identify local and global shape and patterning changes that 
result from perturbations to the mechanosensitive cation channel gene Piezo, providing new 
insight into the functional roles of mechanosensitive channels in organ size regulation. MAPPER 
is open source and available in the form of an interactive GUI, thus making the tool usable to 
users with no prior experience in programming. 

Design 

Several image processing pipelines for phenotypic characterization of adult Drosophila wings 
have been proposed in the past which include open source tools like FIJIWings (Dobens and 
Dobens 2013) and WINGMACHINE (Houle et al. 2003). However, existing pipelines are 
insufficient as high throughput characterization tools, making it difficult to identify pattern-based 
variations within wing populations. Further, previous pipelines employ conventional image 
segmentation algorithms, such as thresholding, for the identification of different regions of interest 
within the wing. Such algorithms are sensitive to noise and also require tuning of algorithm-based 
parameters. Adding to this, some pipelines require the wing to be imaged in a specific orientation 
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for estimation of landmark features, further increasing the processing time involved in reorienting 
images. Recent work has proposed rotation-free estimation of landmark coordinates (Alba et al. 
2020). However, this approach does not quantify local variations in patterning of the peripheral 
shape of the wing. The existing pipelines have not fully utilized the recent advancements made 
in the field of statistical learning, which is notably advancing biomedical image analysis (Klang 
2018; M. Kim et al. 2019). MAPPER utilizes these algorithmic advances for robust high throughput 
analysis of Drosophila wings. Here, we re-calibrated a DL-based network, U-Net (Ronneberger, 
Fischer, and Brox 2015), to separate intervein and veins from the imaging background. A ML-
based classifier then labels each intervein region based on their shape. Intervein classification by 
U-Net is followed by extraction of features that describe the shape of the wing using Elliptic Fourier 
Descriptors (EFDs) (Kuhl and Giardina 1982). EFDs are defined to measure local and global 
changes in the overall shape of wing. The labeling of interveins provides an orientation-free 
classification of veins, which is followed by estimation of landmark features and anatomical axes, 
such as the proximal-distal (PD) axis and the anterior-posterior (AP) axis. MAPPER is designed 
for use by a broad user base of traditional biologists and bioengineers. MAPPER is available in 
the form of a MATLAB-based GUI for both individual and batch analysis of wings. The design of 
MAPPER also allows users with preliminary knowledge of MATLAB to integrate their custom 
functions estimating any new desired geometric feature. Details about the design, use and 
application of MAPPER are provided below (SI Section S1 - S4).  

Results 

MAPPER uses statistical learning techniques to automate identification of Drosophila wing 
features. Automation of any quantitative feature extraction pipeline depends primarily on the 
accuracy of segmentation masks. These masks are used for defining regions of interest within an 
image. Many possible regions of interest exist within an adult Drosophila wing blade including the 
interveins, the longitudinal veins, and the marginal hairs. Semi-automated wing analysis 
platforms, such as FIJIWings, make use of the trainable Weka segmentation module to identify 
these regions (Arganda-Carreras et al. 2017; Dobens and Dobens 2013). However, training these 
programs to identify the regions of interest in the Drosophila wing is time consuming and may 
need to be repeated when using images from different cameras. Alternatively, packages such as 
WINGMACHINE rely on traditional image segmentation techniques, such as image thresholding, 
where parameters need to be recalibrated for separate datasets. Additionally, conventional image 
processing algorithms face a challenge in accurate processing of wing images that might be 
obtained from variable imaging conditions, such as changes in background lighting or wing 
rotation. For example, the WINGMACHINE pipeline requires a specific wing orientation for 
extraction of landmark positions. Recent work assessing wing phenotypes used an open source 
ML-based pixel classifier ILASTIK (Sommer et al. 2011) for the task of segmenting the overall 
wing blade (Alba et al. 2020). To date, there is not a fully automated and high throughput image 
analysis pipeline that can be used for processing a broad range of phenotypes. 

Convolutional neural networks (CNNs) serve as an alternate segmentation algorithm that can be 
adapted to new identification problems (K. G. Kim 2016). As a first step, we retrained the last few 
neural network layers of a pre-trained U-Net model (Falk et al. 2019; Ronneberger, Fischer, and 
Brox 2015; Zhou et al. 2018), which is a DL-based image segmentation pipeline for identifying 
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different regions of interest within the adult wing. U-Net was chosen for this task due to the fact 
that the network relies on data augmentation for efficient use of annotated samples. This process 
leads to a reduction in the size of the training dataset. In this effort, we used a batch size of 
approximately 1,000 Drosophila wings as the initial training dataset (Kumar et al., in preparation). 
Details about the images used for training, along with the training implementation, are provided 
in the methods and SI section S1. 

This training process annotates four different regions within an image. These regional classes 
are: the non-wing background, the intervein regions, the veins, and the periphery hairs (Figure 
1B). Training U-Net through PyTorch using a GPU (Ketkar 2017) resulted in a deployable model 
with an overall accuracy of 95% (Figure 1C’). The U-Net model was trained to be compatible for 
images either taken using a medical slide scanner or EVOS microscope for RGB channel images 
at magnification of 4x or higher (Figure 1D). For images at lower resolution and grayscale images, 
we used the open source ML-based pixel classifier ILASTIK to generate segmentation masks 
(Sommer et al. 2011). The ILASTIK toolkit extracted 37 features for each color channel within 
each pixel. These features included intensity, edge-detection, and texture features. Following the 
extraction step, a random forest classifier from sci-kit learn was used to obtain a consensus 
classification for each pixel (Pedregosa et al., n.d.). When training MAPPER, ground truth images 
are added iteratively to reduce the calculated uncertainty of each pixel until the calculated 
uncertainty reaches a minimum threshold desired by the user (Figure 1E). This segmentation 
mask is then imported into the custom pipeline of MAPPER for high throughput morphometric 
quantification of features. Full details on training the image segmentation pipeline are provided in 
SI section S1. 

MAPPER provides multiplexed analysis tools for high dimensional morphological 
features. A key feature of MAPPER is the classification of individual intervein region based on 
geometric and shape features. This is carried out by training a ML-based intervein classifier that 
takes unlabelled intervein regions from the segmentation mask as an input and classifies them 
according to their location in the adult Drosophila wing (Figure S1). Using these labelled 
interveins, MAPPER then identifies individual veins, intervein regions, and extracts wing shape 
features (SI section S3). The systematic labeling of interveins also allows construction of 
quantified phenomes that can establish geometric similarities and dissimilarities between 
disparate wing samples. 

Segmentation masks generated either by U-Net or ILASTIK are imported into a custom MATLAB 
pipeline that fills holes, smoothens the edges, and identifies continuous intervein regions. For 
training a ML-based intervein classifier, morphological features were first extracted for each 
manually labelled intervein (defined in Figure 2A). EFD-based shape descriptors were first 
extracted for each intervein to train the classifier (Kuhl and Giardina 1982). The key advantage of 
using such a framework is that EFDs produce a robust translational and rotation invariant 
representation of the intervein shape (Kuhl and Giardina 1982). 

EFDs are determined by fitting a Fourier series to the periodic function obtained from the closed 
Drosophila intervein contour (Figure S3). The accuracy of an EFD fit varies with the number of 
harmonics used in the expansion. We fitted EFDs to the seven intervein regions of a wildtype 
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wing to estimate the appropriate number of coefficients required for an accurate representation 
of shape. The error between the actual contour and the shape approximated by the EFD 
decreased as the number of terms in the EFD increased (Figure S3B). The first ten terms of the 
EFD were selected for representing the shape of each intervein. 

In addition to the EFDs, we also extracted basic geometrical properties of the intervein regions 
including: the ratio of an individual intervein area with respect to the area of the whole wing, the 
circularity of the region of interest (ROI), and the aspect ratio of each intervein region. Extracted 
EFD coefficients alongside the geometric features of individual interveins were used to train 
separate models for the task of intervein classification (Figure 2A). This prevents overfitting and 
selects the set of features that can be used best to classify the interveins. We found that a KNN-
based classifier offers the best cross-validation accuracy of the eleven different support vector 
machine (SVM) and KNN classification methods tested (Figure S4C). The confusion matrix, which 
defines the accuracy of the classifier, is shown in Figure S4D. Overall, the KNN classifier reported 
an accuracy of about 92.5% when trained on EFD-based features and 99.2% when trained on 
the geometric features of each intervein.  

Based on this, we used intervein classification scheme based on geometric features for 
classification of interveins to analyze images (Figure 2A). In summary, for any new segmentation 
mask, the geometric features described above are extracted from each intervein. The features 
are then passed into the trained intervein classification model that classifies and labels each 
intervein region.  

