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ABSTRACT 
 
We have combined chemical biology and genetic modification approaches to investigate the importance of protein 

myristoylation in the human malaria parasite, Plasmodium falciparum. Parasite treatment during schizogony in the 

last ten to fifteen hours of the erythrocytic cycle with IMP-1002, an inhibitor of N-myristoyl transferase (NMT), led 

to a significant blockade in parasite egress from the infected erythrocyte. Two rhoptry proteins were mislocalized 

in the cell, suggesting that rhoptry function is disrupted. We identified sixteen NMT substrates for which 

myristoylation was significantly reduced by NMT inhibitor treatment, and of these, six proteins were substantially 

reduced in abundance. In a viability screen, we showed that for four of these proteins replacement of the N-terminal 

glycine with alanine to prevent myristoylation had a substantial effect on parasite fitness. In detailed studies of one 

NMT substrate, glideosome associated protein 45 (GAP45), loss of myristoylation had no impact on protein location 

or glideosome assembly, in contrast to the disruption caused by GAP45 gene deletion, but GAP45 myristoylation 

was essential for erythrocyte invasion. Therefore, there are at least three mechanisms by which inhibition of NMT 

can disrupt parasite development and growth: early in parasite development, leading to the inhibition of schizogony 

and formation of ‘pseudoschizonts’, which has been described previously; at the end of schizogony, with disruption 

of rhoptry formation, merozoite development and egress from the infected erythrocyte; and at invasion, when 

impairment of motor complex function prevents invasion of new erythrocytes. These results underline the 

importance of P. falciparum NMT as a drug target because of the pleiotropic effect of its inhibition. 
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INTRODUCTION 
The malarial parasite asexual blood stage is largely intra-erythrocytic as the parasite invades, develops and 

proliferates within red blood cells (RBCs) over a period of approximately 45 – 48 hours in the case of Plasmodium 

falciparum, the most lethal human parasite. Following invasion by the extracellular merozoite the parasite 

profoundly modifies the RBC, growing through ring and trophozoite stages and then starting multiple rounds of 

nuclear division around 30 hours after invasion, resulting in schizont formation. Coincident with nuclear division, 

the parasite constructs a series of subcellular membranous structures that will form the inner membrane complex 

(IMC) and apical organelles such as the rhoptries and micronemes of the nascent 20 - 30 daughter merozoites. At 

the end of schizogony the multinucleate coenocyte undergoes cytokinesis that draws the parasite plasma 

membrane (PM) around each of the developing progeny to form highly polarised merozoites, each with its own 

nucleus, a surface pellicle comprised of PM and IMC, and apical organelles for subsequent invasion and modification 

of a new RBC. Completion of this process is followed by lysis of the infected RBC and egress of the now extra-

erythrocytic merozoites, which attach to and invade new RBCs to establish the next intra-erythrocytic proliferation 

cycle. This stage of the parasite life cycle is responsible for the disease pathology, and therefore is a principal target 

for the development of drugs to kill the parasite. 

 Several parasite proteins synthesized during this cycle are modified by N-myristoyl transferase (NMT). 

This enzyme transfers the C14 fatty acid from myristoyl-CoA to the amino terminal glycine of substrate proteins, in 

a largely co-translational event following removal of the initiator methionine (Dian, Perez-Dorado et al., 2020). 

Substrate proteins have been predicted bioinformatically, using a partially conserved sequence recognition motif 

(Castrec, Dian et al., 2018), or identified experimentally by metabolic incorporation of YnMyr, an alkyne-containing 

myristate analogue, which provides a convenient means to label such proteins and allow their purification and 

identification following the chemical addition of a biorthogonal tag (Broncel, Dominicus et al., 2020, Broncel, Serwa 

et al., 2015, Thinon, Serwa et al., 2014, Wright, Clough et al., 2014). Thirty-two N-myristoylated parasite proteins 

have been identified experimentally in the P. falciparum asexual blood stages (reviewed in (Schlott, Holder et al., 

2018)). These NMT substrates are targeted to membranous structures such as the PM and the secretory pathway, 

which has a key role not only in protein export but also in the biogenesis and function of the IMC and intracellular 

organelles as well as protein import into the apicoplast (Schlott et al., 2018). Other myristoylated proteins are 

targeted to the nucleus or exported to the host erythrocyte. They function in a diverse range of cellular pathways 

such as protein secretion, transport and homeostasis, ion channel regulation and parasite motility, with their known 

enzymatic functions including kinase, phosphatase and hydrolase activities (Schlott et al., 2018). About one third of 

the experimentally identified NMT substrates were shown to be essential in parasite growth screens using 

insertional mutagenesis in P. falciparum (Zhang, Wang et al., 2018) and gene knockout in Plasmodium berghei 

(Gomes, Bushell et al., 2015, Schwach, Bushell et al., 2015), however this genetic evidence fails to indicate whether 

or not N-myristoylation is essential for the proteins’ function.  

NMT inhibitors have been developed that kill the parasite in vitro (Bell, Mills et al., 2012, Rackham, 

Brannigan et al., 2014, Yu, Brannigan et al., 2012). Each of these inhibitor classes has been shown to bind to the 

protein substrate binding site of NMT, and their mode of action was confirmed using a parasite expressing a variant 

NMT with an amino acid substitution that abolishes both inhibition of enzyme activity and inhibition of parasite 
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growth (Schlott, Mayclin et al., 2019). One such inhibitor, IMP-1002, when added to a synchronous population of 

ring stage parasites, interrupts parasite development irreversibly during early schizont development (four to six 

nuclei) and before the formation of the IMC, producing a parasite form that we have termed a ‘pseudoschizont’ 

(Wright et al., 2014). It is likely that this form results from inhibition of NMT in the trophozoite or early schizont 

stages. However, many NMT substrates are expressed abundantly later in schizogony and the consequence of NMT 

inhibition during this later stage, during a period of approximately 10 - 15 hours following commencement of nuclear 

division, is unknown. Protein myristoylation may result in increased membrane binding affinity; therefore, loss of 

myristoylation can cause aberrant subcellular targeting and consequent loss of protein function, and even 

degradation (Timms, Zhang et al., 2019). At the cellular level, inhibition of schizont development, for example 

through impaired nuclear division or defective formation of intracellular organelles, may prevent merozoite 

formation, parasite egress, merozoite invasion and subsequent ring stage development. To investigate these 

potential phenotypes, we examined the effect of inhibitor added during schizogony on parasite development, egress 

and invasion, and on myristoylated protein location and stability. The results showed that NMT inhibitor (NMTi) 

treatment during schizogony did not stop nuclear division, but it did inhibit parasite development before egress. We 

then developed a genetic method to examine whether the N-terminal glycine (and hence myristoylation) of a 

selected set of six proteins was essential for parasite growth. For members of the chosen panel of NMT substrates, 

substitution of N-terminal glycine with alanine was detrimental to parasite growth. From this set of proteins, we 

focused on one, glideosome-associated protein 45 (GAP45), to examine the importance of N-myristoylation for its 

localization and function. Induced replacement of the N-terminal glycine of GAP45 with alanine, had no effect on 

protein targeting to the IMC, the protein’s palmitoylation, or egress, but it did prevent merozoite invasion. We 

conclude that protein myristoylation is important at different time periods for nuclear division, merozoite 

maturation prior to egress, and for RBC invasion, implying that NMT inhibitors impact multiple facets of parasite 

development and are therefore excellent leads for drug development. 

 

RESULTS 

To investigate the effect of an NMTi during schizogony, synchronized parasite populations were treated with either 

140 nM IMP-1002 (the EC90 of the compound (Schlott et al., 2019)) or DMSO during the period from 34 to 45 h post 

invasion (PI), after which the culture medium was exchanged to a drug-free medium at the first sign of parasite 

egress in the DMSO-treated culture. Parasite growth, invasiveness and morphology were then assessed by flow 

cytometry of Hoechst-stained parasites and microscopy of Giemsa- or antibody-stained fixed parasites, while 

parasite proteomics were analysed by mass spectrometry. 

 

Parasite proliferation is decreased significantly by inhibition of NMT during schizont differentiation, blocking 

parasite development before egress 

Flow cytometry analysis of samples stained with Hoechst dye demonstrated a significant drop in parasite 

proliferation resulting from IMP-1002 NMT inhibition compared with DMSO controls (p < 0.0001, Supplementary 

Figure 1). Therefore, both ring and schizont populations were examined separately, to determine whether this 

decrease resulted from reduced parasite egress from infected erythrocytes or defective invasion into new 
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erythrocytes. Using Percoll-purified schizonts, two samples, eight hours (53 h PI) and twenty-eight hours (73 h PI) 

after the start of egress of control (DMSO-treated) parasites, were used to determine the growth rate (Figure 1A) 

and measure the schizont and ring stage parasitemia in each sample (Figure 1B). The growth rate dropped 

significantly in the presence of IMP-1002 compared with DMSO controls (p < 0.0001 for 53 h PI and p < 0.0003 for 

73 h PI). In the DMSO-treated control culture the schizont population decreased and the ring population increased 

during the period between 45 and 73 h PI, indicating merozoite egress and invasion, whereas the schizont 

population in IMP-1002 treated samples remained constant and few ring stage parasites were detected by 73 h PI. 

These data indicate that NMT inhibition blocks parasite development in the schizont stage, before merozoite egress.  

Giemsa staining and microscopy indicated that at 45 and 51 h PI drug-treated schizonts looked similar 

morphologically to the DMSO-treated control parasites (Figure 1C). But at about ten hours after the exchange to a 

drug-free medium (at 55 h PI) IMP-1002-treated schizonts started to appear abnormal and there was little evidence 

of invasion and new ring stage formation, suggesting that these parasites were not viable (Figure 1C). However, at 

62 h PI some parasites that had escaped IMP-1002 NMT inhibition had developed into healthy-looking trophozoites. 

These results, obtained by microscopy, complement those from the flow cytometry analysis and indicate that at 

IMP-1002 EC90, NMT inhibition blocks schizont development before merozoite egress in all but a small fraction of 

parasites.  

