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Abstract Multiple methods have been developed in
an attempt to quantify stimulus-induced neural coor-
dination and to understand internal coordination of
neuronal responses by examining the synchronization

phenomena in neural discharge patterns. In this work
we propose a novel approach to estimate the degree of
concomitant firing between two neural units, based on
a modified form of mutual information (MI) applied

to a two-state representation of the firing activity. The
binary profile of each single unit unfolds its discharge
activity in time by decomposition into the state of neu-

ral quiescence/low activity and state of moderate fir-
ing/bursting. Then, the MI computed between the two
binary streams is normalized by their minimum entropy

and is taken as positive or negative depending on the
prevalence of identical or opposite concomitant states.
The resulting measure, denoted as Concurrent Firing
Index based on MI (CFIMI), relies on a single input

parameter and is otherwise assumption-free and sym-
metric. Exhaustive validation was carried out through
controlled experiments in three simulation scenarios,
showing that CFIMI is independent on firing rate and
recording duration, and is sensitive to correlated and
anti-correlated firing patterns. Its ability to detect non-
correlated activity was assessed using ad-hoc surrogate
data. Moreover, the evaluation of CFIMI on experimen-
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tal recordings of spiking activity in retinal ganglion cells
brought insights into the changes of neural synchrony
over time. The proposed measure offers a novel perspec-
tive on the estimation of neural synchrony, providing

information on the co-occurrence of firing states in the
two analyzed trains over longer temporal scales com-
pared to existing measures.
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1 Introduction

The role of synchrony in nervous system signaling has
been analyzed in many different ways, mostly as the key

indicator of a transmission of temporally precise action
potentials - spikes (Cutts and Eglen, 2014). Quantifying
the level of synchronized firing activity in inherently

noisy environments is indeed of utmost importance for
the general understanding of both stimulus-induced and
internal coordination of distributed neuronal responses
(Singer, 1999; Ermentrout et al., 2008; Grewe et al.,

2017).
Numerous studies have investigated correlated neu-

ral activity in early sensory pathways, contributing to
the question of processing and decoding of relevant sen-
sory information in the brain. It has been shown that
firing patterns in the optic nerve are strongly shaped
by synchronized activities in the inner retina (Brivan-
lou et al., 1998). Concerted firings from many retinal
ganglion cells (RGCs) could provide subtle visual infor-
mation about the presence of fine spatial details (Meis-
ter et al., 1995; Schnitzer and Meister, 2003), or of in-
formation redundancy related to visual features that
mainly originate from retinal neighbors (Puchalla et al.,

2005; Schneidman et al., 2003). Synchronized relative
spike timings convey information about visual stimuli
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(Gollisch and Meister, 2008), and a strong impact of
correlated spike trains on the formation of retinotopic
maps has been found (Xu et al., 2011). In addition, syn-
chronous firing of ensembles of neurons has been found
in the visual pathway, analyzing more aspects such as
the perceptual consequences of synchronous activity,
the ability to carry information, and the transmission
of synchronous neural activities to subsequent stages
of processing (Usrey and Reid, 1999). It has been re-
vealed that visual synchrony activities affect the ability
of grouping and segmentation in perception (Usher and
Donnelly, 1998). Recently there has been also evidence
on the relevance of synchronous activity for obtaining
a synchrony code, although other features operating at
the single unit level are important for a complete encod-
ing of time-dependant stimuli (Grewe et al., 2017). All
these works provide evidence that understanding the
link between correlated activity and the representation
of sensory information yields insight into the character-
ization of neural interactions in general (Brown et al.,
2004), and also brings into question how these interac-

tions influence the processing of information in higher
cortical areas (Buzsaki, 2006; Kandel et al., 2000).

A wide variety of measures have been developed
for estimating the degree of synchronous activity be-

tween pairs of neurons. The terminology convention
has not been clearly established and measures are usu-
ally named after the underlying methodology, defining

different indices of neural synchrony. Thirty-five pair-
wise measures are listed in a review paper (Cutts and
Eglen, 2014), which includes various approaches to de-

tect pairwise correlation in spike trains and provides a
systematical comparison among them. Some categories
comprise: measures quantifying the distance between
spikes trains relying on instantaneous (dis)similarities,
as in the case of time-resolved ISI-distance and SPIKE-
distance indices (Kreuz et al., 2015); measures counting
pairs of spikes which are neighbors of each other (Wong

et al., 1993; Pasquale et al., 2008); information-theory
based measures (Gray, 2011; Li, 1990); measures model-
ing spike trains as a marked point processes (Schlather
et al., 2004). The authors of (Cutts and Eglen, 2014)
identified the necessary and desirable properties needed
for a correct quantification of correlated spiking activ-
ities. The necessary properties include: symmetry, ro-

bustness to variations in firing rate (FR) and record-
ings’ duration, a bounded range in [−1, 1] for clear dis-
tinction of identical, anti-correlated and uncorrelated
firing activity, and robustness to small variations in a
commonly used parameter - the window of synchrony.
The desirable properties involve avoiding counting qui-
escence (inactive) periods as correlated, a minimal num-
ber of input parameters, and minimal or no assump-

tions on the underlying ISI distribution (Cutts and Eglen,
2014). Out of the measures reviewed, three of them
are reported to satisfy all the necessary properties: the
Spike Count Correlation Coefficient (SCCC) (Egger-
mont, 2010), its improved version denoted as Kerschen-
steiner and Wong correlation (KWC) (Kerschensteiner
and Wong, 2008), and the Spike Time Tiling Coefficient
(STTC) (Cutts and Eglen, 2014).