The unique labelling of interveins is followed by a series of operations to extract morphological 
features from the wing blade (SI section S3). The approach also systematically extracts more 
localized geometric features that can be used for phenomic analysis. One of the key features 
extracted using MAPPER are the EFD coefficients for the wing periphery (SI section S3D, Figure 
S6). For this particular step, the EFDs were not normalized against size for quantification of 
changes in area of the wing. To do so, we modified the original algorithm so that the EFDs 
produced are sensitive to size changes. This is accomplished by removing the normalization step 
in previous MATLAB code (Thomas 2020) where the EFD coefficients are normalized by the semi-
major axis of the first ellipse (SI section S3). The coefficients of the Fourier series act as additional 
features, each of them carrying a local shape property. These coefficients can not only be used 
for screening local shape changes within the wing, but also can be used to estimate an average 
shape for a particular genotype. Another unique advantage of MAPPER is that it quantifies 
anatomical axes such as the AP and the PD axis of the wing blade (Figure 2C-D). The labelled 
interveins are used to delineate the L2, L3, L4 and L5 veins along with the cross veins (Figure S5). 
Identification of veins is also accompanied by quantification of landmark positions within the wing 
and consequently the anatomical axes. In summary, MAPPER extracts a high dimensional 
fingerprint consisting of Drosophila wing specific morphological features in a high throughput 
manner. 

Representative statistical approaches for phenotypic analysis. In this section, we describe a 
series of statistical techniques for probing and analyzing the variation in phenotypic traits within 
and between wing populations of wings. For this analysis, we processed 128 adult wing images 
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of Drosophila melanogaster from the Samarkand strain using the GUI-based interface of 
MAPPER (Figure 3, Figure S10) (Sonnenschein et al. 2015).  

The high dimensional morphometric fingerprint generated by MAPPER separates the male and 
female population of wings (Figure 2E,G). The sex-based difference in patterning and size of adult 
Drosophila melanogaster wing is known and well studied (Testa and Dworkin 2016). We also 
show that the EFD-based features can be used to probe into this sex-related shape changes more 
locally (Figure 2H). To highlight this utility of EFDs, it was separately analyzed from the geometric 
features. First, Principal Component Analysis (PCA) (Wold, Esbensen, and Geladi 1987) carried 
out on the geometric features revealed that the maximum variance within data was distributed 
majorly between the first two principal components (89.4%) (Figure 2E, Figure S10C-D). Analysis 
of the loadings for the first principal component showed that overall wing blade area explains the 
majority of major variance within the data.  

As expected, the area of the female wing was significantly larger than a male wing (p-value < 
0.001) (Figure 2F). A plot of the first two principal components shows the two distinct clusters of 
male and female populations (Figure 2E). Further, PCA applied on the EFD coefficients revealed 
a total variance of about 97% distributed along PC1 alone (Figure 2G). The observed variance 
along PC1 is attributed to the known overall size differences between the male and female 
population of wings (Figure 2H). Clustering carried out on the first two principal components using 
Gaussian Mixture Models (Yang, Lai, and Lin 2012) (GMM) was also able to distinguish the male 
and female population of wings (Figure 2G). The mean shapes of each cluster can also be used 
to highlight shape changes between the male and female populations more locally. We used the 
mean contours of each population and measured variation peripheral growth along the normal 
direction (Figure 2I). There was more growth along the PD axis as compared to the AP axis, which 
is necessary for maintaining a uniform scaling of these anatomical axes with overall size of wing 
blade (Figure S11). This uniform scaling also confirms that the normalized length of the AP na 
DV axis is equal for both the male and female wings. We explored these scaling relationships in 
more detail in the first case study conducted on wings belonging from four species of Drosophila. 
Details about the statistical techniques followed in analysis of this dataset are included in the SI 
(SI section S5). 

In summary, the high dimensional feature set generated by MAPPER distinguishes different 
populations of wing morphologies or shapes. Implementing these approaches demonstrates size 
and shape differences between male and female populations of Drosophila via systematic 
analysis of features extracted. In particular, females had significantly larger wings (p-value < 
0.001) consistent with sexual dimorphism of insulin signaling activity (Testa and Dworkin 2016) 
while males had significantly larger trichome densities (p-value < 0.001). We also show how 
variable regulation of growth is necessary for maintaining perfect scaling of anatomical axes such 
as the AP axis and PD axis of the wing. This analysis was done despite the wing images being 
imaged at different rotations via the MATLAB-based MAPPER application.  

MAPPER provides fast, precise segmentation and extraction of wing morphologies. We 
validated MAPPER’s performance through a systematic comparison of metrics such as wing 
blade area and trichome density. To do so, we benchmarked MAPPER and FIJIWings with a data 
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set of wings of varying size generated by genetically perturbing insulin signaling. Insulin and 
insulin-like growth factors regulate metabolic activity (Belfiore et al. 2009; Kurtzhals et al. 2000; 
Samani et al. 2007). Dysregulation of insulin signaling causes a variety of human diseases 
including diabetes, insulinoma, metabolic syndrome, ovary syndrome, and auto-immune 
disorders (Dunaif et al. 1989; Kahn, Hull, and Utzschneider 2006; Wang et al. 2017). In 
Drosophila, the InsR homolog regulates cellular proliferation (Brogiolo et al. 2001). Loss of 
function of InsR in wing imaginal discs reduces final wing size (Chen, Jack, and Garofalo 1996).  

As expected, quantification of wing size and trichome number shows that activation of InsR 
signaling increases wing size and trichome number. Conversely, suppression of InsR signaling 
reduces wing size and trichome number (Brogiolo et al. 2001). The overall area of wings along 
with their trichome densities were comparable when they were measured through FIJIWings and 
MAPPER (Figure 4B, Figure 4C). FIJIWings tended to over-segment tissues as regions 
containing marginal wing hairs were often misclassified as intervein regions (Figure 4A). This was 
not observed in any of the segmentation masks produced by MAPPER. Additionally, MAPPER 
processed images faster than FIJIWings by two orders of magnitude, thereby enabling high 
throughput screening applications (Figure 4D). The areas estimated by each tool, respectively, 
were comparable with manual measurements. A line with slope of 1.03 ± 0.0041 (R2: 0.99) was 
obtained for the fit of MAPPER measurements versus measurements by hand, confirming the 
accuracy of MAPPER (Figure 4E).  

Further, MAPPER distinguished and classified the individual intervein regions to output 
geometrical statistics for the labelled components. This feature extraction capability is unique to 
MAPPER. This new capability allowed us to explore how individual intervein regions scaled with 
an overall increase or decrease in wing area resulting from perturbations in the insulin signaling 
pathway. In particular, we observed differences in scaling factors corresponding to changes in 
intervein area I3 and I5 (p-value = 0.0077) with respect to change in overall wing blade area (Figure 
4H). This result indicates a possibility of differential regulation of the insulin signaling pathway in 
controlling growth within individual regions of Drosophila wing imaginal discs. This analysis was 
carried out by first plotting the area of each intervein region against the overall wing blade region. 
A straight line was then fit to these data points (R2 of fits included in Figure 4G). High values of 
R2 indicate that the growth of each intervein was linear in response to overall growth. To evaluate 
the percentage growth or size change of individual interveins, we also re-evaluated the scaling 
relationships by normalizing the area of each intervein with the overall area of wing blade (Figure 
4G). Comparing the slope of the fit lines reveals a minima in the degree of scaling, for the 
normalized data, as one moves towards the center of the wing from I1 and I5 towards I3 (Figure 
4H). This might indicate that intervein area scaling depends on the morphogen regulated 
transcription-factors defining intervein regions in the wing. The existence of this gradient in 
regional scaling suggests coupling of insulin signaling regulatory activity with tissue patterning 
function. Taken together, these results not only validate the accuracy and speed of MAPPER, but 
also highlight how its improved methodology can discover high-dimensional scaling relationships 
under a broad range of genotypic perturbations.  

Case Study I: MAPPER reveals species-specific differences in wing size and pattern. We 
used MAPPER to quantify morphometric phenotypes of wings in four species: D. melanogaster, 
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D. simulans (a species in the melanogaster subgroup), D.ananassae (a species in the 
melanogaster group), and D. virilis (a species outside the melanogaster group (Lage et al. 2007). 
We measured the total wing area in male and female individuals in each of these species (Figure 
5A). Wing area was revealed to be larger in females when compared to males in D. melanogaster, 
D. simulans, and D. ananassae. However, in D. virilis adult wings are larger in males than in 
females (Figure 5A,B). Next, we examined vein patterns. While wings in all species have the 
same venation pattern (Figure 5A), as revealed by statistically similar intervein areas relative to 
total wing area (Figure S8A), we found size-independent differences among species, especially 
in females (Figure S8A). More specifically, by measuring two different segments of the 
longitudinal vein L5 (Figure 5C), we observed that the relative location of the posterior cross-vein 
that connects the longitudinal veins L4 and L5 is approximately the same for D. melanogaster and 
D. simulans, but is located more distally in D. ananassae and D. virilis (Figure 5C’, Figure S8B). 
We also found species-specific differences in the relative areas of anterior (A) and posterior (P) 
regions of the wing (Figure 5D). In D. simulans and D. ananassae the A and P regions are 
approximately of the same size, but in D. melanogaster and D. virilis the P region is about 10% 
and 20% larger than the A region, respectively (p-value < 0.001) (Figure 5D’, Figure S8C). Details 
about the tests for determining the statistical significance of these comparisons can be found in 
the SI section S6 while individual p-values are listed in Figure S9. It should be noted that the 
dataset analyzed for this analysis did not have sufficient resolution for analysis of trichome density 
patterns. 