 

NMT inhibition changes substrate protein solubility and localization and disrupts rhoptry formation 

NMT substrates may associate differently with membranes when parasites have been treated with NMTi. To 

examine this, schizonts were subjected to sequential solubility fractionation and the distribution of specific proteins 

was revealed by western blotting. Both armadillo domain-containing rhoptry protein (ARO) and calcium dependent 

protein kinase 1 (CDPK1), proteins that have an N-terminal myristoylation site and an adjacent potential 

palmitoylation site, were largely in the membrane-bound fraction prepared from DMSO-treated parasites (Figure 

2A). However, following parasite treatment with IMP-1002, the proteins were either completely (in the case of ARO) 

or partially (in the case of CDPK1) found in the hypotonic buffer-soluble fraction. The IMC protein, GAP45, which 

has an N-terminal myristoylation site, an adjacent palmitoylation site, and an additional palmitoylation site near the 

C-terminus (Jones, Collins et al., 2012), showed no difference in its solubility profile following IMP-1002 NMT 

inhibition. As controls, we identified the fractions enriched for cytoplasmic heat shock protein 70 (HSP70) and 

myosin tail interacting protein (MTIP), a component of the glideosome, formed together with GAP45 and other 

proteins. As expected, HSP70 was largely in the soluble fraction and MTIP was in the membrane bound fraction, and 

their behaviour was not affected by IMP-1002 NMTi treatment of the parasite. 

To examine the effect of NMT inhibition on the subcellular protein location during schizont development, 

parasites were analysed using an indirect immunofluorescence assay (IFA) with specific antibodies (Figure 2B to 

2D). Following NMTi treatment, the location of ARO and rhoptry neck protein 4 (RON4), changed from being 

discrete to very diffuse in the cytoplasm of developing merozoites (Figure 2B). The IMC proteins, GAP45 and 

myosin A (MyoA) showed no discernible difference in their location and were present in both DMSO and IMP-1002 

treated cells (Figure 2C). The subcellular location of the micronemal protein, erythrocyte binding antigen 175 (EBA-

175), was also unaffected by IMP-1002 treatment, when compared to the DMSO control (Figure 2D).  
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These results indicate that schizont treatment with IMP-1002 can affect the membrane binding properties of some 

proteins and, for example in the case of ARO, may result in their mislocalization within the cell. 

 

IMP-1002 inhibits protein myristoylation and affects abundance of some NMT-substrates and non-myristoylated 

proteins 

While the localization of NMT substrates can be studied by cellular fractionation or microscopy-based approaches, 

these methods provide no quantitative data on the effect of IMP-1002 inhibition on the modification or abundance 

of parasite proteins.  Therefore, we used quantitative chemical proteomics to examine further the effect of NMT 

inhibition on both myristoylation of its substrates and the abundance of other proteins in the cell. The extent of 

myristoylation was studied using metabolic labelling with the myristic acid analogue YnMyr and label-free 

quantification (LFQ) by mass spectrometry to determine the relative abundance of individual myristoylated proteins 

in samples from parasites treated with either DMSO or IMP-1002 for eleven hours. Proteins were extracted and an 

AzTB biotin tag attached to the YnMyr-labelled proteins using click chemistry, then the tagged proteins were 

enriched by Neutravidin binding and elution. A total of 609 proteins were identified in the eluate from the 

Neutravidin-coated agarose beads (Supplementary Data 1). Sixteen NMT substrates showing a significant decrease 

in myristoylation in the presence of IMP-1002 were identified (Figure 3A, Supplementary Data 1). Fourteen of these 

sixteen proteins were experimentally verified NMT substrates (Wright et al., 2014), while the two remaining proteins 

were a putative kinase (PF3D7_0321400) and a conserved protein of unknown function (PF3D7_0619700) (Figure 

4A). The modified N-terminal glycine was also identified for a number of NMT substrates, providing direct 

experimental evidence of myristoylation, for example metal-dependent protein phosphatase 6 (PF3D7_1309200) 

and putative acylated pleckstrin-homology domain-containing protein (PF3D7_0414600) (Supplementary Figure 2). 

Glycosyl phosphatidylinositol (GPI) anchored proteins, which incorporate YnMyr through an ester linkage, and non-

myristoylated IMC proteins were largely unchanged (analysis using adjusted p-values with an FDR of 0.01 and within 

group variance S0 = 0.5, n = 3).  

To determine if there was an effect of NMT inhibition on overall protein abundance, the proteome of 

schizonts that had been incubated with or without 140 nM IMP-1002 from 34 – 48 h PI was analysed by mass 

spectrometry using tandem mass tag (TMT) labelling as a quantitative method, in combination with an additional 

high pH reverse fractionation step to increase coverage of the multiplex sample. A total of 2,484 proteins was 

identified (Supplementary Data 2), of which 62 were significantly reduced in abundance by IMP-1002 treatment 

(t-test using a false discovery rate (FDR) cut-off of 0.01 and a within-group variance (S0) of 0.8) (Figure 3B). Gene 

ontology (GO)-term analysis of these 62 proteins revealed six NMT substrates, together with several proteins 

involved in DNA replication and chromatin function, as well as a number of exported/secreted proteins (Figure 3C).  

The NMT substrates were ARO [GeneID: PF3D7_0414900], CDPK1 [PF3D7_0217500], GAP45 [PF3D7_1222700], 

alpha/beta hydrolase S9C [PF3D7_0403800], IMC sub-compartment protein 3 [ISP3; PF3D7_1460600] and 

tetratricopeptide-repeat proteins [TRP; PF3D7_0601600, PF3D7_0631000]. In previous studies, three of these 

proteins had been either suggested (CDPK1, ARO) (Zhang et al., 2018) or shown (GAP45 (Perrin, Collins et al., 2018)) 

to be essential for growth of P. falciparum asexual blood stage parasites. Insertional mutagenesis of alpha/beta 

hydrolase S9C produces a slow growing phenotype (Zhang et al., 2018) and P. berghei ISP3 is dispensable (Poulin, 
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Patzewitz et al., 2013). Of the TRP-encoding genes, PF3D7_0631000 was classified as essential and PF3D7_0601600 

was classified as dispensable in a recent P. falciparum mutagenesis screen, (Zhang et al., 2018). However, none of 

these earlier studies addressed the essentiality of the N-myristoylation. 

These data show that IMP-1002 treatment has a direct effect on the myristoylation of NMT substrates. 

Furthermore, there is a reduced abundance of both myristoylated and non-myristoylated proteins in the treated 

cells compared to those incubated with DMSO.  There were six myristoylated proteins that were significantly 

reduced in abundance, suggesting that these NMT substrates are of particular importance.  Therefore, we developed 

a genetic screen to look specifically at the importance of the N-terminal glycine of these proteins, and hence 

myristoylation, on parasite growth. 

 

A G2A/G2G CRISPR-Cas9 screen identifies substrates for which myristoylation is required for parasite viability 

The six NMT substrates significantly reduced in abundance by IMP-1002 treatment during schizogony were selected 

for further analysis to examine whether or not N-terminal myristoylation is essential for parasite growth.  We 

developed a CRISPR-Cas9 screen to determine the relative fitness of parasites following integration of a G2A codon 

or a G2G replacement codon at the myristoylation site for each of the six substrates. For TRP we used 

PF3D7_0631000 for this screen, as it has been shown to be essential for parasite viability (Zhang et al., 2018). For 

each gene, Cas9 was used to generate a double-strand break within the coding region close to the 5’ end of the gene 

using two different guides (Supplementary Figure 3, Supplementary Table 1), with repair mediated by plasmids 

containing either a G2A sequence to prevent myristoylation of the protein or a G2G sequence to allow it. Repair 

plasmids were mixed in equal proportion and added together to Cas9/guide plasmids, linearized and used for 

parasite transfection. Then at the same time post-transfection, parasite genomic DNA was extracted and 

integration-selective primers annealing to the inserted recodonized repair sequence were used to attach adapter 

sequences for Illumina sequencing (Supplementary Table 2). The ratio of G2A/G2G sequence reads for each parasite 

culture provides an indication of the relative viability of the G2G and G2A variants; with no fitness cost a 1:1 ratio of 

the two forms would be expected in the parasite population. 

For four of the six genes, almost 100% of the retrieved integrated sequences coded for an N-terminal 

glycine, suggesting that the N-terminal glycine is essential for these proteins (Figure 4), although the number of 

reads recovered for the CDPK1 gene was small (Supplementary Figure 3). For the TRP gene only 60% of the reads 

were for the N-terminal glycine sequence and for ISP3, a 26% incorporation of the G2A variant was detected.  

Overall, the screen showed that for four out of the six NMT substrates, myristoylation is likely essential for viability 

(GAP45, ARO, CDPK1, and S9C), while for two substrates (ISP3 and TRP) myristoylation might be dispensable.  To 

carry this analysis further we focused on one protein, GAP45, which has been shown to be essential for motor 

complex formation and invasion, and used a genetics-based complementation approach to investigate the 

importance of GAP45 N-myristoylation. 

 

The N-terminal glycine of GAP45 is essential for parasite viability 

We focused on GAP45, for which myristoylation appears to be essential for viability, for further detailed analysis of 

the consequence of lack of myristoylation. The strategy used a genetic complementation approach by further 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.12.16.423054doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.16.423054
http://creativecommons.org/licenses/by/4.0/


8 
 

modification of an existing parasite that had been engineered to allow an inducible knockout of gap45. The gap45 

gene has been shown to be essential in the gap45:ha3:loxP parasite line, which has a loxPint intron after the first 49 

base pairs, a loxP site after the stop codon, expresses HA-tagged GAP45 and allows an inducible knockout of the 

gene (Perrin et al., 2018). We inserted a second copy of the gap45 gene together with its own promoter sequence 

into the pfs47 locus to express either a wild type (WT) GAP45 or GAP45[G2A] gene, and examined whether or not 

this second gene complemented the induced knockout of gap45. Construction of these parasite lines is shown in 

Supplementary Figure 4. For both transfections, parasites were detected after 22 days and following confirmation 

of DNA integration, parasite lines were cloned by limiting dilution. The parasite clones used for complementation 

analysis are denoted as gap45:ha3:loxP::comp_gap45[WT] and gap45:ha3:loxP::comp_gap45[G2A], respectively. 