The large majority of the proposed synchrony mea-
sures quantify the degree of association between simul-
taneously recorded streams through a direct compari-
son of time-aligned consecutive spike timings or inter-
spike intervals in the two streams. This approach al-
lows to develop measures that are well-resolved in time
and able to capture synchrony over short time scales
usually defined by a window of synchrony, ∆t. How-
ever, it is also exposed to issues such as the dependence
of the synchrony measures on the pre-defined tempo-
ral scale (related to ∆t), and the sensitivity to both
measurement errors (e.g., errors in spike sorting) and

physiological errors (e.g., random jitters in the spiking
times of synchronized neurons). All these issues are ex-
acerbated by the need of capturing the fine temporal
structure of neural spike trains and of incorporating it

into the synchrony measure.

In this work we undertake a different approach, in-

spired by the field of joint symbolic dynamics (Porta
et al., 2015) and the characterization of firing patterns
introduced in (Mijatović et al., 2018): we deliberately

discard the fine structure of spiking times in the two an-
alyzed neuronal units, and rather perform a coarse char-
acterization of their firing dynamics tailored to identify

states of activity and inactivity for each neural unit.
The coarse state representation further enables pairwise
estimation of the co-occurrence of firing states in the
two trains, so as to reflect neural synchrony over longer
temporal scales. Such estimation relies on a modified
measure of mutual information (MI) applied to the bi-
nary representation of the spiking activity unfolded in
time. The resulting Concurrent Firing Index based on
MI, CFIMI, is assumption-free, requires only one in-
put parameter, is symmetric and bounded between -1
and 1, and can distinguish uncorrelated, correlated and
anti-correlated concomitant firing patterns. In a prelim-
inary research published in a conference paper (Mija-
tovic et al., 2020, accepted paper), the CFIMI index was

compared with SCCC, KWC and STTC indices in con-
trolled experiments of synthetic Poisson spike trains.
In this work, we further exploit Poisson spike trains to
validate thoroughly the robustness of the index to vari-
ations in firing rate and recording duration, also assess-
ing its dependence on its free input parameter. More-
over, we explore the informative value of CFIMI in the
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assessment of pairwise correlations in a more complex
simulated network scenarios, and more importantly on
experimental recordings of retinal ganglion cells.

2 Materials and Methods

2.1 Discrete state representation of firing activity

The activity over time of a single neural unit is com-
monly represented as a spike train, i.e. a series of action
potentials (AP) precise timing. As a time series of dis-
crete events, a spike train can be considered as a tempo-
ral point process with periods of intensive and moder-
ate firing, intertwined with quiescent intervals (Brown
et al., 2004). Consequentially, intervals between consec-
utive spikes, inter-spike intervals (ISIs), can be coarsely
grouped into three classes: very short ISIs, ISIs of mod-
erate duration and long ISIs. This concept of firing rep-
resentation exploiting the information on ISI duration
and classifying ISIs into three states unfolded in time,
represents the basic probabilistic approach for a de-

scription of the firing patterns originally proposed in
(Mijatović et al., 2018). According to this approach,
three functional states are defined, as determined by

two pre-specified thresholds: 1) bursting state (B) −
including all ISIs shorther than the bursting threshold,
thrB (very short ISIs), 2) idle state (I) − including all
ISIs longer than the idle threshold, thrI (very long ISIs)

and 3) firing state (F)− including all ISIs between these
two thresholds (i.e. ISIs of moderate duration) (Mija-
tović et al., 2018).

The decision boundary between the states B and
F is determined by the bursting threshold thrB, spec-
ified as the minimum ISI below which the dense firing
pattern can be characterized as bursting activity, i.e.
activity exhibiting very short ISIs between consecutive
spikes (Izhikevich, 2000). Thus, the threshold thrB rep-
resents a physiological constant which characterizes the

cell’s bursting ability and depends on the brain region
(Mizuseki et al., 2012). The quiescent ISI intervals re-
flect periods of very low or no activity and should be
longer than an average inter-spike interval. In (Mija-
tović et al., 2018), ISI intervals are considered quies-
cent if equal to or longer than a threshold thrI, being
thus classified in the idle state I. The estimation of the

idle threshold is directly related to the intrinsic firing
properties of each neuron individually, i.e. to the statis-
tical properties of its entire ISI stream, denoted as ISI.
This threshold is estimated as: thrI = b · mean(ISI);
where mean(ISI) is the average ISI duration of ISI,
while b is an adaptive parameter for the detection of
quiescence periods. The idle threshold estimation and
the selection of b have been extensively investigated in

(Mijatović et al., 2018). Between the bursting and idle
state, ISIs longer than thrB and shorter than thrI are
considered as moderate firing and classified into the F
functional state.
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Fig. 1 Construction of binary streams from two spike trains.
a) Two exemplary trains A and B with firing patterns de-
composed into three functional states (F, B, I), and binary
state-diagram obtained merging the states F and B into a sin-
gle working state (W, 1), while I represents the non-working
state (nW, 0); b) the corresponding binary profiles of trains
A and B as a function of time.