Drosophila wings show a conserved and robust interspecies scaling relationship along 
their PD axis, but not along the AP axis. We further examined how the PD and AP axes scale 
within and across species. Along the PD axis, all species follow a similar linear scaling relationship 
with respect to the square root of the total wing area (Figure 5E), suggesting that there is strong 
selection in maintaining a proportional PD length across species. Along the AP axis, we also 
observe a linear scaling relationship for the AP length, but the slopes vary from species to species 
(Figure 5F). To further explore these results, we plotted the ratio of the PD and AP axes lengths 
and found that D. ananassae and D. virilis have a slight but significantly larger ratio than D. 
simulans and D. melanogaster (Figure 5G, Figure S8D). Taken together, these data suggest that 
the length of the AP axis in D. ananassae and D. virilis is significantly shorter compared to that of 
D. simulans and D. melanogaster. Since we see changes between these pairs of species, but not 
within the species of each pair, our results suggest that the length of the AP axis evolved with the 
phylogenetic split between these pairs of species (Figure 5A).  

In Drosophila, the AP axis is patterned by two morphogens: Hedgehog (Hh) and Decapentaplegic 
(Figure 1A) (Dpp) (Blair 2007). Hh patterns the most central region (L3-L4 veins) (Vervoort et al. 
1999)(Mohler et al. 2000)), whereas Dpp patterns the positions of L2 and L5 (Affolter and Basler 
2007; Restrepo, Zartman, and Basler 2014). To pinpoint whether the changes we see along the 
AP axis could be attributed to any of these signaling pathways, we compared the L3-L4 intervein 
area in these species (Figure 5H). We found that these similarly scale in all four species, 
suggesting that it is unlikely that these differences are due to variations in the regulation of the Hh 
signaling pathway. Interestingly however, the areas comprising veins L2 and L5 with respect to the 
wing margin appear to scale differently across species (Figure S8A), suggesting that Dpp 
signaling dynamics diverged during speciation to modulate the proportions of these wings along 
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the AP axis. As a prediction for future studies, these results are suggestive that Dpp transport 
and/or transduction is variable while Hh is not across species. In sum, MAPPER proved to be a 
powerful toolkit for identifying new morphogenetic relationships across Drosophila species. 

Case Study II: The mechanosensitive Ca2+ channel Dmpiezo regulates left-right size 
symmetry in adult Drosophila wings. In an ongoing parallel study, we have been screening 
genetic candidates that may be novel modulators of wing morphogenesis (Kumar et al., in 
preparation). Here, we highlight the use of MAPPER in identifying surprising and interesting 
insights into the roles of Ca2+ channels in regulating wing sizes. Previous studies found a single 
homologue to the mammalian Piezo1 in Drosophila (Coste et al. 2012). We used the GAL4-UAS 
binary gene expression system to either knockdown or overexpress Dmpiezo channels via a wing 
imaginal disc tissue-specific GAL4 driver. We also characterized the Dmpiezo knockout line 
(BDRC #58770) for a comparison with the GAL4-UAS mediated perturbations. Interestingly, 
Dmpiezo wings did not show any severe phenotypic traits (Figure 6A). Additionally, the mean 
area of wings resulting from Dmpiezo knockout remained unchanged when compared with the 
parental lines used for generating the knockout. Surprisingly, the Dmpiezo KO wings showed a 
significant increase in the within population variance of wing sizes (p-value < 0.05) and 
dysregulated left-right symmetry in size of the sister wings (Figure 6F,G,I). The difference in the 
sizes of sister wings was normalized by the mean wing area of the whole population. A knockout 
of Dmpiezo resulted in a higher incidence of cases where the difference between the areas of 
sister wings was significantly larger than the control parental lines, with multiple instances of large 
asymmetries between sister wings (Figure 6I).  

Interestingly, MAPPER also revealed that these differences in the area of sister wings correlates 
with the differences in the trichome densities (Figure 6F, Figure 6G). Taken together, these results 
suggest that Dmpiezo has a significant role in regulating the left-right asymmetry and robustness 
in organ size growth of Drosophila wings. To further test whether Dmpiezo regulates bidirectional 
symmetry in patterning of adult Drosophila wings, we knocked down the mRNA expression of 
Dmpiezo in the dorsal compartment of the wing imaginal disc with Apterous GAL4>Dmpiezo RNAi 
(BDRC#105132). RNAi inhibition of Dmpiezo led to an adult with severe, but different 
morphological defects in sister wings (Figure 6H). Surprisingly, the severity of phenotypic traits 
was different between the knockout versus the knockdown lines. This suggests a possibility of 
genetic compensation where a similarly functioning gene takes up the role of the downregulated 
component (Song et al. 2019). Another explanation for these differences is a possible RNAi 
mediated off target effect. However, BDRC does not report any predicted off target effects with 
the UAS-Dmpiezo RNAi line used. We also used two commercially available overexpression lines 
(BDRC #58772, BDRC#58773) to overexpress these receptors in the wing imaginal disc pouch. 
An overexpression of Dmpiezo channels led to a reduction in overall wing blade area. Both the 
overexpression lines resulted in adult wings with nearly 25% reduced size (p-value < 0.001) as 
compared to the MS1096>RyRRNAi control (Figure 6A). The reduction in wing size was also 
accompanied by high incidences of missing anterior cross veins (Figure 6A, C). 

Currently, the exact mechanism by which Piezo-stimulated calcium signaling regulates 
robustness in growth and patterning is still unclear. However, these results indicate a novel role 
of Dmpiezo in regulating Drosophila wing development and consequently epithelial 
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morphogenesis. Here, MAPPER provided a high throughput and accurate determination of the 
size and trichome densities of hundreds of wing images in a very short amount of time. This type 
of analysis would not have been feasible without MAPPER’s automated batch processing 
capabilities and fast computational speeds. 

Discussion 

Features and strengths of MAPPER. Conventional image processing techniques are often 
unable to process images of model organism morphologies that have been generated with 
different imaging systems. For example, traditional image processing pipelines have difficulty 
analyzing images taken with multiple different lens objectives, lighting conditions, or rotational 
orientations. As such, these pipelines often fail at accurately processing images beyond the initial 
dataset for which it has been developed. 

Additionally, the number of morphometric features that are extracted are low dimensional, making 
them unsuitable for detecting subtle quantitative changes. MAPPER supersedes previous 
pipelines by using a statistical learning framework with the latest computer vision and machine 
learning approaches. A key feature of MAPPER is its hybrid, modular framework. The first 
component is a DL-based pixel classification module that segments individual regions of wings. 
The second module labels each intervein region according to its shape-based features. In 
conjunction, these individual pipelines allow MAPPER to generate a wide variety of geometrical 
and pattern-based features of wing images. Further, using the statistical learning algorithms in 
the pipeline also help in increasing the overall computational speed in processing wing images. 
The precise labelling of interveins allows for reconstruction of veins and automated extraction of 
landmark-based measurements, such as the AP and PD axes. In summary, the coupling of two 
modules with an integrated diverse class of functions, automates the systematic generation of 
high dimensional geometric and pattern-based features for a large volume of wing image data.  

Implications of insights and new hypotheses generated by MAPPER. Our analysis of adult 
wings in different Drosophila species using MAPPER reveals two key observations. First, we 
noticed a reversal in sexual dimorphism when comparing species within the melanogaster group 
with D. virilis. Particularly, wings of D. melanogaster, D. simulans, and D. ananassae are larger 
in females than in males. However, in D. virilis the opposite phenotype is observed (Figure 5A-
B). How wing size is differentially regulated in a sex-specific manner across species is unclear, 
but our data suggest that the dimorphism that makes female wings larger than male wings arose 
at some point in the divergence between the melanogaster and virilis groups. Second, the length 
of the wing PD axis across species and sexes shows a conserved scaling relationship with respect 
to wing size (Figure 5E), suggesting that while ecological and genetic changes may exert pressure 
on overall wing size, preserving a scaling relationship between length of the PD axis and total 
wing area in all species may be essential. In contrast, the AP axis in D. ananassae and D. virilis 
is smaller with respect to what would be predicted from the scaling relationship of D. melanogaster 
and D. simulans (Figure 5F). Since BMP/Dpp signaling is responsible for patterning and growth 
along this axis, we predict the variation in this pathway between species can explain the larger 
AP axis in D. melanogaster and D. simulans. Variation in Dpp pathway activities between species 
may also explain why the posterior cross vein is located more distally in D. ananassae and D. 
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virilis compared to D. melanogaster and D. simulans (Figure 5C-C’). This is because the 
specification of the posterior cross vein depends on pupal BMP signaling driven by Dpp and 
Glass-bottom-boat (Gbb) ligands (Ray and Wharton 2001). 