First we examined protein levels of the gap45:ha3:loxP, gap45:ha3:loxP::comp_gap45[WT] and 

gap45:ha3:loxP::comp_gap45[G2A] schizonts by western blotting and IFA using anti-GAP45 antibodies. The HA-

tagged GAP45 is 4.3 kDa larger than GAP45 expressed at the same time from the second gene copy, which has no 

HA-tag (Perrin et al., 2018), and therefore both forms were visible on a western blot with anti-GAP45 antibodies 

(Figure 5A). In cycle 0, the cycle in which rapamycin treatment was given to induce gene excision (Supplementary 

Figure 5), expression of GAP45 in the gap45:ha3:loxP line was undetectable, whereas in the 

gap45:ha3:loxP::comp_gap45[WT] and gap45:ha3:loxP::comp_gap45[G2A] lines GAP45 was present at 

approximately the same levels as in the DMSO treated controls. The IFA analysis confirmed that rapamycin 

treatment abolished expression of the HA-tagged protein and that the gene inserted into the Pfs47 locus produces 

GAP45 that is indistinguishable in location from wild type GAP45 (Figure 5B). By morphology, comparing the 

gap45:ha3:loxP, gap45:ha3:loxP::comp_gap45[WT] and gap45:ha3:loxP::comp_gap45[G2A], these lines developed 

normally through cycle 0, confirming the previous observation that full-length GAP45 is not essential for schizont 

development (Perrin et al., 2018). This result also demonstrates that loss of N-terminal myristoylation in GAP45 does 

not alter the subcellular localization of this modified protein.  

In subsequent cycles after rapamycin treatment, however, GAP45 expressed in the 

gap45:ha3:loxP::comp_gap45[G2A] integrant was not able to complement the gap45:ha3:loxP defect. After two 

cycles, neither rapamycin treated gap45:ha3:loxP nor gap45:ha3:loxP::comp_gap45[G2A] parasites were able to 

proliferate (Figure 5C). In contrast, the rapamycin treated gap45:ha3:loxP::comp_gap45[WT] parasites, and all three 

parasites treated with DMSO alone, continued to replicate. These data indicate that the N-terminal glycine and 

hence the myristoylation of GAP45 is indispensable for the survival of asexual blood-stage parasites.  

 

 GAP45[G2A] assembles into an intact glideosome and is S-palmitoylated but not N-myristoylated  

With these three parasite lines, we were able to investigate the role of GAP45 in glideosome assembly and its post-

translational acylation. Previously, it had been shown that an N-terminal truncated GAP45, expressed together with 

WT GAP45, is incorporated into the glideosome (Ridzuan, Moon et al., 2012), but in the absence of GAP45 the 

glideosome does not form (Perrin et al., 2018). In the Plasmodium glideosome model, based on the T. gondii 

assembly, the C-terminal domain of GAP45 interacts with MyoA and its light chains, MTIP and ELC, and binds to the 

IMC via GAP50, playing a role in motility and host cell invasion (Frenal, Polonais et al., 2010). In the absence of 

GAP45, MTIP and MyoA are present at low levels and are not associated with the IMC (as assessed by IFA), although 
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IMC formation is not impaired (Perrin et al., 2018), leading to the conclusion that GAP45 is essential for correct 

motor complex assembly, but not for maintaining the structural integrity of the IMC in Plasmodium (Perrin et al., 

2018). 

 We examined the glideosome structure in gap45:ha3:loxP, gap45:ha3:loxP::comp_gap45[WT] and 

gap45:ha3:loxP::comp_gap45[G2A] parasites by IFA and western blot with or without rapamycin treatment. After 

rapamycin treatment of gap45:ha3:loxP::comp_gap45[G2A] parasites, both MyoA and MTIP proteins were detected 

in the correct location by IFA (Figure 6A) and at normal levels by western blot (Figure 6B), in contrast to the situation 

in gap45:ha3:loxP parasites where MyoA and MTIP were not detectable. The location and abundance of GAP50 

were unaffected. These findings indicate that although GAP45 is important for recruiting MyoA and MTIP to the 

IMC, its N-terminal glycine and hence its myristoylation is not required for this activity. 

 To examine myristoylation, gap45:ha3:loxP::comp_gap45[G2A] (2 clones), gap45:ha3:loxP and 

gap45:ha3:loxP::comp_gap45[WT] parasites were treated with rapamycin, or DMSO, during cycle 0, metabolically 

labelled with YnMyr from 34 h PI and harvested at 48 h PI. Proteins were extracted and an AzTB biotin tag attached 

to the YnMyr-labelled proteins using click chemistry. Tagged proteins were enriched by Neutravidin binding and 

then analysed by western blotting (Figure 7A). GAP45 was detected in the lysates and enriched protein fraction from 

all parasites treated with DMSO. However, after rapamycin treatment, only the gap45:ha3:loxP::comp_gap45[WT] 

parasite expressed the myristoylated protein. As a positive control for myristoylation and the enrichment procedure, 

the known NMT substrate, ADP-ribosylation factor (ARF1, PF3D7_1020900), was successfully enriched, the 

additional mass of YnMyr conjugated to AzTB resulting in a small mobility shift, whereas, as a negative control the 

non-myristoylated endoplasmic reticulum chaperone BiP (PF3D7_0917900), was not enriched. These results 

indicate that, as predicted, GAP45[G2A] is not myristoylated. 

 Since GAP45[G2A] is not myristoylated its modification by palmitoylation was examined. GAP45 has six 

cysteines that are potential sites for this modification: one at the N-terminus (Cys5), and five close to the C-terminus, 

of which one has been shown experimentally to be palmitoylated (Jones et al., 2012). The four parasite lines were 

synchronised, rapamycin treated and metabolically labelled with YnPal (heptadec-17-ynoic acid, also known as 

YnC14) to allow a biotin tag to be attached and the proteins enriched with Neutravidin coated beads. Samples were 

analysed by western blot using anti-GAP45, anti-CDPK1 (CDPK1 has a single palmitoylation site; a positive control), 

and anti-HSP70 (used as a negative control as HSP70 has no palmitoylation site) (Figure 7B). GAP45 was present in 

all samples except those from rapamycin treated gap45:ha3:loxP parasites. CDPK1 was present in all fractions 

including the enriched palmitoylated sample, whereas HSP70 was absent from the palmitoylated protein fraction. 

These results indicate that GAP45[G2A] is palmitoylated, to a similar extent as GAP45[WT], and that this 

modification is independent of prior myristoylation of the protein. 

Incorporation of YnPal provides no indication of the number of palmitoylated cysteines in individual 

proteins. Therefore, to examine how many cysteines are palmitoylated in the different GAP45 proteins, we used 

acyl-PEG exchange (APE) methodology (Percher, Ramakrishnan et al., 2016). Proteins in cell extracts were reduced, 

reactive cysteine residues capped with N-ethylmaleimide (NEM), and then acyl thioester bonds were cleaved with 

hydroxylamine treatment, to allow site-specific alkylation with a 10 kDa methoxy(polyethylene glycol)-maleimide 

(mPEG-Mal) mass-tag. Each tag addition to a former palmitoylation site results in a discrete mobility shift detected 
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on a western blot with anti-GAP45 antibodies (Figure 7C). The samples were split after NEM treatment and then 

either treated with hydroxylamine, or left untreated to reveal the background of mPEG-Mal tagging. The 

gap45:ha3:loxP::comp_gap45[G2A] and gap45:ha3:loxP::comp_gap45[WT] parasites were used, with and without 

rapamycin treatment. In the absence of rapamycin, HA-tagged GAP45, GAP45[G2A] and GAP45[WT] were all tagged 

with mPEG-Mal, and after rapamycin treatment only GAP45[G2A] and GAP45[WT], were labelled. The western blot 

suggested two 10 kDa band shifts, consistent with the addition of two mPEG-Mal moieties to both GAP45[WT] and 

GAP45[G2A], although the upper band was faint in both cases, and there was no evidence of a third site (Figure 7C). 

The intensity of each band quantified with ImageJ, confirmed that the single palmitoylation species was the most 

abundant modified form of the protein (Supplementary Table 3). CDPK1 was used as a control protein and displayed 

a single mPEG-Mal shift, consistent with a single palmitoylation site (Figure 7C, Supplementary Table 3). 

 

Myristoylation of GAP45 is dispensable for egress but essential for RBC invasion  

The growth assay over two generations indicated that gap45:ha3:loxP::comp_gap45[G2A] parasites had a severe 

growth defect (Figure 5), and previous work has shown that parasites lacking GAP45 are able to egress but not 

invade (Perrin et al., 2018). Therefore, the ability of gap45:ha3:loxP::comp_gap45[G2A] parasites to egress and 

invade after rapamycin treatment was investigated. Giemsa-stained thin blood smears of rapamycin treated 

gap45:ha3:loxP::comp_gap45[G2A] parasites at 48 h PI revealed increased numbers of free merozoites and a lack 

of ring-stage parasites when compared to the DMSO-treated control (Figure 8A), a pattern similar to that observed 

with gap45:ha3:loxP parasites. An invasion assay was used to compare gap45:ha3:loxP::comp_gap45[G2A], 

gap45:ha3:loxP::comp_gap45[WT] and gap45:ha3:loxP parasites, treated with either rapamycin or DMSO. 

gap45:ha3:loxP::comp_gap45[WT] parasites were able to invade erythrocytes normally after rapamycin treatment, 

but gap45:ha3:loxP::comp_gap45[G2A] and gap45:ha3:loxP showed significantly reduced invasion (parasitemia of 

cycle 1 / parasitemia of cycle 0; p = 0.001 and p < 0.0001, respectively; Welch’s unpaired two tailed t-test) (Figure 

8B). In an assay with purified schizonts, schizont parasitemia had decreased after 24 h when compared to the 

parasitemia at 0 or 4 h, consistent with egress occurring normally (Figure 8C), but following rapamycin treatment 

both gap45:ha3:loxP::comp_gap45[G2A] and gap45:ha3:loxP parasite cultures contained significantly fewer new 

ring stages after 24h in the first cycle (Welch’s unpaired two tailed t-test; p = 0.0042 for 

gap45:ha3:loxP::comp_gap45[G2A] and p < 0.0002 for gap45:ha3:loxP). These data indicate that myristoylation of 

GAP45 is necessary to generate the functional GAP45 that is essential for successful erythrocyte invasion. 

