New Results
Data Augmentation Through Monte Carlo Arithmetic Leads to More Generalizable Classification in Connectomics
View ORCID ProfileGregory Kiar, View ORCID ProfileYohan Chatelain, View ORCID ProfileAli Salari, View ORCID ProfileAlan C. Evans, View ORCID ProfileTristan Glatard
doi: https://doi.org/10.1101/2020.12.16.423084
Gregory Kiar
1Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
Yohan Chatelain
2Department of Computer Science and Computer Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada
Ali Salari
2Department of Computer Science and Computer Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada
Alan C. Evans
1Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
Tristan Glatard
2Department of Computer Science and Computer Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada

Article usage
Posted July 26, 2021.
Data Augmentation Through Monte Carlo Arithmetic Leads to More Generalizable Classification in Connectomics
Gregory Kiar, Yohan Chatelain, Ali Salari, Alan C. Evans, Tristan Glatard
bioRxiv 2020.12.16.423084; doi: https://doi.org/10.1101/2020.12.16.423084
Subject Area
Subject Areas
- Biochemistry (7537)
- Bioengineering (5494)
- Bioinformatics (20720)
- Biophysics (10279)
- Cancer Biology (7946)
- Cell Biology (11604)
- Clinical Trials (138)
- Developmental Biology (6577)
- Ecology (10161)
- Epidemiology (2065)
- Evolutionary Biology (13572)
- Genetics (9511)
- Genomics (12810)
- Immunology (7900)
- Microbiology (19489)
- Molecular Biology (7631)
- Neuroscience (41960)
- Paleontology (307)
- Pathology (1254)
- Pharmacology and Toxicology (2188)
- Physiology (3258)
- Plant Biology (7017)
- Synthetic Biology (1945)
- Systems Biology (5416)
- Zoology (1111)