The three-mode decomposition of neural firing pat-

terns served in this study as a starting point to for-
mulate a measure of concurrent firing activity between
pairs of neurons. The first step provides a binary rep-
resentation of the spiking activity of each neural unit,
distinguishing firing and non-firing periods throughout
the recording time. To do this, the F and B functional
states are integrated into one single working state (W,

binary encoded as 1), and the remaining state I is la-
beled as non-working state (nW, binary encoded as 0).
The resulting binary flow contains information on firing
(W) and non-firing (nW) periods distinguished by the
idle threshold thrI. The spiking activity decomposition
into B, I and F states for two exemplary spike trains
is illustrated in Fig. 1 together with a state-diagram of
the W and nW states and the corresponding binary
profiles.
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2.2 Concurrent firing index based on mutual
information

Mutual information (MI) is a symmetric, nonlinear mea-
sure of dependence between two random variables, well-
known in information theory (Shannon, 1948). MI can
be interpreted as the amount of information shared by
the two variables, or as the degree of predictability pro-
vided by one variable about the other one. In this pa-
per, we use MI to quantify the dependence between the
binary spiking profiles of the two considered trains, ob-
tained as explained in Sect. 2.1. Moreover, we modify it
to obtain a measure which is normalized and can reflect
both correlated and anti-correlated spiking activity.

In order to compute MI between the profiles of two
spike trains, encoded in the two random variables A
and B, first the joint and marginal probabilities of A
and B are quantified as follows:

PAB(m,n) =
Tmn
T

; m,n ∈ {0, 1}, (1)

PA(m) =
Tm
T

; PB(n) =
Tn
T

; m,n ∈ {0, 1}, (2)

where Tm is the time during which the train A is in the
state m, Tn is the time during which the train B is in

the state n, Tmn is the time during which the train A
is in the state m while the train B is in the state n, and
T is the total time of recording. Then, the MI between
A and B is defined as (Shannon, 1948):

MIAB =
∑

m,n∈{0,1}

PAB(m,n)log2
PAB(m,n)

PA(m)PB(n)
. (3)

MIAB is bounded between zero and the minimum

entropy of the two variables A and B,Hmin = min{HA, HB}
(Gray and Shields, 1977), where the entropy of A is
computed as:

HA = −
∑

m∈{0,1}

PA(m)log2PA(m), (4)

and the entropy of B is computed analogously. To get
a normalized measure, MIAB is adjusted dividing it by
Hmin, so that to reach a maximum absolute value of
1, corresponding to fully dependent variables A and B.
Moreover, an additional modification is performed to
make the index able to reflect correlations and anti-
correlations. This is achieved by assigning to the nor-
malized MI measure a positive or negative sign on the
basis of the tendency of the two variables to be in the

same state (indicative of positive correlation) or in op-
posite states (indicative of negative correlation). Specif-
ically, we compute the probability pc as the average
conditional probability that train A is in a certain state
given that train B is in the same state, and the prob-
ability pac as the average conditional probability that
train A is in a certain state given that train B is in the
opposite state:

pc =
1

2

(
PAB(1, 1)

PB(1)
+
PAB(0, 0)

PB(0)

)
,

pac =
1

2

(
PAB(0, 1)

PB(1)
+
PAB(1, 0)

PB(0)

)
;

(5)

then, we assign positive synchrony values to the case in
which the co-occurrence of the same state for A and B is
more frequent (pc > pac) and negative values to the case
in which the occurrence of different states for A and B
is more frequent (pac > pc). Accordingly, the proposed
concurrent firing index based on mutual information,
denoted as CFIMI index, is defined as:

CFIMI =


MIAB/Hmin if pc > pac,

−MIAB/Hmin if pc < pac.
(6)

Note that when the two variables A and B are statis-
tically independent the two probabilities in eq. (5) are
the same (pc = pac = 0.5) and the concurrent firing

index vanishes (CFIMI = 0). We cover also the cases in
which one or both the trains stay constantly in the same
functional state (W/nW) over time; in such cases, for

which eq. (6) is undefined as Hmin = 0, we assign CFIMI

= 0 if only one train is steady over time, CFIMI = 1 if
both trains are steadily in the same state, and CFIMI

= -1 if both trains are steadily in opposite states.
The CFIMI measure inherits the properties of MI,

being symmetric and sensitive to both linear and non-
linear correlations between the discretized spiking ac-
tivity of two trains. Moreover, it spans the bounded
range [−1, 1] commonly used to reflect correlations and
anti-correlations, being equal to 1 in case of fully corre-

lated trains, equal to zero in case of uncorrelated trains,
and equal to -1 in case of fully anti-correlated trains.
These properties are illustrated in Fig. 2 in a theo-
retical example that reproduces varying conditions of
coupling between two binary random variables repre-
senting the discretized activity of two spike trains. In
such example, we set the marginal probabilities of the
trains A and B to be in working mode at the fixed
values PA(1) = PB(1) = 0.5, and vary the joint prob-
ability of A and B to be simultaneously in working