 

Discussion 

The consequences of NMT inhibition with IMP-1002 for Plasmodium falciparum depend on the length of incubation 

with the inhibitor and its concentration, as well as the stage of parasite development to which the inhibitor is 

added. Over 30 different NMT substrates have been identified experimentally in the asexual erythrocytic stage and 

just over 100 proteins of the total Plasmodium proteome are predicted to be myristoylated (Wright et al., 2014). 

Whilst many of the known NMT substrates likely have an essential function for the erythrocyte life cycle, the 

importance of N-myristoylation for that function is less clear, making it difficult to determine the key abnormalities 

resulting from NMT inhibition. One consequence of NMT inhibition for intra-erythrocytic stages was the failure to 
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assemble the IMC during early schizogony, leading to a block in development. This is likely due to the lack of 

myristoylation of IMC components such as GAP45, ISP1 and ISP3 resulting in the formation of pseudoschizonts - 

cells with only four to five nuclei which fail to undergo further karyogenesis and cytokinesis (Wright et al., 2014). 

However, many proteins that are N-myristoylated are highly expressed during schizogony, in the last phase of 

intraerythrocytic development, and therefore we wished to examine in detail the consequence of treatment with 

NMTi specifically at this stage.  

When IMP-1002 treatment was restricted to the last eleven hours of the cycle, parasites developed to 

schizonts that appeared morphologically fully mature, but parasite egress was prevented, leading to a significant 

drop in parasitemia in the subsequent cycle. Although there was no visible morphological change in parasites 

stained with Giemsa’s reagent, subcellular protein fractionation and immunofluorescence analysis showed that 

IMP-1002 treatment led to protein mislocalization. For example, the NMT substrate ARO is typically found in the 

membrane fraction, but in the presence of IMP-1002 it was soluble. A similar change in membrane association was 

displayed by CDPK1, but not by GAP45, which remained membrane bound, likely due to its additional S-

palmitoylation close to the C-terminus.  Immunofluorescence images using antibodies to ARO and RON4, suggested 

that the localization of rhoptries was impaired by IMP-1002 treatment. By homology with T. gondii ARO, the N-

myristoylated ARO is involved in the correct positioning of rhoptries at the apical end of developing merozoites 

(Mueller, Samoo et al., 2016), and therefore NMT inhibition might lead to defective or mislocalized rhoptries. Such 

a mislocalization of rhoptries has been observed after parasite treatment with 2-bromopalmitate (2-BP) (Jones et 

al., 2012), which is a highly promiscuous inhibitor of lipid metabolism, with impacts on S-acylation (Davda, El 

Azzouny et al., 2013, Lanyon-Hogg, Faronato et al., 2017). ARO has two cysteines (Cys5 and Cys6) which are likely 

palmitoylated (Cabrera, Herrmann et al., 2012) and, together with the N-terminal myristoylation, involved in 

membrane anchoring and rhoptry positioning. These findings support the idea that loss of myristoylation of ARO 

changes the localization of the protein, and of the rhoptries away from the apical end of developing merozoites. 

RON4 is not N-myristoylated but is contained within rhoptries, and its mislocalization is consistent with the whole 

organelle being affected. In contrast to the effect on the rhoptries, IMP-1002 treatment during schizogony 

appeared to have no gross effect on either IMC formation or the localization of a micronemal marker. 

The presence of IMP-1002 had a direct effect on protein N-myristoylation and abundance, as shown by 

two proteomic approaches that revealed differences in behaviour of some substrates following NMT inhibition 

compared with the DMSO control. Using chemical proteomics to examine proteins modified by YnMyr, N-

myristoylation of sixteen proteins was significantly reduced during NMT inhibition compared with the DMSO-

treated control. The YnMyr modified N-terminal peptide of several NMT substrates was also identified directly, 

including that of a metal-dependent protein phosphatase (PPM6) and a putative acylated pleckstrin-homology 

domain containing protein (APH), which had not been identified previously (Wright et al., 2014). Due to the co-

translational nature of N-myristoylation, only those proteins synthesized during the YnMyr labelling window would 

have been purified and detected. Six of these substrates also showed a significant difference in protein abundance 

after IMP-1002 treatment compared with DMSO treatment, suggesting that NMT inhibition affects their overall 

stability. In addition to NMT substrates, other proteins were also decreased in abundance as a result of NMT 

inhibition. For example, IMP-1002 treatment led to a significant reduction of proteins involved in DNA chromatin 
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organization and assembly, such as histones, and proteins involved in DNA replication, transcription and protein 

translation. A second large group included secreted and exported proteins, especially some targeted to the 

erythrocyte membrane. The export of parasite proteins to the erythrocyte is maximal in early erythrocyte asexual 

stages, but some proteins are also expressed in schizonts, stored in the apical organelles and then transferred to 

the erythrocyte at invasion (Marti, Baum et al., 2005). The observed changes in protein abundance may be due to 

a combination of altered transcription, protein synthesis and protein degradation rates.  

During intraerythrocytic development, protein synthesis starts to accelerate at around 18 to 24 hours post 

invasion (Holder & Freeman, 1982), with the peak during schizogony. Total protein synthesis, as measured by 

metabolic incorporation of a methionine analogue, is not directly affected by NMTi (Wright et al., 2014), consistent 

with a selectivity and mode of action distinct from a direct effect on translation. However, since N-myristoylation 

is a co-translational process, it is possible that NMTi and protein synthesis inhibition may be connected through 

common essential downstream factors or pathways. In the whole proteome analysis, proteins involved in DNA 

synthesis, transcription, translation and chromatin organisation were less abundant following IMP-1002 NMT 

inhibition compared with DMSO treatment, strengthening the hypothesis of a connection between DNA and 

protein synthesis and NMT inhibition. NMT inhibition may also delay parasite development, even though there 

was no observed effect on nuclear division, slowing down essential processes during schizogony and leading to 

changes in protein abundance.  

In addition to causing protein mislocalization as observed for ARO, inhibition of NMT may also result in the 

misfolding of its substrates, leading to their degradation and reduced abundance. For example, NMT inhibition leads 

to death through apoptosis of several cancerous cell types, potentially as a result of endoplasmic reticulum (ER) 

stress and an unfolded protein response (Thinon, Morales-Sanfrutos et al., 2016). Inhibition of NMT may also lead 

to an imbalance in favour of other N-terminal protein modifications (NPMs) such as N-α-acetylation (NAT) carried 

out by N-terminal acetyltransferase (NATs) (Starheim, Gevaert et al., 2012), or N-terminal ubiquitination 

(Ciechanover & Ben-Saadon, 2004, Timms et al., 2019). Usually these NPMs occur co-translationally through 

ribosome-associated protein biogenesis factors (RPBs) that interact with the ribosome and show a degree of 

competition in their binding (Giglione, Fieulaine et al., 2015). For example, there is some indication of competition 

between N-α-acetylation and N-myristoylation (Castrec et al., 2018, Utsumi, Sato et al., 2001). Additional 

experiments are necessary to investigate this further. In summary, treatment with NMTi results in mislocalization 

and reduced abundance of certain substrates that together may be responsible for the observed phenotype. An 

NMT inhibitor used to study myristoylation has an effect on many substrates simultaneously and the phenotype 

reflects the resultant pleiotropic consequences.  

Because it is difficult to draw conclusions as to which of the myristoylation provides the greatest 

contribution to the observed phenotypes, we supplemented the inhibitor studies with genetic approaches. We 

expected that proteins with the greatest reduction in YnMyr labelling and abundance are those most affected by 

NMT inhibition, and these might contribute most to the observed phenotypes. In order to study N-myristoylation of 

particular substrates in isolation, the proteomic data sets were used to select six NMT substrates for a G2A 

substitution screen to determine the essentiality of the N-terminal glycine. To address individually the importance 

of myristoylation for these substrates, we developed a competition screen to study parasite viability following the 
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integration of N-terminal glycine or N-terminal alanine constructs to repair a double strand break induced by CRIPSR-

Cas9. This screen showed that for four out of six substrates the parasites preferentially incorporated the glycine 

codon at the second position with a ratio of greater than 80%, and for ARO, GAP45 and S9C nearly 100%. This 

strongly suggests the essentiality of myristoylation for at least four of the tested substrates. This approach does not 

allow phenotypic characterization of parasites lacking the N-terminal glycine in a specific substrate; therefore, 

GAP45 was selected for further analysis using a gene complementation approach to study the phenotype that results 

from the lack of myristoylation of this NMT substrate. 

GAP45 is essential for glideosome assembly and erythrocyte invasion, as shown recently by using an 

inducible DiCre system to knockout the gene (Perrin et al., 2018). To complement this knockout, we placed the 

GAP45 gene in the Pfs47 gene locus, using two forms of the gene: one in which the second codon of the open 

reading frame encoded glycine, and a second in which the second codon encoded alanine. Interestingly, in both 

these constructs GAP45 appeared to be correctly targeted within the cell and allowed assembly of the glideosome 

as indicated by the correct location of MyoA and MTIP, which are not present in the absence of the complementing 

GAP45 gene copy. Although only the WT and not the G2A protein was myristoylated, both the G2A and WT GAP45 

proteins were palmitoylated to a similar extent. Therefore, the single point mutation in the GAP45 gene, resulting 

in the presence or absence of the N-terminal myristoylated glycine, had a profound effect on parasite invasion, 

indicating that GAP45 myristoylation is essential for the function of the motor in invasion but not for motor 

assembly. It is possible that a low affinity interaction between GAP45 and the PM is essential, but to facilitate the 

dynamic changes that may be necessary for motor function (such as the passage along the membrane of the 

moving junction between parasite and RBC) the strength of the interaction needs to be modulated by differential 

palmitoylation/depalmitoylation of the cysteine close to the N-terminus or by GAP45 interaction with other 

proteins.  The requirement for GAP45 myristoylation in invasion is clear but further work is needed to clarify the 

importance of further mechanisms.  For example, the role of Cys5 palmitoylation should be addressed in future 

experiments to investigate the necessity of a second modification of the protein to complement myristoylation 

for dynamic membrane binding (Peitzsch & McLaughlin, 1993). 