Bidirectional symmetry in growth and patterning of the left and right axis of development has 
received significant attention in vertebrates and higher level of organisms (Martindale and Henry 
1998; Holló 2015), but the pathways and mechanisms through which this symmetry is maintained 
during morphogenesis is still unclear. Here, the high throughput processing capabilities of 
MAPPER led to discovery of a surprising new role of Dmpiezo in regulating symmetrical and 
robust wing size control. Previous studies have established Piezo, a mechanosensitive Ca2+ 
channel, as one of the key regulators of epithelial morphogenesis in mammals (Eisenhoffer et al. 
2012; Gudipaty et al. 2017). Surprisingly, knockout of Dmpiezo in Drosophila leads to viable adults 
with no qualitative morphological phenotypes. Surprisingly, MAPPER enabled us to determine 
that loss of function of Dmpiezo in the adult fly significantly increased variability in wing area 
compared to the parental lines used to generate the knockout (Figure 6A). The striking variability 
phenotype is reminiscent of cell competition phenotypes (Brás-Pereira and Moreno 2018). 
Additionally, Piezo regulates cell extrusion and proliferation in a developing zebrafish tail fin 
(Eisenhoffer et al. 2012; Gudipaty et al. 2017). Based on this, we hypothesize that Piezo regulates 
robustness in cell cycle progression, thereby regulating the robustness in the patterning and the 
final size of the organ. Adding to this, MAPPER was also used to determine that the difference in 
final wing blade size between sister wings was greater than 1% for approximately one quarter of 
all flies with homozygous loss of Dmpiezo. One explanation for this observation lies in the fact 
that Piezo induces both proliferation and extrusion (Piddini 2017). Additionally, mutations in the 
gene Hid, a regulator of cell competition induced cell death, increases bilateral asymmetry 
between the adult wings of Drosophila (Neto-Silva, Wells, and Johnston 2009). Ultimately, the 
ability for Piezo to regulate both cell extrusion and cell proliferation would be biologically beneficial 
to an organism because malfunction of Piezo would not result in a strong directional effect towards 
either larger or smaller tissue size in most circumstances (Piddini 2017). Piezo, therefore, can be 
inferred to be needed in correcting improper development.  

Additional results obtained by MAPPER suggest that wing-specific knockdown of Dmpiezo, via 
mRNA degradation, results in a reduction of final wing size (p-value < 0.001, Figure 6B). This 
poses an interesting question: what is the mechanism that causes the reduction of final wing size 
with downregulation of Dmpiezo? One of the possibilities is that Piezo may be responsible for 
regulating cell proliferation. Loss of Dmpiezo can result in a loss of stretch induced mitosis, thus 
reducing the overall size of wing. Integrated calcium intensity over time is another factor that has 
been established to be correlated with final organ size (Brodskiy et al. 2019). Hence Dmpiezo 
may also be responsible in regulating final organ size through a regulation of intracellular calcium 
dynamics. A key question for future investigation is resolving -the difference in severity of 
phenotypes between the Dmpiezo knockout and RNAi induced Dmpiezo knockdown lines. The 
adult wings in a complete Piezo knockout line looked qualitatively normal, while RNAi mediated 
knockdown of Piezo resulted in wings with severe phenotypic defects. This difference may be 
attributed to genetic compensation as a result of the total knockout of the Piezo gene. Previous 
studies also suggest that genetic compensation counteracts the effects of a knockout of Piezo in 
neural cells (Song et al. 2019). Many questions about the relationship between Piezo, calcium 
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signaling, and regulation of the cell cycle still remain. Currently, the mechanism by which Piezo 
stimulated calcium signaling can result in both cell extrusion, as well as cell proliferation remains 
unclear.  

Current limitations and future extensions. The new findings from these case studies 
demonstrate that, in the current age of big data phenomics, manual phenotypic characterization 
provides an incomplete characterization of phenotypic variation in samples. Here we present a 
novel, hybrid ML-based approach that was used to automate high throughput processing of adult 
Drosophila wings. The image segmentation capabilities of MAPPER can be easily extended to 
any insect wing by using training datasets from different imaging sources and multiple insect 
species. One of the greatest strengths of MAPPER is its automated intervein classification 
module. In the future, MAPPER can also be adapted to perform phenotypic analysis at a whole 
organism level. Recently, there have been several attempts to extend depth of field and multi-
view imaging of insects (Ströbel et al. 2018). The advancements in the field of DL-based 
smartphone imaging has allowed smartphones to be used for the acquisition of multiview 
datasets. Integration of algorithms such as Multi-View Deep Extreme Learning Machine (MVD-
ELM) can easily be used for the task of 3D segmentation of specific organs (Ahmed et al. 2018; 
Xie et al. 2015). In summary, MAPPER provides new capabilities to rigorously fit form to functions 
for a broad range of applications ranging from comparative genomics, drug target discovery, and 
phenotypic screening. 

Experimental Procedures 

Fly culture, wing collection, and imaging. Wing-specific GAL4 drivers were grown at 25oC. Virgins were 
collected twice a day from the bottles. Virgins were crossed with males that carry the indicated UAS-TRiP 
line constructs in a ratio of female:male of 10:3. Adult flies were harvested within 7 days of enclosure and 
wings were removed. Wings were mounted on microscopy slides to obtain high resolution images (analysis 
has been extended to all of the wings: 360 wings analyzed in different case studies for this paper). Wings 
were placed in ethanol, and approximately 15 wings were mounted on each slide in Permount medium 
(Fisher Scientific, SP15) using standard procedures. For the case study I involving wings from four 
Drosophila species, the wings were incubated overnight in 70% ethanol.For the case study related to InsR, 
slides were batch-imaged using an Aperio (Leica) slide scanner at 5X and 20X magnification (Courtesy of 
South Bend Medical Foundation). Slide scans were obtained in SVS format which allows rapid visualization 
of large, high-magnification images at various scales. To further analyze the data, these files were 
converted into TIF format using reaConverter 7 Standard (reasoft). Images were segmented using ILASTIK. 
A custom MATLAB script was used to identify the position and orientation of wings. Individual wings were 
rotated and flipped to the canonical orientation (Top: Anterior, Bottom: Posterior, Left: Proximal, Right: 
Distal), and then the edges of the image were cropped. The size of the cropping box was determined using 
the dimensions of the ILASTIK generated segmentation mask. Wings of different Drosophila species (case 
study I) were imaged using a Nikon Eclipse Ci-S microscope using a Jenoptik ProgRes® monochromatic 
camera and the ProgRes® Capture Pro 2.9 software. Wings analyzed for case study II were imaged using 
an EVOS microscope. 

 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.12.16.422888doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.16.422888


16 

Fly lines  

Fly lines Source Stock 
# 

Genotype 

MS1096-GAL4, 
UAS Dcr2 

BDRC 25706 w[1118] P{w[+mW.hs] =GawB}B x[MS1096]; 
P{w[+mC]=UAS-Dcr-2.D}2 

Nub-GAL4, UAS-
GCaMP6f 

(Brodskiy 
et al. 2019) 

N/A nub-GAL4,UAS-GCaMP6f/CyO 

Dmpiezo VDRC 10513
2 

P{KK101815}VIE-260B 

UAS-piezo::GFP BDRC 58772 w[*];P{w[+mC]=UAS-Piezo.GFP}IIA-2/CyO;MKRS/TM6B, 
Tb[1] 

UAS-piezo::GFP BDRC 58773 w[*]; sna[Sco]/CyO; P{w[+mC] = UAS - Piezo 
.GFP}IIIA/TM6B, Tb[1] ,  

 Pbac Piezo BDRC 58770 PBac{w[+mC]=RB5.WH5}Piezo[KO] 

UAS-Rya-r44F 
RNAi 

BDRC 31540 y[1] v[1]; P{y[+t7.7] v[+t1.8]= TRiP.JF01100 }attP2 

UAS-Insulin 
Receptor 
(dominant 
negative) 

BDRC 8248 y[1] w[1118]; P{w[+mC]=UAS-InR.del}2 

UAS-Insulin 
Receptor 

(constitutively 
active) 

BDRC 8252 y[1] w[1118]; P{w[+mC]=UAS-InR.K1409A}2 

 

Fly lines used for case study I 

Fly lines Source Stock # 

D.ananassae Drosophila Species Stock Center. 
University of California, San Diego 

14024-0371.00 

D. simulans Drosophila Species Stock Center. 
University of California, San Diego 

14021-0251.261 

D.melanogaster y, w obtained from the lab of Dr. 
Fanis Missirlis, Cinvestav, Mexico 

NA 
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D. virilis Drosophila Species Stock Center. 
University of California, San Diego 

15010-1051.87 
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Figures.