mode, p = PAB(1, 1), in the range p ∈ [0, 0.5]. From
these values, all joint and marginal probabilities can
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be computed analytically for each value of p exploiting
the marginalization property (Shannon, 1948), finding
PAB(1, 1) = PAB(0, 0) = p and PAB(0, 1) = PAB(1, 0) =
0.5 − p; all quantities in eqs. (3 - 6) can be derived
accordingly. The condition p = 0 corresponds to fully
anti-correlated variables (Fig. 2b, case (1)), for which
MIAB = 1 with pc = 0, pac = 1, so that the proposed
index takes the value CFIMI = -1. Increasing the prob-
ability p decorrelates the two variables because their
joint entropy grows with constant marginal entropies,
up to the value p = 0.25 for which A and B are indepen-
dent (PAB(m,n) = PA(m)PB(n), Fig. 2b, case (2)) and
thus MIAB = CFIMI = 0 (in this case, pc = pac = 0.5).
Increasing the parameter p above 0.25 makes the vari-
ables positively correlated leading to positive values of
CFIMI (pc > pac), up to the condition of maximum pos-
itive correlation attained for p = 0.5 (Fig. 2b, case (3))
and documented by the maximum information shared
between A and B (pc = 1, pac = 0, MIAB = CFIMI =
1).
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Fig. 2 Computation of the CFIMI index in a theoretical
example involving two binary random variables A and B.
a) Information-theoretic functionals leading to CFIMI, com-
puted as a function of the probability p that the variables A
and B are both equal to 1; b) exemplary profiles of A and B
for three representative values of p.

2.3 Simulations

In this section, we present the three simulation sce-
narios used to test and evaluate the behavior of the
proposed index with respect to the necessary proper-
ties of neural correlation measures. The first and sec-
ond scenarios include respectively independent Poisson
spike trains and mutually dependent spike trains cou-
pled to reproduce both correlated and anti-correlated
dynamics. The third simulation assumes a realistic net-
worked scenario with coupled cortical dynamics (Izhike-
vich, 2003). In the simulations we test also the depen-
dence of the proposed index on its only input parame-
ter, i.e. the parameter b used for determination of the
idle threshold (i.e. non-working mode); in all experi-
ments, b is changed in the range {1, 2, 3, 4, 5}.

2.3.1 Independent Poisson spike trains

The robustness of the CFIMI index on firing rate (FR)
and recording time duration was tested generating inde-

pendent spike trains with Poisson distribution. For both
experiments, 100 pairs of independent Poisson spike
trains were simulated. When robustness to the changes

in FR was tested, one train was generated with fixed
FR = 1 spike/s, while the FR of the other train was
varied in the range [1, 10] with a step of 1 spike/s,
keeping the recording time T fixed to 300 s. To exam-

ine the dependence on the recording time, both trains
were simulated with fixed FR = 3 spikes/s and T was
varied in the range [30, 50, 100, 200, 300, 500, 1000]

seconds.

2.3.2 Dependent Poisson spike trains

The performance of the CFIMI index in quantifying the
degree of synchrony of coupled spike trains was eval-
uated in a second simulation in which both correlated

and anti-correlated dynamics can be obtained. The de-
signed spike train generator produces two trains such
that the firing rate of one spike train is modulated lo-
cally in time depending on the firing of a master spike
train. The master spike train A was generated as Pois-
son train with fixed FR = 3 spikes/s for a total duration
of T = 300 s. After counting the total number of spikes
in the master train (NS) and computing the average
ISI duration (ISI), periods of ’fast’ and ’slow’ spiking
activity, including ISIs shorter or longer than a limit

threshold TL = b · ISI, were identified in train A, and
the total duration of these periods, Tf and Ts was deter-
mined (T = Tf + Ts). Fig. 3a) illustrates an exemplary
master train with ISIs belonging to Tf and Ts overlined
with red and blue, respectively. Then, the spike train B
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was generated based on the master spike train A using
a random spike insertion modulated by the parameter
γ. Specifically, for each ISI in train A, a certain number
of spikes was inserted randomly in the same time inter-
val in train B using the following rule: if ISI < TL, a
number of spikes equal to γ ·NS · ISI/Tf was inserted;
if ISI >= TL, (1 − γ) · NS · ISI/Ts spikes were in-
serted. The train B generated in this way contains the
same number of spikes as the train A, with allocation
depending on parameter γ. The parameter γ was varied
between the extremes γ = 0, yielding a train B whose
working periods coincide with the non-working periods
of the master train A, and γ = 1, yielding a train B
whose working periods coincide with the working pe-
riods in A. Fig. 3b) reports exemplary simulations of
anti-correlated (γ = 0) and correlated (γ = 1) spike
train activity.

t [s]

a)

A

Anti-correlation,    = 0γ

Correlation,    = 1γ

B

B

b)

Fig. 3 Exemplary spike trains generated in the second simu-
lation. a) Master spike train A; b) spike train B generated to
be anti-correlated with A, γ = 0; c) spike train B generated to
be correlated with A, γ = 1. Red and blue arrows overline the
duration of ISIs shorter and longer than the limit threshold
(TL), respectively.