In conclusion, using small molecule inhibitors of NMT and genetic methods to replace the N-terminal 

glycine in NMT substrates, we have shown the importance of these substrates and their myristoylation at different 

stages in parasite development. As a consequence of these multiple effects, inhibitors targeting NMT provide 

outstanding antimalarial parasite activity. 

 

MATERIALS AND METHODS 

 

Parasite culture 

P. falciparum 3D7 parasites were cultured in vitro in RPMI 1640 medium containing 0.5 % (w/v) Albumax II at 2-5 % 

hematocrit as described (Trager & Jensen, 1976). Parasites cultures were gassed with 90 % N2, 5 % CO2 and 5 % O2 

and incubated at 37 °C. Parasites were synchronized using 70 % Percoll gradients to purify schizont stages, with a 

subsequent reinvasion followed by sorbitol treatment as described (Knuepfer, Napiorkowska et al., 2017).  
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Determination of parasitemia by flow cytometry 

Synchronized parasites were incubated with DMSO or IMP-1002 and samples were fixed in 4% paraformaldehyde 

(PFA), 0.2 % glutaraldehyde for one hour at 45 h PI. Then, samples were washed in phosphate buffered saline (PBS) 

and labelled with 1:500 of 10mg/mL Hoechst 33342 (New England Biolabs, Cat# 4082S) for 10 min with a subsequent 

wash in PBS. For flow cytometry analysis, a BD CL1 Fortessa D Analyzer or Aria Fusion Sorter and Analyzer with 

FACSDiva software v8.0.1 were used with the 450-50 filter, counting 50,000 RBCs per sample. Data were analysed 

using FlowJo LLC 2006-2015. Gating for RBCs was achieved by plots of forward scatter area against side scatter area 

(gate = P1). Doublet discrimination required gating on a plot of forward scatter height against forward scatter width 

(gate = P2) followed by a plot of side scatter height against side scatter width (gate = P3). A Hoechst-stained 

uninfected RBC sample was used as a negative control to gate on the infected population only on a forward scanner 

area against UVA fluorescence with 450-50 standard filter (gate = P4). Parasitemia was determined by the number 

of cells identified in gate P4 as a percentage of those in gate P3. The median fluorescence intensity (MFI) of each 

sample was used to determine the median number of nuclei per sample by normalizing it to the MFI of a control 

sample containing synchronized rings with a known MFI corresponding to one nucleus.  

 

Subcellular fractionation 

Parasites were subjected to sequential fractionation to determine the solubility of proteins, using a method 

described previously (Ezougou, Ben-Rached et al., 2014). Schizont proteins were fractionated by sequential 

solubilisation using hypotonic and high salt buffers to release soluble cytosolic proteins, followed by a high pH 

sodium carbonate extraction to solubilise peripheral membrane proteins (carbonate-soluble) but not tightly 

associated membrane proteins such as integral membrane proteins (carbonate-insoluble). The distribution of 

specific proteins in the different fractions was revealed by western blotting. 

 

Western blot analysis  

Proteins separated by SDS-PAGE were transferred to nitrocellulose membrane using the iBLOT Transfer system 

(ThermoFisher Scientific). Following blocking overnight at 4°C in 5 % (w/v) dried milk, 0.05% (v/v) Tween20 in PBS 

(PBS-T), membranes were incubated with primary antibody for 1 hr at RT in 5 % milk in PBS-T, followed by three 

5 min washes in PBS-T and a subsequent incubation with species-specific secondary antibody (goat-anti-

rabbit/rat/mouse IgG-HRP, Invitrogen 1:2500) for 1 h in 5 % milk in PBS-T. After a final three 5 min washes, the 

membrane was incubated with either 1 ml of Amersham ECL substrate western blotting detection reagent (GE 

Healthcare lot# 9622301) or for higher sensitivity, BioRad Clarity Western ECL substrate (Cat # 170-5060), used 

according to the manufacturers’ instructions. The signal was visualized on a BioRad ChemiDoc MP Imaging System.  

 

Indirect immunofluorescence assay (IFA) 

For IFA, thin smears of parasitized RBC on slides were air dried, fixed in 4 % PFA in PBS for 10 to 20 min, permeablized 

in 0.1 % (v/v) Triton X-100 in PBS for 10 min, and blocked with 3 % bovine serum albumin (BSA) in PBS for at least 

30 min at 4 °C. Slides were then probed with the appropriate dilution of primary antibody in a humidified chamber 

at room temperature (RT) for 1 h before being washed three times in PBS. Secondary antibody conjugated with 
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Alexa Fluor 488 or 594 was added for one hour at the appropriate dilution, followed by three washes in PBS. Slides 

were mounted in ProLong® Gold Antifade mounting medium containing DAPI (4’,6-diamidino-2-phenylindole), and 

viewed on a Nikon Eclipse Ni-E imaging system with a Hamamatsu Orca-flash 4.0 digital camera and a Plan apo λ 

100x/1.45 oil immersion objective. Images were captured using Nikon NIS-Elements software, generating Z-stack 

images of individual parasites, using deconvolution options and exporting the image as a tiff file. Alternatively, 

images were processed using Fiji software (Schindelin, Arganda-Carreras et al., 2012). Identical exposure conditions 

were used for each wavelength in treated (rapamycin or IMP-1002) and control (DMSO) samples.  

 

Metabolic tagging of parasites in the presence or absence of IMP-1002 

For YnMyr (also known as YnC12 or Alk-14; tetradec-13-ynoic acid) tagging experiments, purified parasites were 

labelled metabolically using 25 µM YnMyr added to the culture medium. For YnPal (also known as YnC14 or Alk-16; 

heptadec-17-ynoic acid) labelling, the compound was stabilized by base treatment and absorbed to BSA to maximize 

its uptake and incorporation (Thinon, Fernandez et al., 2018). The required amount (for example, 120 µl of a 50 mM 

stock of YnPal for 240 ml RPMI 1640) was combined with 600 µl of 0.01M NaOH and warmed to 70°C for 3 to 4 min, 

then 1.5 ml of warm 5 % BSA solution was added and the mix maintained at 37 °C for 3 to 4 min. The solution was 

added to the RPMI 1640 culture medium, filtered through a 0.2 µm filter, and then the parasites were fed with the 

YnCPal-containing medium. In all experiments, the final DMSO percentage did not exceed 0.05 %.  

 

Preparation of P. falciparum proteins and copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) labelling 

Parasites of the appropriate stage were either purified through Percoll, washed and pelleted or directly pelleted 

without purification. The cell pellet was lysed in 0.15 % saponin, using one and a half times the pellet volume for 

10 min on ice. Following centrifugation, the pellet was washed further with PBS until the supernatant was free of 

hemoglobin and stored at -80°C until use. The pellet was thawed in ten times its volume of 1 % (v/v) Triton X-100, 

0.1 % (w/v) SDS in PBS containing protease inhibitors but without EDTA, sonicated for 1 min and then left on ice for 

20 min. Insoluble material was removed by centrifugation and the supernatant was snap frozen and stored at -80°C. 

The protein concentration of the lysate was measured using a PierceTM BCA Protein Assay Kit (23225, ThermoFisher 

Scientific) following the manufacturer’s instructions. 

The lysate was adjusted to 1 mg/mL protein with PBS, and premixed click reagents [100 µM azido-TAMRA-

biotin (AzTB) capture reagent, 1 mM CuSO4, 1 mM Tris(2-carboxyethyl)phosphine (TCEP), 100 µM Tris[(1-benzyl-1H-

1,2,3-triazol-4-yl)methyl]amine (TBTA); mixed in the order stated and pre-incubated for 2 min] were added at the 

equivalent of 6 µl click reaction mix to 100 µl protein solution (Mousnier, Bell et al., 2018, Wright et al., 2014). The 

sample was vortexed for 1 h at RT and the reaction quenched by the addition of 10 mM EDTA. Protein was 

precipitated with 2 volumes of methanol, 0.5 volumes of chloroform and 1 volume of water. After centrifugation for 

10 min at 17,000 g, the top methanol/water layer was removed and 0.5 ml ice-cold methanol was added prior to 

vortexing and sonication to break up and disperse the protein disc. The protein was collected by centrifugation 

(17,000 g for 10 min at 4 °C) and air-dried for ~15 min, then re-dissolved to 10 to 20 mg/ml in PBS containing 2 % 

SDS, 10 mM DTT, with vortexing for 15 – 30 min.  
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Protein enrichment for immunoblot analysis 

For analysis of affinity purified proteins by SDS PAGE, precipitated samples were enriched using 25 μl of Neutravidin 

Agarose Resin for lysate containing 150 μg of protein. The resin was pre-washed 3x with 0.2 % SDS in PBS followed 

by an enrichment of the labelled proteins from the lysate. Following the pull down for two hours at RT with shaking, 

the supernatant was removed, and the beads were washed three times with 0.2 % SDS in PBS. Proteins were eluted 

by treatment of the beads with SDS-PAGE sample loading buffer containing DTT (at a final 100 mM concentration) 

and boiling for 10 min. Following a centrifugation step to remove any insoluble material, supernatants were loaded 

on the gel.  