 

Figure 1. MAPPER automates segmentation of wings. (A) Overview of MAPPER where a Drosophila 
wing imaginal disc is regulated by various genes (Campbell, Weaver, and Tomlinson 1993; Boutros 
and Mlodzik 1999; Williams, Bell, and Carroll 1991; Gomez-Skarmeta et al. 1996), and becomes 
an adult wing blade through morphogenesis. The coupled image segmentation and intervein classification 
processes of MAPPER enables morphological feature extraction. (B) Image segmentation of adult 
Drosophila wings (left) is carried out for identification and labelling of different regions of interest (right) 
within the adult wing blade. Two methods of training are available: 1. The Trained U-Net or 2. ILASTIK. (C) 
MAPPER utilizes the U-Net architecture, which consists of convolutional layers for feature extraction, 
followed by deconvolution layers to achieve pixel- level prediction. Confusion matrix showing pixel 
classification accuracy for a U-net trained to identify different regions of interest. The numbers in the boxes 
represent the prediction accuracy for classification of a pixel into a class represented in the vertical labels 
against the true class in the horizontal labels. (D) Sample wings from different imaging sources that can be 
processed by a trained U-net model. (E) Schematic describing methodology followed by ILASTIK, an open 
source pixel classifier, for the purpose of pixel classification. 
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Figure 2. MAPPER automates classification and extraction of an ultrahigh (>100) dimensional 
morphological feature set. (A) During training, each intervein region identified through U-Net was 
manually labelled. EFD features along with the geometric features were extracted from the labelled intervein 
regions to train a machine learning (ML)-based classifier. This trained model then identifies the intervein 
regions based on the input binary mask and the associated features of each intervein region. Edge cases 
of ACV/PCV and marginal L5 defects were included in the analysis. (B) Male and Female wings from the 
Drosophila melanogaster Samarkand strain were analyzed to show the phenotypic profiling using an 
ultrahigh dimensional morphological feature set ((Sonnenschein et al. 2015)). The sample size of each 
population has been listed on top of wing images. (C) MAPPER processed the raw wings. (D) MAPPER 
generates a wide number of geometric features and extracts EFD coefficients fit to the wing margin. (E) 
PCA carried out on the geometric features extracted using MAPPER reveals the largest variance in the 
data observed in terms of overall wing area and trichome density. Clustering carried out on the first two 
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principal components also revealed two distinct clusters isolated based on features extracted using 
MAPPER. (F) Violin plot showing the distribution of area of male and female wings. Solid red line indicates 
the median and solid black line indicates the mean of each population. (G) PCA on EFD revealed most of 
the variance in the data concentrated only in the first principal component. A clustering operation also 
revealed the presence of two distinct clusters representing populations of male and female. (H) Standard 
deviation in the direction of PC1 was calculated for the entire population of wings. PC1 was varied by adding 
and subtracting 1.5 times the standard deviation along PC1. Reverse PCA was then used to obtain the 
desired EFD coefficients in which the contours were reconstructed. (I) EFD was used to construct mean 
wing shapes representing the male and female populations. 100 points were sampled from the male wing 
and their minimum distance from the female wing was calculated to quantify local size differences within 
the two populations. The variation of size is drawn as a bar graph where the x axis is representative of the 
points sampled in male wing. Location of points sampled is indicated in the plot. 
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Figure 3. MAPPER application. The MATLAB MAPPER application allows for individual (A-B) and batch 
(D-C) processing of adult Drosophila wings. Details about the app interface and its use can be found in the 
SI text. 
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Figure 4. MAPPER provides precise segmentation and extraction of wing morphology. (A) MAPPER 
automates identification and labeling of the individual intervein components with high accuracy. InsRDN is 
the dominant negative form of insulin receptor and InsRCA is the constitutively active insulin receptor. 
RyRRNAi is the GAL4-UAS knockdown of the ryanodine receptor, which is not expressed in the wing disc. 
Full genotypes are the MS1096-Gal4 lines crossed to each of the indicated UAS lines. (B), (C) Comparison 
of wing area and number of trichomes, respectively, as calculated by MAPPER and FIJIWings. Error Bars 
indicate standard deviation in measurements. (D) The computational time of MAPPER is two orders of 
magnitude faster than FIJIWings. (E) Measurements of wing blade area done by MAPPER versus 
measurement of wing blade area done by hand. The slope and R2 values indicate that MAPPER produces 
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identical values to those produced by hand. (F) Perturbations in InsR lead to variation of area of intervein 
regions when scaled to overall change in wing blade area. Linear regression was used to fit straight lines 
that show the scaling relationships for individual compartments. Line color corresponds to the intervein 
regions in the inset of the graph. (G) Variation of area of each intervein region scaled by mean area of the 
population with overall change in area of the wing blade. (H) Slopes of lines fit to data points in G. This 
clarifies the role of insulin signaling in maintaining proper scaling relationships between intervein regions. 
N.S. indicates no statistical difference between comparisons. 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.12.16.422888doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.16.422888


24 

 

Figure 5. MAPPER identifies differences in wing size and patterns among Drosophila species. (A) 
Representative male (right) and female (left) wings of four different species. Red contours on female wings 
represent the outline of the corresponding male wing. The dendrogram in the left is representative of 
hierarchical clustering based on different features extracted using the pipeline. (B) Quantification of wing 
areas by MAPPER for wings from different species and different sexes. (C-C’) Quantification of shift in 
posterior cross vein position in female wings (d1 is defined as the segment of L5 from the proximal end of 
the vein to posterior cross vein, d2 is defined as the segment of L5 from the posterior cross vein to the distal 
end of L5). (D-D’) Relative anterior (A) and posterior (P) areas in female wings. (E) Scaling relationships 
between the length of the proximal-distal (l(P-D)) axis and the overall wing blade area for the various 
species. Legends for different sexes have been included. Straight lines were fit to estimate the existence 
of scaling relationships for the four species. R2 of the fit line are reported in the inset. (F) Scaling 
relationships between the length of the anterior-posterior (l(A-P)) axis and the overall wing blade area for 
the four species. Straight lines were fit to estimate the existence of scaling relationships for the different 
species. R2 values of the fit line are reported in the inset. (G) The l(P-D) to l(A-P) ratio for females from 
different species. (H) Scaling relationships between the area of the intervein region between veins L3-L4 
and the overall wing blade area for the four species. Straight lines were fit to estimate the existence of 
scaling relationships for the different species. R2 values of the fit line are reported in the inset. (Refer Figure 
S9 for p-values corresponding to all comparisons. Details on the statistical tests done can be found in the 
section S5 of the SI. * p < 0.05, ** p < 0.01, *** p < 0.001.) 
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Figure 6. Piezo regulates left-right symmetry along with growth and patterning of wings. (A) 
Drosophila wings from multiple genetic perturbations related to Piezo. (B) Beeswarm plot showing 
distribution of wing area for different perturbations to Piezo. KO represents the Dmpiezo knockout line while 
P-1 and P-2 are the parents used to generate the knockout line. Piezo(a) and Piezo(b) are the two 
commercially available overexpression lines for Piezo. The overexpression was carried out using a MS-
1096 wing specific Gal4 driver. UAS-RyRRNAi crossed with the MS-1096 Gal4 driver serves as the control 
for these comparisons. p-value over solid lines indicate statistical significance for comparison of means 
while the p-values written over dashed lines are for comparing variances of these populations. (C) 
Quantification of phenotypic penetrance of vein defects. Penetrance is the measure of percent of a 
particular phenotype in a given group. (ACV: Anterior cross vein, PCV: Posterior cross vein) (D) Beeswarm 
plot showing distribution of trichome densities for different perturbations to Piezo. (E) Quantification of 
scaled Anterior-Posterior and Proximal-Distal axes for the Piezo overexpression lines. (F) Heat maps 
showing trichome density patterns of the sister wings for Piezo knockout lines. These heatmaps show that 
wings with greater difference in area show a correspondingly higher difference in trichome density. (G) Plot 
showing correlation between difference in area and trichome densities. (H) Adult ap>PiezoRNAi fly showing 
significant patterning and symmetry defects. (I) Bar graph showing distribution of differences of area 
between sister wings of the Piezo knockout versus knockdown lines.  
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Supplementary Information 

Table of contents 

S1 Deep learning-based image segmentation 

 S1A U-Net training details: MAPPER utilizes U-Net for training 
 S1B Deployment of a trained deep learning model on raw wing image data 

S2 Training the intervein classifier 

 S2A Generating training data 
 S2B Feature extraction for training 
 S2C Training a machine learning-based intervein classifier 

S3 Morphological feature extraction using the labelled interveins 

 S3A Intervein geometric features 
 S3B Trichome density of interveins 
 S3C Landmark position-based features 
  S3C-I Length of proximal-distal axis 
  S3C-II Length of anterior-posterior axis 
  S3C-III Distance between veins L3 and L4 
 S3D Elliptic Fourier Descriptors (EFD) 

S4 App design and use 

S5 Statistical analysis of Drosophila melanogaster Samarkand wings 

S5 Statistical significance 

S6 Code and data availability 

S7 Supplementary figures 

S1 Deep learning based image segmentation 

S1A. U-Net training details. MAPPER utilizes U-Net for training. U-Net (Falk et al. 2019) was 
trained using ground truth labels from 1000 raw wing images. The ground truth was generated 
using ILASTIK by first training a pixel classifier to identify the four pixel classes: vein, intervein, 
wing marginal hair, and background. The segmentation masks generated using ILASTIK were 
then used to train the U-Net. The output layer of a pre-trained U-Net that was earlier trained for 
biomedical image segmentation (Ronneberger, Fischer, and Brox 2015) was then modified to 
detect multiple classes. A cross entropy cost function was used (Goodfellow, Bengio, and 
Courville 2016). Training was carried out in PyTorch and the implementation was done on GPUs. 
The raw images used for the training were imaged using an Aperio (Leica) slide scanner at 5X 
resolution.  