2.3.3 Realistic spiking model for producing coupled
cortical dynamics

To test the ability of the CFIMI index to capture differ-
ent levels of coupling in interconnected neurons sim-
ilar to those of the mammalian cortex, we used the
model proposed in (Izhikevich, 2003). This simple net-

work model relies on well-established models for initia-
tion and propagation of APs in neurons: the Hodgkin-
Huxley model which ensures biologically plausible dy-
namics, and the quadratic integrate-and-fire model which
guarantees computational efficiency. The overall model
belongs to a class of pulse-coupled neural networks,
where the neurons receive synaptic and noisy thalamic
inputs. It is based on two differential equations and uses
four parameters, whose variation allows to produce the

dynamics of several fundamental cell types observed in
neocortical neurons of mammals (Izhikevich, 2007).

Here, we simulate excitatory cells with regular spik-
ing (RS) and inhibitory cells with low-threshold spik-
ing (LTS), setting the ratio of excitatory to inhibitory
neurons in the network to 4:1 for reproducing the mam-
mal’s cortex (Izhikevich, 2003). We implemented a large-
scale RS-LTS neural network with preserved neural het-
erogeneity, consisting of 1000 randomly connected neu-
rons, with 800 RS excitatory cells and 200 LTS in-
hibitory cells. The network generation produces a ran-
dom synaptic matrix S, whose elements sij have values
in the range [-1, 1] reflecting the strengths of the synap-
tic connection between the output of the jth neuron
and input to the ith neuron (i, j = 1, . . . , 1000). This
initially generated synaptic matrix S was considered to
reflect the nominal synaptic strengths, and was stored
for future reuse to preserve the initial settings. Then,
the RS-LTS networks are simulated several times more,
each time using a scaled synaptic matrix, Sα = α ·S, to
preserve the original connections and uniformly modify

their strengths. The scaling coefficient α was decreased
from 1 to 0.2 in steps of 0.2. The total duration of each
simulation was set to 30 s.

2.4 Experimental data

To identify concomitant firing patterns in a real set

of neural responses, we analyzed experimental record-
ings acquired across the ganglion cell layer (GCL) in
mouse retinal explants (Milosavljevic et al., 2018). In

the following we briefly explain the motivation and de-
sign of experimental protocol in (Milosavljevic et al.,
2018). The rate of information transfer through the op-
tical nerve relies on the spiking activity from the inner

retina which encodes the visual stimulus in an ener-
getically optimized way (Spavieri et al., 2010). As the
illumination of the ambient scene increases, the noise

decreases and more information can be extracted from
the visual scene (Milosavljevic et al., 2018). There is
a specific class of retinal ganglion cells (RGCs) opti-
mized for encoding the illumination of the visual scene,
known as intrinsically photoreceptive retinal ganglion
cells (ipRGCs) (Brown et al., 2010; Allen et al., 2017;
Wong, 2012), which potentially serve as modulators
of RGCs activity facilitating efficient visual informa-
tion transfer at higher illumination levels (Milosavljevic
et al., 2018). In order to test the hypothesis that firing
rates for RGCs adjust with illumination level sensed by
ipRGCs, in (Milosavljevic et al., 2018) a multielectrode
array (MEA) extracellular recording was performed across
the GCL of six mouse retinal explants exposed to a re-

peated sequence of temporal white noise (WN) added
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on a gradual illumination ramp in the absence of any
other visual stimulus. It is worth noting that the WN
amplitude was scaled with the illumination level. The
gradual illumination ramp served to induce a response
to slow changes in ambient light, whereas the superim-
posed WN simulated the high frequency visual stimu-
lus. The total stimulus presentation in the dataset pro-
vided by the authors is 900 s, during which the illumi-
nation was gradually increased from 11.8 to 14.8 log10
photons · cm −2 · s −1. Additionally, we have used the
provided information on differentiation of RGC cells
with respect to function into neurons with ON and
OFF-type response to increments in radiance. To iden-
tify ON and OFF cells among 790 RGCs extracted
from 6 retinas, the spike-triggered averages (STAs) were
computed for WN stimulus (Milosavljevic et al., 2018)
and the corresponding labels were provided with a dataset.
From 790 cells available, 709 RGCs have produced sta-
tistically significant STA comprising: 406 ON-type re-
sponse cells and OFF-type cells (303) (Milosavljevic
et al., 2018).

All other details of the experimental protocol in-
cluding ethical approval are provided in (Milosavljevic
et al., 2018). The original study has included two more

experimental scenarios to test the hypotheses regarding
a mechanism of proactive control of information trans-
fer capacity in retinal circuitry. However, this study

uses only the described scenario, as our motivation was
not the reproduction or validation of published results,
but rather the evaluation of the proposed measure as
regards its potential to uncover patterns of concomi-

tant activation among RGCs in realistic settings, with
inherent problems brought by measurement noise and
pre-processing procedures (e.g., spike-sorting).