 

Affinity purification of labelled proteins and proteomic sample preparation 

After click chemistry, precipitation, and dissolution in 2% SDS in PBS, samples were diluted with PBS to 1 mg/ml 

protein. For proteomic analysis, labelled proteins were first enriched. An agarose mixture comprised of one 

third Neutravidin Agarose resin and two thirds Pierce Control Agarose resin (ThermoFisher Scientific) was prepared 

to minimize contamination of samples with neutravidin from the beads, and 30 µl of this resin mixture was used to 

enrich labelled protein from lysate containing up to 300 µg protein. The resin mixture was pre-washed three times 

with 0.2% SDS in PBS using at least five times the bead volume, then the protein solution was incubated with the 

resin for two hours at RT, with shaking. The resin was washed sequentially three times with 5 to 10 volumes of 1% 

SDS in PBS, twice with 50 mM ammonium bicarbonate (AMBIC) containing 4 M urea, and a further three times with 

50 mM AMBIC followed by sample processing as described previously (Broncel, Serwa et al., 2016). To improve 

detection of cysteine-containing peptides, thiols were reduced and alkylated; proteins were reduced with 10 mM 

DTT in 50 mM AMBIC for 30 min at 55 °C and alkylated with 10 mM iodoacetamide (IAA) in 50 mM AMBIC for 30 min 

at RT in the dark. Proteins were digested with trypsin overnight (0.12 µg Trypsin Gold [Promega UK Ltd, Cat. # V5280] 

for 300 µg protein). 1.5 % (v/v) trifluoroacetic acid (TFA; ThermoScientific Cat. #28902) was added to inactivate the 

trypsin and peptides were desalted using stop-and-go extraction (STAGE) tips and reverse phase C18 

poly(styrenedivinylbenzene) polymer cation exchange (SDB-XC) membranes. The peptides were eluted in 79 % 

acetonitrile (MeCN)/21 % water and dried using a Speed Vac concentrator. Prior to liquid chromatography-tandem 

mass spectrometry (LC-MS/MS) analysis, samples were dissolved in 15 µl of 0.5 % TFA, 2 % MeCN in water using 

vortex, brief sonication and a final centrifugation step at 17,000 g for 10 min at 15 °C to remove insoluble material. 

Eleven µl of each sample was transferred to an autosampler-compatible vial. 

 

Global proteome analysis: Tandem Mass Tag (TMT) labelling of peptides and high pH reverse fractionation 

Fifty microliters of lysate from parasites grown with or without IMP-1002 were treated with 

methanol:chloroform:water. Precipitated protein was washed with 200 µl methanol, collected by centrifugation 

(17,000 g for 10 min at 4°C) and solubilized in 20 µl 50 mM TEAB containing 0.2 % ProteaseMAXTM Surfactant 

(Promega UK Ltd, Cat. # V2071) for 1-2 h with vortex and occasional sonication. The samples were reduced with 

5 mM DTT in 50 mM TEAB for 20 min at 56 °C and alkylated with 14.85 mM IAA in 50 mM TEAB for 30 min at RT in 

the dark. Samples were trypsin-treated (1.8 µg Trypsin Gold for 50 µg protein) in 0.05 % ProteaseMAX and then TFA 

was added to a final concentration of 0.5 %, and incubated for 5 min at RT, to inactivate the trypsin. Peptides were 
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purified by STAGE-tip and reverse phase C18 SDB-XC membrane, with elution in 70 % MeCN and 30% water, and 

dried.  

The TMT10plex Label Reagent Set (ThermoFisher Scientific, Cat # 90309) was used according to the 

manufacturer’s instructions. Immediately before use, the reagents were equilibrated to RT and dissolved in 

anhydrous MeCN. Peptides were dissolved in 25 µl 50 mM TEAB with sonication for 10 min, and then 0.2 mg TMT 

label reagent was added and each sample incubated for 1 h. To quench the reaction, 8 µl 5 % hydroxylamine were 

added to the sample and incubated for 15 min. A small quantity (about 5 %) of each sample was used to check the 

labelling through an initial liquid chromatography-mass spectrometry (LC-MS) analysis to determine the ratio of 

labelled reporter ions. Prior to mixing, the ratio was corrected for any differences in labelling efficiency. Samples 

were combined into one tube in equal amounts and peptides were initially separated by high pH reverse 

fractionation with a gradient step wise elution from 5 – 50 % MeCN to increase the proteome coverage, using the 

ThermoFisher Scientific kit (Cat # 84868) according to the manufacturer’s instructions. Each fraction was then dried 

and redissolved in 15 µl 0.1 % TFA to allow 10 µl per injection.  

 

Proteomic data acquisition and analysis  

For the peptides from proteins labelled with YnMyr in the presence or absence of IMP-1002, data were acquired on 

a Q-Exactive Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Scientific) with a 120-minute acquisition 

time. Peptides were resolved chromatographically on an Ultimate 3000 RS-LC nano system (Thermo Scientific) using 

a 50 cm x 75 µm EASY-SprayTM C18 column (Thermo Scientific) at a flow rate of 250 nl/min. The elution conditions 

comprised a gradient of solutions A (0.1 % aqueous formic acid [FA] in water) and B (0.1 % FA in MeCN) over 2 h. Via 

nano electrospray ionization, the eluent was introduced to the Q Exactive, which was operated in data-dependent 

mode using a survey scan of 350 – 1650 m/z at a resolution of 70,000. Up to 10 of the most abundant isotope 

patterns with 2+ charge or higher from the survey scan were selected with an isolation window of 2.0 m/z and 

fragmented by HCD with normalized collision energies of 25%. Subsequent scans were acquired at a resolution of 

17,500 from m/z 200 - 2000. 

 

For the whole proteome, analysis was performed on an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo 

Scientific) with a 120-minute acquisition time. Peptides were resolved chromatographically on an Ultimate 3000 

RS-LC-nano System (Thermo Scientific), using a 50 cm x 75 μm EASY-Spray C18 column (Thermo Scientific) at a flow 

rate of 300 nl/min. The elution conditions comprised a gradient starting at 2 % B (0.1 % FA, 80 % MeCN and water) 

and 98 % A (0.1 % FA in water) and increasing to 27.5 % B over 110 min followed by an increase to 40 % B over 10 

min, and a final increase to 90 % B over 1 min. Via nano electrospray ionization, the eluent was introduced into the 

Orbitrap Fusion Lumos, which was operated in ‘TMT acquisition mode’ and peptides were analysed using a 375–

1500 m/z scan range using quadrupole isolation at 120,000 resolution for an ion at 200 m/z. Tandem mass spectra 

were first collected using the ion trap and fragmented using 35 % collisional induced dissociation (CID). A dynamic 

exclusion list was employed to prevent repeat sampling (repeat count of 2, repeat duration of 15 seconds, exclusion 

list size 100, and exclusion duration of 30 seconds).  
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Proteome data analysis 

Peptides identification and quantification were conducted using MaxQuant software (versions 1.5.3.8 for YnMyr 

labelling and label free quantitation, and 1.6.0.13 for the whole proteome with TMT quantitation) using the 

PlasmoDB-29_Plasmodium3D7_Annotated Protein database. All mass spectrometry ‘.raw’ files were loaded directly 

into the MaxQuant software. Protein intensity values were calculated based on the intensities of their corresponding 

peptides, and analyses of both LFQ (YnMyr labelling) and TMT (whole proteome) experiments in MaxQuant were 

performed using the built-in algorithms. Cysteine carbamidomethylation was selected as a fixed modification, and 

methionine oxidation and N-terminal acetylation as variable modifications. For the YnMyr labelling and purification 

experiment, myristoylation was set as a variable modification using a composition of C(22) H(37) N(7) O(4) with a 

monoisotopic mass of 463.2907 on any N-terminus. For enzyme digestion, trypsin was selected, which allows 

cleavage C-terminal of Arg and Lys residues and LysC which allows cleavage after Lys residues. Up to two missed 

cleavages were allowed. The false discovery rate (FDR) was set to 0.01 for peptides, proteins and sites. Other 

parameters were used as pre-set in the software. ’Unique and razor peptides’ mode was selected to allow 

identification and quantification of proteins in groups (razor peptides are uniquely assigned to protein groups and 

not to individual proteins), and all identifications were based on at least two unique peptides. The data were 

analysed using Perseus version 1.5.6.0, Microsoft Excel 2010 and GraphPad Prism version 8 for all experiments. 

 

MS data were also processed with PEAKS X+, which as a default performs de novo peptide sequencing prior to 

database searches, in order to improve the accuracy of the results. The software also searches for common PTMs 

(PEAKS PTM) and point mutations (SPIDER). The data were searched against the same database used in MaxQuant 

analyses. Trypsin was selected for database searches. The maximal mass error was set to 5 ppm for precursor ions 

and 0.01 Da for product ions. Cysteine carbamidomethylation was set as fixed modification and methionine 

oxidation and myristoylation (463.2907 on any N-terminus) were set as variable modifications. The maximal number 

of modifications per peptide was set as three. The false discovery rate was set to 0.01 for peptides and a minimum 

of 1 unique peptide per protein was required. 

 

Generation of repair and Cas-9 plasmids for the G2A/G2G competition screen of ARO, CDPK1, GAP45, ISP3, S9C 

and TRP 

For each locus a rescue plasmid was used with 200 base pair homology regions either side of the G2A mutation and 

guide sequence. The sequence between the G2A mutation and the guides was recodonized using the Codon Usage 

Table from PlasmoDB (Aurrecoechea, Brestelli et al., 2009). The tool on the ctegd.uga.edu/ website was used to 

determine two guides for each target gene based on close proximity to the G2A mutation, total score as calculated 

by use of an efficiency score (Doench, Hartenian et al., 2014) and the CRISPRRater (Labuhn, Adams et al., 2018). 

Each construct was flanked by unique restriction sites (SacI and SacII) not present in any of the constructs or the 

pMK-RQ kanamycin resistance plasmid from GeneArt, for linearization prior to transfection. For each construct a 

second plasmid contained the same homology arms and retained a codon for glycine at position 2 with a 

synonymous mutation from the endogenous sequence. 
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Analysis of the G2A screen by DNA sequencing 

The G2A screen was analysed by Illumina MiSeq. Parasite genomic DNA was extracted and specific integration-

selective primers containing a MiSeq adapter sequence were used to amplify a 289-466 bp fragment (depending on 

construct) around the codon encoding G2A/G2G. The PCR was performed and samples were cleaned as 

recommended by the manufacturer for preparation of the 16S Metagenomic sequencing library (Part # 15044223). 