S1B. Deployment of a trained deep learning model on raw wing image data. The trained 
model can be found in the attached GitHub repository.  

S2 Training the intervein classifier 
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S2A. Generation of training data. MATLAB’s Image labeler app was used to generate ground 
truth labels for training an intervein classifier. Adult wing images were imported into the 
application, and the polygon tool was used to define each intervein regions. A total of ten different 
classes were created that included the seven intervein regions in a normal adult wing blade, along 
with the cases of cross vein defects where either the anterior or posterior cross vein of the wings 
are missing (Figure S4A). A class where the L5 vein fails to meet the margin of the wing blade, 
named as an L5 end defect, has also been included. A total of 81 wing images belonging to five 
different classes present in the “Source/ InterveinClassification/GeometricFeatures/ TrainingData“ were 
used for generating a total of 496 different objects belonging to the 10 intervein classes. The 
images used for labeling were marked and saved in “Source/ 
InterveinClassification/GeometricFeatures/TrainingData”. The five different classes and their folder 
names are: 

● NormalPixelLabelDat 
● ACVPixelLabelData 
● PCVPixelLabelData 
● ACVPCVPixelLabelData 
● ACVEnddefectPixelLabelData.  

S2B. Feature extraction. Two different kinds of feature extraction methodologies were followed 
while extracting features from different intervein components within the wing. The first one 
comprises basic geometric features. These include normalized intervein areas, eccentricity and 
the aspect ratio of each intervein component. The feature vector for all the training data can be 
extracted by running “Source/InterveinClassification/GeometricFeatures/InterveinClassifierGeo.m”. The 
feature vector is stored as an array where each row is a sample, and the three different columns 
contain the features. The labels for these are stored in the array named “ResponseTraining”. 
Another methodology is when we used Elliptic Fourier Descriptor-based shape features (Kuhl and 
Giardina 1982). The number of features in this case depends on the number of harmonics to 
define an EFD model for the interveins. In our studies, we used a total of 15 EFD harmonics that 
resulted in a feature vector of size 496x(15x4). 

S2C. Training a machine learning classifier. The features extracted from the training data are 
imported to the MATLAB’s classification learner app. All the models available were trained on the 
training data with a ten fold cross-validation. Based on the geometric features, a weighted KNN 
performed the best, while based on the EFD features a Fine KNN was seen to have the most 
accurate classification (Figure S4C, Figure S4D). Both the models were saved for future use in 
intervein classification. Details on how we further choose the best model for our intervein 
classification has been described in the main text. 

S3 Morphological feature extraction using the labelled interveins 

S3A. Intervein geometric features. The machine learning-based intervein classification pipeline 
classifies and labels each intervein region. Then, MATLAB’s regionprops tool extracts geometric 
features of each intervein. Geometric features like area, aspect ratio and circularity circularity 
have been extracted and stored in the table containing wing features. 
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S3B. Trichome density of interveins. Trichomes are hairlike structures that are present in the 
Drosophila wing blade. The location where the base of the trichome originates is of darker 
intensity compared to the neighboring pixel. For each pixel present in the intervein region, we 
checked if it was a local minima in the defined window size containing the set of neighboring 
pixels. The window size was chosen as a circular patch of radius equalling half the length of a 
trichome. The same has been defined as a user input parameter as the length of hair in pixels 
varies with resolution of imaging. Once the location of trichomes is defined, we display the local 
trichome density using 2D histograms. 

S3C. Landmark position-based features. 
S3C-I. Length of proximal-distal axis. The calculation of length of proximal-distal axis requires 
definition of veins L3 and L4. Vein L3 is reconstructed through morphological operations on I2, I3 
and I4 in MATLAB. Definitions of the interveins can be found in Figure S1. Interveins I3 and I4 are 
joined first by using dilating the boundary pixels and then by eroding by the same amount the 
joined components to form intervein I3,4. In a similar way I2 and I3,4 are joined together to form I2,3,4. 
I2 and I3,4 are then subtracted from I2,3,4 to obtain the reconstruction of vein L3. The same has been 
shown in Figure S5. We use a similar methodology to define vein L4 as well. The veins are then 
skeletonized and the vein endpoints are then extracted by locating pixels in the skeleton having 
maximum distance between them. The oriental of the wing allows identification of the proximal 
and distal ends of these veins. The average position of the proximal ends and distal ends is then 
used to get the proximal-distal axis. Euclidean distance between the two points defines the length. 
(See Figure S5 for more details on how segmentation of veins are constructed). 

S3C-II. Length of anterior-posterior axis. Specification of vein L2 and L4 is required to define 
the anterior-posterior axis of the wing blade. We follow a similar strategy as described above to 
define veins L1 (I1 and I2) and L4 (I5,I6, and I7). The distal ends of veins L2 and L4 are then used to 
define the anterior-posterior axis of the wing.  

S3C-III. Distance between veins L3 and L4. Distal ends of veins L3 and L4 are used to estimate 
the distance between veins L3 and L4. 

S3D. Elliptic fourier descriptors. EFDs have been used for a wide number of studies related to 
plant/leaf evolution and shape analysis of organs (Kuhl and Giardina 1982). We used Elliptic 
Fourier Descriptors (EFD) as an alternative for a robust translational and rotational invariant 
representation of wing shape. EFDs are found by fitting a fourier series to the periodic function 
obtained from the closed Drosophila wing peripheral contour. The coefficients of the Fourier series 
act as features as each of them carry a local shape property. The original EFD description is a 
scale, translation, and rotation invariant shape descriptor (Kuhl and Giardina 1982). We modified 
the original algorithm, so it is sensitive to size changes. Details about this implementation can be 
found in the design section of the main text. To find the appropriate number of terms for 
representing the closed contour of the Drosophila wing blade, we varied the number of harmonics 
and measured the errors between the EFD reconstruction of the wing and the actual boundary 
points (Figure S6). Boundary points have been extracted from the U-Net/ILASTIK generated 
segmentation mask. With an increase in the number of terms, due to overfitting, the error 
decreases and saturates to 0. A further manual inspection showed that 20 harmonics are 
sufficient for representing any wing blade. In summary, EFDs allow us to measure specific local 
changes within the wing corresponding to a genetic or a pharmacological perturbation.  

S4 App design and use 
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S4A. File formats and folder organization for running the app. For any individual processing 
or batch processing application, the raw wing images have to be saved in the form of a ‘.tiff’ format 
file. Alternatively, this can also be achieved in the wing processing/hinge removal step explained 
in the next section. Additionally, the segmentation masks have to be saved in a ‘.png’ format. 
MAPPER also requires unique nomenclature for the raw wing image and the generated 
segmentation mask (i.e. if a raw wing image is saved as “wing.tiff”, the corresponding 
segmentation mask has to be named “wing_Simple segmentation.png”. This kind of a 
nomenclature can be generated using ILASTIK by modifying the batch processing options. 
Processing wing images using U-Net, for generating the segmentation masks, already saves 
images in the correct format and naming convention. 

S4B. Wing preprocessing. The adult Drosophila wing consists of a main wing blade area that 
mainly comprises of intervein and vein regions. The wing blade is connected to a hinge that joins 
the wing blade to the Drosophila body. We developed a methodology for every wing to be 
analyzed consistently by cropping out the hinge portion from the adult blade. This is done by 
selecting two landmark points that define the hinge endings in the anterior and posterior half of 
wing as shown in Figure S7. Using these two points, a polygon is drawn around the blade that 
encompasses the hinge region. This operation is carried out using a ‘roipoly’ function in MATLAB. 
A value of 0 is then assigned to the drawn polygon to label the hinge area. Unlike other existing 
tools, MAPPER does not require the images to be oriented in a particular fashion. The user needs 
to define the input path of the folder containing the raw uncropped wings for using this function 
which is embedded in the button “Remove wing hinge” shown in Figure 3D. User images should 
be placed within the “userData” subfolder to ensure proper functionality. The function also 
generates the output in the desired ‘.tiff’ format. 