2.5 Assessment of statistical significance

The statistical significance of the synchrony values com-
puted in simulated and experimental data was assessed,
in the context of statistical hypothesis testing, com-
puting the CFIMI index for the analyzed pair of spike

trains and over a set of surrogate pairs generated un-
der the null hypothesis of uncorrelated trains. Surro-
gate spike trains were generated using a recently pro-
posed method specifically designed for point processes,
denoted as JOint DIstribution of successive inter-event
intervals (JODI)(Ricci et al., 2019). The JODI algo-
rithm generates, in a reliable and computationally effi-
cient way, surrogate data retaining the same amplitude
distribution and approximating the auto-correlation of
the original inter-event intervals, while destroying any
coupling. As in standard approach for statistical signif-

icance assessment, we compared the CFIMI index com-

puted for a given pair of spike trains with the distri-
bution of CFIMI assessed over 100 pairs of surrogate
spike trains obtained through repeated application of
the JODI algorithm. Then, according to a two-tailed
hypothesis test with 5% significance, the CFIMI index
was regarded as indicative of: statistically significant
anti-correlation between the two original spike trains
if its value was lower than the 2.5th percentile of its
distribution on the surrogates; absence of correlation if
its value was between the 2.5th and 97.5th percentiles
of the surrogate distribution; or positive correlation if
its value was higher than the 97.5th percentile of the
surrogate distribution.

3 Results

3.1 CFIMI performance on simulated data

The proposed CFIMI index was first evaluated on pairs
of independent Poisson spike trains. The analysis was
performed to assess the robustness of CFIMI to varia-

tions in the input parameter, in the FR ratio between
the two considered spike trains, and in the duration
of the recordings, as specified in Sect. 2.3.1. For each

analysis setting, 100 realizations of independent Pois-
son trains were generated and, for each realization, the
statistical significance of CFIMI was assessed using the
JODI surrogates s reported in Sect. 2.5. The results in
Fig. 4 document very stable estimates of the index in
all settings, as the CFIMI values were always distributed
around zero while increasing the parameter b from 1 to

5 (Fig. 4a), while increasing the FR ratio from 1 to 10
(Fig. 4b), or while changing the recording time from
30 to 1000 sec (Fig. 4c). The variance of the estimates
showed a tendency to increase for high values of b, while
decreasing the FR ratio, and as expected decreasing the
recording time. In all cases, the number of false positive
couplings was around the nominal 5 % significance set
for hypothesis testing, thus demonstrating the ability
of the proposed measure to reflect the absence of cor-
related spike train activity with non significant values
of CFIMI.
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Fig. 4 Simulation of independent Poisson spike trains. Dis-
tributions of the CFIMI index (mean ± standard deviation)
across 100 realizations of independent Poisson spike trains
estimated under different conditions by varying only: a) the
input parameter b used for detection of the idle threshold re-
flecting periods of neuron’s quiescence; b) the ratio of between
the firing rates of the two spike trains; and c) the duration
of the simulated recordings. The numbers above the index
values, colored in blue, indicate the percentage of indepen-
dent spike trains realizations for which the null hypothesis of
independence was rejected.

Second, we studied the CFIMI index for the simu-

lation scenario of dependent Poisson spike trains intro-
duced in Sect. 2.3.2. Simulations were performed vary-
ing the simulation parameter γ from 0 to 1 in steps of
0.05, in order to study how the index reflects coupling
conditions ranging from anti-correlation to correlation.
Moreover, the analysis was repeated for different val-
ues of the input parameter in the set b ∈ {1, 2, 3, 4, 5},
to investigate the dependence of the detected coupling
profiles on the threshold that separates the working and
non-working modes in the binary representation of each
spike train. For each combination of γ and b, 100 real-
izations of the simulation were generated, and for each
realization the statistical significance of the CFIMI in-
dex was assessed through surrogate data analysis. The

results reported in Fig. 5 depict the distribution of the
index (a) and the percentages of statistically significant
values (b). We found that, regardless of the choice of the
input parameter, the proposed measure can distinguish
correlated from anti-correlated cases. Indeed, for each

value of b, the CFIMI distribution moves from negative
to positive values when γ increases from 0 to 1 (Fig.
5a) and the statistical significance analysis shift from
full detection of negative correlations to full detection
of positive correlations (Fig. 5b).
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Fig. 5 Simulation of dependent Poisson spike trains. a) Dis-
tribution of the CFIMI index (mean ± standard deviation
over 100 realizations of the simulation) computed as a func-
tion of the coupling parameter γ for different values of the in-
put parameter b; b) percentage of realizations exhibiting sig-
nificant positive correlation (filled bars above zero), absence
of correlation (unfilled bars) or significant anti-correlation
(filled bars below zero).
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However, the change in the sign of the CFIMI esti-
mates and the switch from negative to positive correla-
tions occur for higher values of γ when b increased from
1 to 5. This behavior is likely related to the fact that
the parameter b sets the definition of the non-working
mode: b = 1 is an extreme case where any ISI longer
than the mean ISI is assigned to periods of inactivity,
whereas case b = 5 assumes that only ISI >= 5ISI are
classified as periods of quiescence. It is also noticeable
that increasing b enlarges the range of γ values for which
spike trains dominantly exhibit absence of correlation;
for example, for b = 5 the range of values γ ∈ [0.55,
0.95] indicates absence of correlation. This result sug-
gests that lower values of b are more appropriate to al-
low sharp transitions in the detection of anti-correlated
vs. correlated spiking activities.

The third simulated scenario is relevant to the realis-
tic network model with 1000 coupled neurons described
in Sect. 2.3.3. For computational reasons, and without
loss of generality because of the homogeneity of the net-
work, we randomly selected RS (16) and LTS (4) units,

and evaluated the changes in the CFIMI index due to
a gradual weakening of the synaptic strength (coeffi-
cient α of the synaptic matrix decreasing from 1 to 0).