To increase the number of sequence reads per sample, the KAPA HyperPrep kit was used according to the 

manufacturer’s instructions to label the PCR fragments by ligating indices at each end creating a unique barcode for 

each sample. A nine bp sequence around the glycine or alanine codon was used to determine the ratio of integrated 

G2A versus G2G.  

 

Cloning of constructs and transfection of P. falciparum 

The gap45:ha3:loxP::comp_gap45[G2A] construct was generated through PCR, digest, ligation and cloning using the 

gap45:ha3:loxP::comp_gap45 construct  and the same guide (Perrin et al., 2018), and cloned into the 

pDC2-cam-Cas9-U6-hDHFRyFCU-plasmid (Knuepfer et al., 2017, Lim, LaMonte et al., 2016, MacPherson & Scherf, 

2015). Guide and rescue plasmids were paired and ethanol precipitated prior to transfection. P. falciparum 

gap45:ha3:loxP (B11 background) (Perrin et al., 2018) or 3D7 parasites were used. For transfection, mature schizonts 

were electroporated using the Amaxa 4D electroporator (Lonza) and the P3 Primary cell 4D Nucleofector X Kit L 

(Lonza) and program FP158 (Moon, Hall et al., 2013), with 60 μg of linearized rescue plasmid and 20 μg of the 

CRISPR/Cas9 plasmid carrying the respective guide RNA. Selections were carried out as recently described (Knuepfer 

et al., 2017); parasites were cultured in the presence of 2.5 nM WR99210 for five days to select for parasites with 

the Cas9/guide plasmid. Transfected parasites were detected after 22 days, and DNA integration was confirmed by 

PCR amplification. Parasites were then treated with 1 µM 5-fluorocytosine (Ancotil) to remove residual Cas9/guide 

plasmid and cloned by limiting dilution after 37 days (Rosario, 1981). Individual clones were then screened by PCR 

amplification to confirm integration of the required DNA sequence.  

 

Analysis of parasite growth and invasion 

To analyse the growth of gap45:ha3:loxP::comp_gap45[G2A] Clone 01 and Clone 02 as well as gap45:ha3:loxP and 

gap45:ha3:loxP::comp_gap45[WT] parasites were adjusted to a parasitemia of 0.1 % and treated with rapamycin or 

DMSO. At the beginning of the assay (in cycle 0) and at 72 h (cycle one) and 120 h (cycle two) post invasion, when 

parasites were at a late ring/early trophozoite stage, samples were processed and analysed by flow cytometry. Each 

experiment was set up in triplicate, and these biological replicates were complemented with the use of the two 

clones, which served as an additional biological repeat.  

 

The invasive capacity of genetically modified parasites (gap45:ha3:loxP / gap45:ha3:loxP::comp_gap45[WT] and 

gap45:ha3:loxP::comp_gap45[G2A] treated with either DMSO or rapamycin), and 3D7 parasites treated with either 

140 nM IMP-1002 or DMSO, was measured using Percoll-purified synchronized mature schizonts added to RBC at 

1% hematocrit and a parasitemia of 1 to 3%. Samples were fixed with 4% PFA and 0.02% glutaraldehyde at 0, 4, and 

24 h later, enabling the percentage of newly formed ring-infected RBCs to be determined by Hoechst-staining and 
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flow cytometry. Experiments were performed in triplicate with blood from three different donors. The data were 

analysed with FlowJo and GraphPad Prism software to determine the standard deviation and perform a t-test for 

statistical significance of differences between the samples.  

 

Acyl-PEG exchange (APE) analysis of protein thioesters 

For Acyl-PEG exchange (APE) analysis, a parasite lysate (in 1% Triton X-100, 0.1% SDS, and EDTA-free protease 

inhibitor cocktail) was treated as described previously (Percher et al., 2016). Each lysate was adjusted to 2 mg/ml 

protein and 92.5 µl of samples per condition were treated to reduce Cys residues with 5 µl neutralized TCEP at a 

final concentration of 10 mM for 30 min with nutation. These free Cys residues were then blocked by alkylation with 

2.5 µl of N-ethylmaleimide (NEM) (freshly prepared 1 M solution, diluted to 25 mM final concentration). The 

reaction was stopped by protein precipitation using methanol-chloroform-water (4:1.5:3) with sequential addition 

of 400 μl methanol, 150 μl chloroform and 300 μl water (all pre-chilled on ice). Following centrifugation (20,000 g 

for 5 min at 4 °C), the methanol/aqueous layer was removed, 1 ml pre-chilled methanol was added, and after mixing, 

the protein was pelleted by centrifugation at 20,000 g for 3 min at 4 °C. The pellet was washed again with pre-chilled 

methanol and dried under vacuum (Centrivap Concentrator, Labconco). To ensure complete removal of NEM from 

the protein pellet, each sample was resuspended in 100 μl 50 mM triethanolamine, pH 7.3, 150 mM NaCl containing 

1× protease inhibitor mixture (Roche), 5 mM PMSF (Sigma), 5 mM EDTA (Fischer), and 1,500 units/mL benzonase 

(TEA buffer)(Percher et al., 2016), containing 4 % SDS, warmed to 37 °C for 10 min, and briefly (∼5 sec) sonicated 

(Ultrasonic Cleaner, VWR), with two additional rounds of methanol-chloroform-water precipitation.  

For hydroxylamine (NH2OH) cleavage of palmitoyl thioester bonds and subsequent alkylation of the 

cysteines with methoxy(polyethylene glycol)-maleimide (mPEG-Mal), the protein pellet was redissolved in 100 μl 

TEA buffer containing 4 % SDS, 4 mM EDTA and split into two 50 µl samples. One sample was treated with 150 μl 

TEA buffer pH 7.3, containing 0.2 % Triton X-100 and 3 M NH2OH at a final concentration of 0.75 M NH2OH. The 

second control sample was not treated with NH2OH but diluted with 150 µl of TEA buffer, 0.2 % Triton X-100. After 

incubation at RT for 1 h with nutation, the protein was precipitated with methanol-chloroform-water and 

redissolved in 100 μl TEA containing 4 % SDS, 4 mM EDTA, warmed to 37 °C for 10 min, and briefly (∼5 s) sonicated. 

Next, to each sample was added 150 μl TEA buffer containing 0.2 % Triton X-100 and 4 mM mPEG-Mal (10 kDa; 

Sigma) for a final concentration of 1 mM mPEG-Mal. Samples were incubated for 2 h at RT with nutation before a 

final methanol-chloroform-water precipitation. The protein precipitate was re-dissolved as described above, and 

samples containing 10 µg protein were resolved by 3 to 12 % gradient Bis-Tris SDS-PAGE. and analysed by Western 

blot using rabbit anti-GAP45 and anti-CDPK1 antibodies. 

 

ACKNOWLEDGEMENTS 

We thank Robert Goldstone, Matthew Winder and Laura Cubitt of the Advanced Sequencing Facility, The Francis 

Crick Institute, for their help.  ACS was a Francis Crick Institute/Imperial College London PhD student, supported by 

the Department of Chemistry, Imperial College London and The Francis Crick Institute. JMS was supported by the 

European Union Framework Programme 7 (Marie Curie Intra European Fellowship). EWT was supported by the 

Cancer Research UK Programme Foundation Award C29637/A20183. This work was supported by funding from 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.12.16.423054doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.16.423054
http://creativecommons.org/licenses/by/4.0/


21 
 

The Francis Crick Institute (https://www.crick.ac.uk; FC001097), which receives its core funding from Cancer 

Research UK (FC001097), the UK Medical Research Council (FC001097) and the Wellcome Trust (FC001097).  

 
Database deposition 
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Figure 1. Inhibition of NMT during schizogony leads to a block in parasite development before merozoite egress 

from infected erythrocytes. 

A. The parasite ratio (parasitemia of cycle 1/ parasitemia of cycle 0) at 53 and 73 hours post infection (h PI) measured 

by flow cytometry. Equal numbers of IMP-1002- and DMSO-treated parasites, collected at 45 h PI and Percoll 

purified, were mixed with fresh erythrocytes for a growth assay. The growth of IMP-1002-treated parasites was 

significantly lower (p < 0.0001 for 53 h PI and p < 0.0003 for 73 h PI: unpaired Student t-test with Welch’s correction 

not assuming an equal SD, n = 3; 50.000 RBC counted per sample). B. Percentage of schizonts and rings in the growth 

assay samples. While the number of schizonts remained the same during the period from 45 h PI to 73 h PI and few 

rings were detected even at 73 h PI in the IMP-1002 inhibitor treated samples, the size of the schizont population 

dropped and the ring population increased substantially in the DMSO-treated control culture (n=3). C. Giemsa 

staining to reveal parasite morphology after eleven-hour drug treatment. While there was no visible morphological 

difference between IMP-1002- and DMSO-treated schizonts at 45 and 51 h PI, by 55 h PI abnormalities in schizont 

morphology became apparent in the drug-treated culture. There is an abnormal distribution of merozoites around 

the hemozoin in combination with a less spherical structure of the PM/PVM. Parasites that survived drug treatment 

developed normally into trophozoites (shown at 62 h PI) (20 fields of view per sample, n = 3).  . Scale bar = 10µm.  
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Figure 2. IMP-1002 treatment during schizogony changes the differential solubility of ARO and CDPK1 and the 

subcellular location of ARO and RON4.  

A. To examine the differential solubility of proteins present in IMP-1002-treated and untreated parasites, Percoll-

purified schizonts were lysed and sequentially fractionated using hypotonic and high salt buffers, sodium carbonate, 

and a buffer containing 1% Triton X100 and 0.1% SDS. These fractions together with the insoluble pellet, were 

analysed by western blot using antibodies to ARO, CDPK1, GAP45, HSP70, MSP7 and MTIP. In the presence or 

absence of IMP-1002 ARO was largely in the hypotonic soluble and carbonate insoluble fractions, respectively; 

CDPK1 was distributed in the hypotonic/high salt soluble and carbonate insoluble fractions, respectively, under the 

same conditions. Microscopy images are from indirect immunofluorescence assays (IFAs) performed in duplicate on 

three separate occasions with fixed parasites from DMSO (control) and IMP-1002-treated parasites, and protein-

specific antibodies. Panels show the differential interference contrast (DIC) image, the specific antibody location 

(green or red) and a merged image of the antibody staining with DAPI staining of nuclei. Scale bar = 5 µm. B. ARO 

and RON4 localization was affected by drug treatment, with the proteins distributed throughout the cytoplasm of 

developing merozoites and loss of distinct rhoptry staining. C. The location of GAP45 and MyoA at the inner 

membrane complex (IMC) appeared largely unchanged. D. The location of the micronemal protein EBA-175 was not 

affected by IMP-1002 treatment.  
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Figure 3. NMT inhibition changes the abundance of both myristoylated and non-myristoylated proteins. 