S4C. Input parameters. IP - Individual processing, BP - Batch processing. The wing process 
abbreviations IP and BP indicates if the parameters need to be defined while running them. 
Default parameters have been set for images taken at a 4x objective lens, but can be adjusted 
for images taken at other objectives. 

i) Size of wing filter (IP, BP). The intervein and vein regions are separated during the 
image segmentation process. The pipeline merges the two label definitions to generate a 
segmentation mask defining the complete wing blade. The joining of labels is followed by 
morphological operations in MATLAB to smooth out and filter the segmentation mask of 
the wing blade. More specifically, erosion and dilation are performed to smooth out the 
wing periphery. The parameter used in the app defines the radius of a disc shaped 
structuring element used for this particular morphological operation. A filter size of 8 has 
been seen to perform well for the images taken at 4x resolution. A typical value of this filter 
could be chosen as the thickness of veins (in pixels).  

ii) Size of intervein filters (IP, BP). The parameter used in the app defines the radius of 
a disc shaped structuring element used for erosion and dilation operations to smooth out 
the intervein boundaries. A filter size of 5 has been seen to perform well for the images 
taken at 4x resolution. A typical value of this filter could be chosen as half the thickness of 
veins (in pixels). The thickness of the vein can be approximated using FIJI/ImageJ. 

iii) Threshold trichome distance (IP, BP). Trichomes are hairlike structures patterned 
across the interveins. Their relatively darker appearance relative to the intervein region 
allows it to be distinguished as a minima in the image intensity plane. A local thresholding 
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operation is used to count the number of minimas, and which gives the number of 
trichomes in the wing. Additionally, to avoid double counting we refine the list of minimas 
based on the distance between the neighbouring hairs. If the distance between the two 
local minimas is less than typical size of a trichome, it leads to deletion of one of the 
identified trichomes from the list. The parameter is named threshold trichome distance, 
and a value of 2 is seen to work best on wings imaged at a resolution of 4x. 

iv) Number of harmonics (BP). The parameter is used to define the number of harmonics 
or number of terms in the EFD definition of the wing blade. 20 harmonics was sufficient to 
correctly define the wing blade morphology (Figure S3).  

v) Conversion factor (IP, BP). The parameter is used to define the number of pixels in 
one unit of measurement. It is used to give output of quantities such as area and length in 
the user defined length unit of length. A default conversion factor of 2 microns per pixel is 
set in the tool. 

vi) Label name (IP). The text input requires user-based naming of an image that will be 
saved later. The image printed out consists of the labelled intervein regions and their 
corresponding masks. Users also need to define the file extension along with the file name 
(i.e. ‘Sample_LableWing.png’).  

Individual Wing Processing (Figure 3B) 

S4D. User operations. 

i) Load Raw Image. The button directs the user to select the single raw wing image they 
want to process. The image loaded can be viewed in the “Raw Image” titled figure panel 
in the app. 

ii) Load Segmentation Mask. The button directs the user to select the corresponding 
segmentation mask for the raw image they want to process. 

iii) Classify interveins. The button executes the support vector machine (SVM)-based, 
pre-trained intervein classification scheme described in the main text. The results can be 
displayed in the “Labelled Wing Image” figure panel of the app. The area and number of 
trichomes present in each classified intervein, along with the intervein id, is printed in the 
table below the “Raw Wing Image” figure panel. Overall wing blade area and average 
trichome density of the intervein regions are also given as an output of this operation. The 
output is displayed in a text panel right below the user operations panel. 

iv) Full Process. The button directs the user to select a single raw image for processing. 
Upon selection, the segmentation mask will be loaded, and the interveins will be classified 
automatically. The naming convention of the segmentation mask must be consistent with 
the raw image file name, as detailed in section S4A. Should the segmentation mask be 
labeled differently, the button “Load Segmentation Mask” should be used. 

S4E. Biological axes. 

i) AP axis. The button directs the pipeline to calculate the length of the anterior-posterior 
(AP) axis of the Drosophila wing. The numerical output can be displayed in the output 
panel located just below the buttons. The AP axis is also overlaid on the raw image, and 
can be seen in the figure panel titled “Biological axes display”. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.12.16.422888doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.16.422888


36 

ii) PD axis. The button directs the pipeline to calculate the length of the proximal-distal 
(PD) axis of the Drosophila wing. The numerical output can be displayed in the output 
panel located just below the buttons. For visualizing the location of the PD axis, it is also 
drawn over the raw wing image. The resulting raw image with annotated PD axis can be 
seen in the figure panel titled “Biological axes display”. 

iii) d(L3-L4): The button directs the pipeline to calculate the distance between L3 and L4 
veins at the distal most end of the Drosophila wing. The numerical output can be displayed 
in the output panel located just below the buttons. The length of the axis is also overlaid 
on the raw image, and can be seen in the figure panel titled “Biological axes display”. 

Batch processing (Figure 3C) 

S4F. User operation. 

Batch processing. The button is used for batch processing of images sets. The folder 
containing the wings and corresponding segmentation masks have to be stored in their 
own folder placed inside the “userData” subfolder beforehand. When the button is 
pressed, the user is directed to select the folder containing the wing images. It is best to 
store images of wings belonging to different genotypes/populations in separate folders. A 
table containing all the features (description in section SI3) is saved in a .mat file labeled 
“T.mat”, and a .csv file labeled “Wing_Measurements_Batch_Output.csv”. Further, the 
EFD coefficients are saved in a .mat file labeled “EFDBatch.mat”, and a .csv file labeled 
“EFD_Batch_Coefficients.csv”. An image showing labelled intervein regions for each 
image, is also saved in the directory that contains the selected wing images and 
segmentation masks. This is to allow users to ensure quality control of proper 
segmentation and classification. For the calculations described below, an assumption that 
wings located in the same subfolder belong to the same genotype/population is used.  

S4G. Average area figure panel. Average area of wings contained in each subfolder analyzed 
is plotted as bar graphs and displayed in this figure panel in the batch processing section of the 
app.  

S4H. Hits z-score. Geometric features (see feature extraction in section SI3) of the intervein 
regions are used to define a feature vector for each wing. The features of each wing in a specific 
folder are averaged out to define the average feature vector for a specific genotype/population. 
Mahalanobis distance is then calculated between the average feature vector of a subfolder and 
the average features of all the wings analyzed to define the z-score. The genotypes/populations 
with maximum z scores are shown in the text panel “Hits z-score”.  

S5 Statistical Analysis of Samarkand strain Drosophila wings 

We processed 128 adult wing images of Drosophila melanogaster from the Samarkand strain 
(Figure 2, Figure S10) (Sonnenschein et al. 2015)(Sonnenschein et al. 2015)(Sonnenschein et 
al. 2015). In this validation test, MAPPER was used to highlight the shape and size differences 
between the male and female populations. Geometric features and EFD features were separately 
analyzed to highlight the application of EFD in estimating local shape changes in wing. Principal 
Component Analysis (PCA) (Wold, Esbensen, and Geladi 1987) carried out on the geometric 
features revealed that the maximum variance within data was distributed majorly between the first 
two principal components (89.4%) (Figure 2E, Figure S10C-D). PCA also revealed that the total 
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area of the wing and total trichome density had maximum loading towards Principal Component 
1 (PC1) with total wing area having a negative PC1 loading towards the female population, and 
total trichome density having a positive PC1 loading towards the male population (Figure S10C-
F). Interestingly, the distance between longitudinal veins L3 and L4, d(L3-L4), did not correlate with 
other wing features for either population (Figure S10A). Further, d(L3-L4) did not have positive or 
negative loading for PC1, which explained most of the variance in the data (Figure S10B-D). This 
is contrary to the other biological axes measurements for the AP and PD lengths that had negative 
PC1 loading towards the female population. The differences between males and females were 
further characterized by plotting the known result that wings of a Drosophila female are greater in 
size than the male wing (Figure 2F, Figure S10F). PCA analysis and comparison of the 
standardized total wing areas confirmed this (Figure S10C,D,F, p-value < 0.001). Conversely, 
males had a larger total standardized trichome density (Figure S10G, p-value < 0.001) that is 
revealed by direct comparison and PCA analysis (Figure S10C-D). Taken together, this suggests 
that high dimensional data provided by MAPPER can reveal unique features that are disparate 
between populations using PCA analysis. Clustering carried out using the first two principal 
components revealed the presence of two distinct clusters representing the male and female 
populations (Figure 2E). Further, performing t-distributed stochastic neighbor embedding (t-SNE) 
analysis revealed similar clustering distinctions between male and female populations (Figure 
S10E). High dimensional analyses, such as PCA and tSNE, allow for a systematic screening of 
phenotypic changes between two different populations, and can even be extended to multiple 
populations. 