The randomly selected RS and LS units were split in
two halves, maintaining the proportion between exci-
tatory and inhibitory units, and the resulting 10 × 10
sub-network was considered for the computation of the

CFIMI index. The distribution of the CFIMI estimates
obtained for these 100 pairs of neural responses is pre-
sented in Fig. 6a), while Fig. 6b) presents the corre-

sponding percentage of pairs detected as significantly
correlated according to surrogate data analysis. The
analysis is performed considering different values of the
scaling coefficient α and computing the index with dif-
ferent values of the input parameter b. As expected,
the estimated coupling was strong and statistically sig-
nificant for the simulated spike trains obtained from

the initially generated synaptic matrix S, and became
weaker for the trains obtained from the scaled matrices
Sα = α · S. Specifically, the progressive dampening of
the synaptic weights, achieved decreasing the values of
α from 1 to 0 in steps of 0.2, resulted in values of CFIMI

gradually decreasing from about 0.8 to 0. While these
trends were detected regardless of the parameter b for

values of the synaptic strength ranging from high to in-
termediate (α = 1, 0.8, 0.6, 0.4), some inconsistencies
were observed for b = 4 and b = 5 in the case of very low
coupling strength (α = 0.2) or complete lack of synapses
(α = 0). In these cases CFIMI cannot detect absence of
correlation; moreover in the case of b = 5, CFIMI = 1.
This behaviour is related to the fact that for low val-
ues of α both excitatory and inhibitory cells exhibit al-

most constant FR. In such cases, imposing a large idle
threshold (large b) diminish the alternations between
the two binary states (working/non-working); for b = 5
each neural unit remains in the working mode through-
out the whole simulation time and the unitary profiles
for both units prevent reliable MI analysis (CFIMI =
1). Therefore, lower values of the input parameter for
CFIMI analysis are recommended: the choice of b = 2 or
b = 3 allows for an adequate idle threshold estimation,
such that the index exhibits limited variability and is
able to follow the decrease in coupling strength as well
as its absence in the cases of negligible or null synaptic
weight (α = 0.2, α = 0). As thoroughly examined in
(Mijatović et al., 2018), the value of idle threshold re-
lates to the neuron’s ISI distribution to reflect a mean-
ingful periods of neuron’s quiescence.
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Fig. 6 Simulation of RS-LTS neural networks. a) Distribu-
tion of the CFIMI estimates (mean ± standard deviation over
100 pairs of neural responses) computed as a function of the
scaling coefficient α applied to the initially generated synap-
tic matrix S for different values of the input parameter b;
b) percentage of neural response pairs exhibiting significant
positive correlation (filled bars above zero), absence of corre-
lation (unfilled bars) or significant anti-correlation (filled bars
below zero).

Fig. 7 illustrates with more detail the analysis con-
ducted on the realistic network model. The pseudo-
color representation of the full synaptic matrices (1000x1000
cells) of the simulated RS-LTS network is reported in
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Fig. 7a), showing how such matrices are modulated by
the scaling coefficient α. It is worth noting that the
strength of synapses conducting the outputs from exci-
tatory cells is positive, while that corresponding to in-
hibitory cells is negative. The sub-matrices (10x10) in
Fig. 7b) map the values of the CFIMI index computed
with input parameter b = 2 on the trains from the ran-
domly selected RS and LTS units. Representative time
windows of the activity of the selected cells are reported
in Fig. 7c) to aid interpretation. Results confirm that
the gradual weakening of the synaptic strength leads to
a progressive decrease of the CFIMI values. The raster
plots confirm the presence of a fully correlated activity
involving all cells for α = 1, which becomes progres-
sively less synchronized in time as α decreases; when
α = 0.2, the activity is sparse and evidently uncou-
pled due to the prevalence of the noisy thalamic inputs
over the weak synaptic strengths. As a consequence, the
CFIMI index takes values around 0.82, 0.8, 0.63, 0.34
and 0 as seen in the color-coded distributions of Fig.
7b) and also in Fig. 6a) for b = 2. The rather uniform

values of CFIMI inside each matrix of Fig. 7b) can be
explained by the similar spike timing behavior observed
for any pair of cells in Fig. 7c).

3.2 Application to experimental data

The ability of the proposed CFIMI index to identify cor-

related firing activity in experimental data was evalu-
ated using extracellular recordings by MEA across the
population of RGCs, as described in Sect. 2.4. In par-

ticular, we have examined the extent of concurrency in
firing activity for pairs of RGCs from the same retina
exposed to the gradual increase in ambient light with
superimposed white noise. First, the binary profiles rep-
resenting the recorded firing activity of each cell were
generated for the whole recording (with parameter b =
3). Then, after dividing the total recording time into 20
non-overlapping segments of approximately 45 s each,
the CFIMI index was estimated between spike train
pairs over each temporal segment. This segmentation

was motivated by the interest in studying the evolution
of neural synchrony over time, producing time-resolved
maps of the concurrent firing activity during periods of
gradually increasing illumination of the photosensitive
RGCs. The resulting matrices of pairwise CFIMI of all
RGCs in each retina are not illustrated as their size sur-
passes the discernible level of detail. To exemplify the
informative value of CFIMI we present the CFIMI sub-
matrix for the subset of 11 RGCs from one of the reti-
nal explants, characterized by the same type of response