A. Parasite proteins were metabolically labelled with YnMyr for eleven hours during schizogony, coupled to AzTB 

and enriched on Neutravidin coated agarose beads. Label-free quantification (LFQ) analysis was used to measure 

the abundance of enriched proteins labelled in the presence or absence of IMP-1002. A two-sample t-test 

(permutation-based false discovery rate [FDR], 250 permutations [number of randomizations], FDR 0.01, S0 = 0.5 

[within groups variance]; n = 3 biological replicates, each with three technical replicates) revealed significant 

differences in myristoylated protein abundance between IMP-1002-treated and control (DMSO) samples. The lines 

on the graph indicate t-test significance cut off. The identity of some proteins is shown on the plot; symbols and 

colour coding of individual proteins are explained below the plot. Full data are in Supplementary Data 1.  B. 

Quantitative whole proteome analysis using tandem mass tag (TMT) protein labelling to measure protein abundance 

in parasite samples treated with either DMSO or 140 nM IMP-1002 and subsequent saponin lysis. A two-sample t-

test (permutation-based FDR, 250 permutations, FDR 0.01, S0 = 0.8 [within groups variance], n = 3) revealed 

significant changes in overall protein abundance between the inhibitor-treated and control (DMSO-treated) 

parasites. The identity of some proteins is shown on the plot; symbols and colour coding of individual proteins are 

explained below the plot. Full data are in Supplementary Data 2. C. Pie chart presentation of the 62 proteins 

significantly reduced in abundance following IMP-1002 treatment of schizonts from 34 to 45 h PI, with their 

associated grouping based on GO term analysis from PlasmoDB (Release 44, July 2019). 
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Figure 4. A viability screen of parasites containing either G2G or G2A at the myristoylation site in NMT substrates. 

A CRISPR-Cas9 approach was used to insert G2A or G2G codons at the start of selected genes (see Supplementary 

Figure 3 for details). Six genes were targeted using a 50:50 ratio of repair plasmids carrying a codon for G2G (Gly; 

silent mutation) or G2A (Ala, abolishing the myristoylation site). Illumina sequencing of products amplified using 

integration specific PCR primers was used to determine the distribution of each form in the parasite population 

following transfection. Each gene targeting was performed at least twice (gap45, n = 3) with two different guides 

(except for aro and gap45 when two transfections with the same guide were performed).  
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Figure 5. GAP45[G2A] is at the same subcellular location as GAP45, but the parasite has a growth defect. 

A. Western blots showing successful rapamycin-inducible ablation of gap45:ha3:loxP expression, but expression of 

wild type (WT) and G2A GAP45 from the Pfs47 site is unaffected. Note that HA3-tagged GAP45 adds additional mass 

to the protein resulting in a lower mobility in the gel. After rapamycin treatment, in GAP45[WT] and both 

GAP45[G2A] parasite clones the endogenous GAP45-HA3 is deleted but the second copy of the gene is still expressed 

(experiment performed in duplicate with two independent clones). B. In the presence of rapamycin, the endogenous 

HA-tagged GAP45 protein is no longer present but GAP45 expressed from the second gene copy in the Pfs47 locus 

is located at the periphery of the developing intracellular merozoites, as judged by IFA. In the presence of DMSO, 

GAP45-HA3 is expressed at this subcellular location as are GAP45[WT] and GAP45[G2A] in the presence or absence 

of rapamycin and DMSO for the gap45:ha3:loxP::comp_gap45[WT] and gap45:ha3:loxP::comp_gap45[G2A] 

parasite clones, respectively (experiment performed in duplicate with two independent clones). Scale bar, 5 µm. C. 

Growth of parasite lines following rapamycin or DMSO treatment over two cycles of development. Growth curves 

showing replication of the gap45:ha3:loxP parasite line following rapamycin or DMSO treatment. Rapamycin 

induced excision of the gap45:ha3:loxP locus produced parasites that were unable to replicate in vitro which can be 

complemented by the gap45:ha3:loxP::comp_gap45[WT] but not by either of the two 

gap45:ha3:loxP::comp_gap45[G2A] clones (gap45[G2A] Cl. 01 and Cl. 02). Means from three replicates plotted. 

Error bars show standard deviation.  
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Figure 6. GAP45[G2A] parasites have a correctly localized glideosome. 

A. GAP45[G2A] parasites show no defects in expression of the glideosome components MyoA and MTIP, and which 

localized correctly at the periphery of merozoites. IFA showing the subcellular localization of GAP45-HA3, MyoA, 

MTIP and GAP50 in segmented schizonts of ΔGAP45 (gap45:ha3:loxP) and GAP45[G2A] 

(gap45:ha3:loxP::comp_gap45[G2A]) in rapamycin and mock-treated (DMSO) parasites. Loss of GAP45 resulted in 

loss of detection of MTIP and MyoA at the IMC upon rapamycin treatment, while GAP45[G2A] is still able to recruit 

MTIP and MyoA. GAP50 staining is unchanged in both lines after rapamycin treatment (experiment performed in 

duplicate with two independent clones). Scale bars, 5 µm. 

B. Deletion of the GAP45 gene results in loss of the glideosome proteins, MTIP and MyoA in the gap45:ha3:loxP line 

after rapamycin treatment, but they are retained in the gap45:ha3:loxP::comp_gap45[WT] and 

gap45:ha3:loxP::comp_gap45[G2A] lines, as revealed by Western blotting. GAP50, another glideosome protein and 

the endoplasmic reticulum protein, Bip are unaffected by the GAP45 gene deletion. Experiment performed in 

duplicate with two independent clones. 
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Figure 7. GAP45[G2A] is not myristoylated but is palmitoylated at a level similar to that of GAP45[WT] 

Parasites were metabolically labelled in the presence or absence of rapamycin with either YnMyr (panel A., 

myristoylation) or YnPal (Panel B., palmitoylation), then the capture reagent AzTB was attached using CuAAC (click)-

chemistry and the labelled proteins were enriched on Neutravidin.  A. Western blot with anti-GAP45, anti-ARF1 and 

anti-BIP antibodies of enriched myristoylated proteins; a: lysate before enrichment, b: after enrichment: bound and 

eluted. B. Western blots with anti-GAP45, anti-CDPK1 and anti-HSP70 antibodies of enriched palmitoylated proteins; 

a: lysate before enrichment, b: after enrichment: bound and eluted. After rapamycin treatment only the 

gap45:ha3:loxP::comp_gap45[WT] clone contained myristoylated GAP45. All other parasites showed no signal with 

the anti-GAP45 antibody after rapamycin treatment. The NMT substrate ARF1 was used as a positive control and 

was enriched from all four parasite clones, while the negative control BIP was not enriched as it is not myristoylated. 

All parasite clones except gap45:ha3:loxP expressed enriched palmitoylated GAP45 after rapamycin treatment, 

indicating palmitoylation of GAP45[G2A]. CDPK1 was used as a positive control and was enriched for all four clones, 

while HSP70 was not enriched as it is not palmitoylated. The experiment was carried out with two independent 

clones of gap45:ha3:loxP::comp_gap45[G2A]. C.  Acyl-PEG exchange (APE) reveals site-specific S-fatty acid acylation 

of GAP45[G2A] at a similar level to that of GAP45. gap45:ha3:loxP::comp_gap45[WT] and 

gap45:ha3:loxP::comp_gap45[G2A] parasites were treated with either rapamycin or DMSO and lysed at 48 h PI. 

Lysates were then subjected to APE, with or without hydroxylamine treatment to cleave esters, separated by 

SDS/PAGE, and analysed by Western blot with antibodies to either GAP45 or CDPK1. The mass of GAP45 is shifted 

by addition of the HA tag to the protein expressed from the endogenous locus, which is absent from the protein 

expressed from the pfs47 locus. The number of PEGylation events is indicated. There was no evidence for a third 

palmitoylation of GAP45. CDPK1 was used a positive control; it has one palmitoylation site, visualised by the one 

PEGylation. 
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Figure 8. Parasites expressing GAP45[G2A] are not blocked at egress but show a defect in invasion. 

A. Giemsa-stained thin blood smears of gap45:ha3:loxP and gap45:ha3:loxP::comp_gap45[G2A] clones treated with 

DMSO or rapamycin, showing the absence of newly invaded ring stages after rapamycin treatment in both lines, 

while invasion occurs in the DMSO control (red arrows). Despite no invasion after rapamycin treatment there is an 

abundance of extracellular merozoites visible with some apparently attached to erythrocytes (black arrows) 

indicating egress had occurred. B. Invasion assay of gap45:ha3:loxP::comp_gap45[WT] (GAP45[WT]), 

gap45:ha3:loxP (ΔGAP45), and gap45:ha3:loxP::comp_gap45[G2A] (GAP45[G2A]), and showing the parasite ratio 

(parasitemia of cycle 1 / parasitemia of cycle 0) with and without rapamycin treatment (n = 3, Welch’s unpaired two 

tailed p < 0.0001 for KO and p = 0.001 for G2A); error bars show standard deviation. C. Percentage parasitemia of 

schizonts and rings in gap45:ha3:loxP (ΔGAP45) and gap45:ha3:loxP::comp_gap45[G2A] (GAP45[G2A) parasites at 

0, 4, and 24 h after culture of schizonts grown in the presence of DMSO or rapamycin (n = 3 technical replicates with 

two independent clones, Welch’s unpaired two tailed t-test p < 0.0002 for KO and p = 0.0042 for G2A); error bars 

show standard deviation. 
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