A similar approach was followed in analysis of the EFD-based features. PCA was applied on the 
EFD coefficients extracted for each wing. In this case, a total variance of about 97% was captured 
in PC1 alone (Figure 2G). This indicates that the variation was mainly distributed in one direction 
of linear combinations of the EFD coefficients. Thus, the high dimensional output of MAPPER 
coupled with PCA analysis can reveal wing shape features that are distinct between two 
populations. To investigate the importance of PC1 on wing geometry, we implemented reverse 
PCA on the principal components. Reverse PCA is carried out by adding the mean vector of the 
features to the matrix product of PCA projections (scores) and the transpose of the eigenvectors 
(Equation 1). This process enables mapping of the influence of principal components back to the 
original data.  

𝑃𝐶𝐴$%&'()*+,&*%- 	= 	𝑃𝐶𝐴0&'+%) 	 ⋅ 𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠= + 𝑋 @%A*,+%)
           (1) 

In our analysis, the first eleven principal components were used to reconstruct the EFD 
coefficients via reverse PCA. Since we are interested in understanding the importance of PC1, 
which explained most of the variance in the data, the standard deviation along this PC was 
calculated. Mean scores of the first 11 PC’s were then used to reconstruct a representative wing 
for the male and female populations (Figure 2I). 1.5 times the calculated standard deviation along 
PC1 was then added and subtracted to the representative wing to observe the effect of PC1 on 
wing shape. Reverse PCA was then used to approximate the EFD coefficients with varying PC1. 
Reverse EFD was then carried out to estimate the contour of the wing blade. The reconstructed 
contours highlight that the major differences between the wings is mainly because of overall 
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change in the wing blade area (Figure 2H). However, the reconstructed contour can be used as 
the mean representation of the samples. This approach is useful when analyzing subtle changes 
in shapes resulting from dysregulations in genetic pathways. These subtle differences are further 
characterized by clustering using Gaussian Mixture Models (Yang, Lai, and Lin 2012) (GMM) 
where the presence of two distinct clusters is revealed (Figure 2G). Both of these high dimensional 
plots reveal that there are unique and identifiable distinctions between male and female 
populations in regard to wing shape. 

S6 Tests for measuring statistical significance 

One way analysis of variance (ANOVA) was first used to test the hypothesis if the means of the 
groups compared were equal or not (Fisher 1992). However, ANOVA alone cannot be used to 
comment on statistical significance of comparisons between any two subgroups. Therefore, we 
further used a multiple group comparison test for the statistics generated by ANOVA. Tukey’s 
honestly significant difference procedure was used for this task to identify differences in means 
among all subgroups (Tukey 1949). Bonferoni-Holm correction was then applied on the generated 
p-values from the previous test in order to adjust for Type I error in statistical testing (Holm 1979). 
All the steps were carried out using MATLAB. Additionally, a Bartlett test was used to compare 
the variances between any of populations., 
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Supplementary Figures                                                                                                                                                                                  

                           
Figure S1. Components of adult Drosophila wing blade. The adult Drosophila wildtype wing has distinct 
morphological features: longitudinal veins L1-L5, anterior cross vein (ACV), and the posterior cross vein 
(PCV), that we rely on to study the effect of specific genetic perturbation on morphogenesis. Veins also 
enclose seven specific intervein regions (I1 - I7). The periphery of the wing is surrounded by hairs. The 
intervein regions and veins are also patterned with small hair like structures, called trichomes. The wing is 
attached to the fly body through a hinge. 
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Figure S2. Defective wing images that are excluded from the pipeline. Shown here are examples of 
wing images that contain various image artifacts or sample preparation defects. The MAPPER pipeline is 
able to recognize these defects and remove the corresponding images from the analysis.  
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Figure S3. A total of ten terms in EFD description is sufficient to define the geometry of an intervein. 
(A) Variation of number of terms in the elliptic fourier descriptors (EFDs) on accuracy of fit for specifying 
the intervein enclosed between veins L2 and L3 (I2). As the number of terms increases, the EFD fit 
approaches the true intervein shape. (B) Variation in error with an increase in number of terms in the EFD 
description for each intervein. The error is approximated by calculating the absolute difference between 
area enclosed by the EFD fit and actual intervein area. 
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Figure S4. KNN trained on geometric features performs best for intervein classification. (A) Definition 
of each intervein region used while creating the training data for the purpose of intervein classification. Vein 
defects led to additional intervein classification regions. (B) t-SNE representation of EFD features extracted 
from each individual intervein region from a batch of wing images used for generating the training dataset. 
Clear clustering is present in the different intervein regions. (B’) Geometric features such as normalized 
intervein area, eccentricity, and aspect ratio are also used for training an alternate intervein classifier. (C) 
Performance of different support vector machines (SVMs) and k-nearest neighbor algorithms (KNNs) 
present in MATLABs classification learner application based on the two different sets of features used for 
the purpose of training. Weighted KNN performed the best compared to other methods. (D-D’) Confusion 
matrices for best models based on the two different sets of features used. (D) uses the EFD-based features 
while (D') uses the geometrical features of individual intervein.    
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Figure S5. Methodology for extracting proximal and distal ends of longitudinal vein L2. (A) The 
intervein classification pipeline identifies intervein region I1 and I2. (B) Binary masks for intervein regions I1 
and I2 are dilated in order to fuse them together. A disc structuring element with radius equaling vein 
thickness was used for this. The dilated image is then eroded by the same structuring element. (C) The 
binary masks for I1 and I2 are then subtracted from the binary mask obtained after dilation and erosion, and 
the resulting mask is then skeletonized to obtain the definition of vein L2.  The distance of the ends of the 
vein are calculated from the center of intervein region I3 to estimate the proximal and distal ends of vein 
(see Figure S1A). 
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Figure S6. EFD description of the global wing shape. Elliptic Fourier Descriptor (EFD) coefficients are 
determined to fit the perimeter of the adult wing blade. Left-hand side graph shows the variation of error 
with an increase in the number of harmonics or the terms used in EFD approximation. Error is approximated 
by calculating the absolute differences between the actual area of the wing and the area enclosed by an 
EFD fit. Right hand side panel shows the actual representation of the effect of increasing the number of 
harmonics on overall fit. 
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Figure S7. Wing hinge removal. (A) Landmark points L1 and L2 marking the anterior and posterior ends 
of the hinge region are used to draw a polygon using MAPPER’s wing hinge removal button (see section 
SI4B). (B) The polygon is then cropped out of the raw wing image for full processing by MAPPER. 
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Figure S8. Differences in intervein areas and landmark positions in different Drosophila species 
identified by MAPPER. (A) Ratio of individual intervein areas normalized to the overall wing blade area. 
Each subgroup of the bar plot indicates the quantification of the ratio for four different species indicated in 
the legends. The analysis has been carried out for the seven distinct intervein regions, whose labels are 
indicated in the x-axis label at the bottom of the panel. Top and bottom rows indicate analysis done for the 
male and the female sexes of each individual species respectively. (B) Quantification of shift in posterior 
cross vein position in male wings (L1 is defined as the segment of L5 from the proximal to posterior cross 
vein, L2 is defined as the segment of L5 from the posterior cross vein to the end of L5). (C) Relative anterior 
to posterior areas in female wings for each species. (D) The ratio of the length of the proximal- distal axis 
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and the anterior-posterior axis for females from different species. Error bars are representative of standard 
deviation. (*** p-value < 0.001 , ** p-value < 0.01, * p-value < 0.05) 
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Figure S9. Statistical testing for differences in wing features of different Drosophila species. Tables 
containing p-values from a Tukey honestly significant difference statistical test performed to check statistical 
significance between wing features of different Drosophila species. The heading of the plots indicate the 
main figure number the table is meant for (Figure 5). Further details about the statistical tests can be found 
in section SI5.  
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Figure S10. MAPPER provides high dimensional analysis capabilities to identify unique 
morphometric features. Drosophila adult wings from Samarkand strain males and females were analyzed 
using MAPPER’s batch processing capabilities (Sonnenschein et al. 2015). (A) Correlation plot of male, 
female, and averaged male/female morphometric features respectively. Insignificant correlations are 
denoted by “x” marks. Hierarchical clustering revealed three clusters: wing areas, distance from the L3 vein 
to L4 vein d(L3-L4), and trichome densities. Males and females have similar clustering and correlations of 
features. (B, C, D) Principal component analysis (PCA) on centered and scaled wing features revealed 
most of the variance in the data is explained by PC1, with distinct clustering across PC1 between males 
and females. Arrows represent projection of eigenvectors for each feature, and ellipses are 95% confidence 
intervals (CI) of the data populations. (E) t-SNE analysis on wing features revealed distinct clustering 
between males and females. (F, G) Violin plots of standardized wing features identified in PC analysis. 
means (red) and 95% CIs (blue) means (red) are overlaid for comparison. (*** p-value < 0.001 via Mann-
Whitney U Test) 
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Figure S11. AP axis and PD axes scale uniformly with respect to area of the wing. Analysis was 
carried out for a population of male and female wings belonging to Drosophila melanogaster Samarkand 
strain. The points are color coded according to sex where red indicates fremale and blue the male 
population of wings. (A, B) Variation of proximal-distal axis and anterior-posterior axis with respect to 
square root of area of wing blade.  
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