(OFF) and significant synchronized activity. This is one
of the subsets uncovered by distinctive CFIMI patterns

which indicated their tendency to fire nearly simulta-
neously more often than expected by chance. The syn-
chronized activity is depicted in Fig. 8. Each row of the
CFIMI matrix in Fig. 8a) depicts the values of the in-
dex computed over the 20 temporal segments for one
pair of cells; there are 55 rows in this matrix as 11
cells result in 55 pairs when symmetry is taken into
account and pairs comprising same cells are excluded.
Fig. 8b) reports the corresponding matrix of statistical
significance for the CFIMI index, coded with three col-
ors (green: non-significant; brown: significant positive
correlation; blue: significant anti-correlation). The fig-
ure shows an alternation between periods of uncoupled
activity and periods with clear prevalence of synchro-
nized firing patterns (e.g., time segments 7-8, 13, 20,
see also raster plots in Fig. 8c).

4 Discussion

We have described and evaluated a new approach to
characterize the tendency of two neurons to exhibit

temporally coordinated firing activity. The approach
quantifies in a pairwise fashion the extent of concur-
rent firing activity between the neural responses, mea-

sured as the synchronization of the state transitions
occurring in two simultaneously recorded neural spike
trains. To do this, we apply information-theoretic met-
rics to the binary profiles of the two trains unfolded in

time, obtained encoding the ISI intervals of each train
into working and non-working states. Such coarse de-
scription is typical of symbolic computation, a popular

approach whereby experimental signals are transformed
into sequences of discretized symbols which retain es-
sential information about the generating process (Porta

et al., 2015; Daw et al., 2003). Symbolization is ubiq-
uitously used in many fields of science ranging from
geophysics and astrophysics to chemistry, fluidics, ar-
tifical intelligence and data mining (Daw et al., 2003).
Applications in physiology and neuroscience are also
popular (Porta et al., 2015), including those aiming
specifically to describe event time series (e.g., cardiac
heartbeat (Guzzetti et al., 2005) or neural inter-spike
series (Steuer et al., 2001). In this work, we have ex-
ploited the advantages of the symbolic representation
(e.g., robustness to noise, simplified representation of
system’ states, reduction of redundancy, smoothing of
non-stationarity, computational efficiency) in a bivari-
ate fashion, proposing a MI measure able to quantify

concurrency in the alternation between firing and quies-
cence periods of the spiking activity of two neurons. Ad-
ditionally, the introduced modification to MI improves
the definition of our CFIMI index to ensure its clear in-
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Fig. 7 CFIMI analysis of simulated RS-LTS neural networks. a) Synaptic matrices Sα locating the links between 1000 RS-LTS
randomly connected cells, obtained scaling the initially generated synaptic matrix S by the coefficient α ∈ {1.0, 0.8, 0.6, 0.4, 0.2};
b) CFIMI estimated for a randomly selected 10x10 RS-LTS sub-network (including both excitatory and inhibitory cells); c)
one-second time-frame of spiking activity of the twenty randomly selected cells, which are fed with different synaptic inputs
in terms of their strengths as shown in a). The parameter b is set to 2. The case α = 0 is not shown as it produced the same
results as the case α = 0.2.

terpretation as a standard correlation measure (range
[-1,1]), where the sign indicates the type of correlation.

The proposed measure is assumption-free with re-

spect to the ISI distribution of a spike train, and re-
quires the setting of a single parameter to achieve a
binary representation of the firing activity. It is worth
noting that classification of ISIs into binary states is not
guided by a threshold common to both trains, neither
follows a one-fits-all principle. The threshold for detec-
tion of periods of attenuated activity (here named ”non-
working”) relates to the firing properties of each neu-
ron and to the corresponding ISI distribution: thrI =

b ·mean(ISI stream). Selection of the parameter b was
examined in a previous study where the value b = 3 was
adopted and further used to obtain the unique proba-
bilistic characterization of the firing activity for each
neuron (Mijatović et al., 2018). Here, we addressed the
dependence of CFIMI on the selection of this parameter
in several simulation scenarios, exploring the alterna-
tive values b ∈ {1, 2, 3, 4, 5}. The values 2 or 3 resulted
in a stable CFIMI estimates, reflecting appropriately

the ground truth set for the correlations between spike
train pairs. Interestingly, selection of the value b = 3 is
in line with the research on the cluster isolation crite-
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Fig. 8 Computation of CFIMI on an exemplary subset of the experimental data set. a) Matrix of CFIMI estimated in a sub-
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significant correlation; brown: significant positive correlation); c) raster plots of four selected segments of the 11 ipRGc spike
trains associated with high and statistically significant coupling. The CFIMI input parameter b is set to 3; similarly results
can be achieved for b = 2.

rion (Fred and Leitão, 2003), where it was shown that
increments of a dissimilarity measure between neighbor-

ing patterns have exponential distribution regardless of
the initial data generation model. The theoretical anal-
ysis of exponential distributions provided in (Fred and
Leitão, 2003) has indicated that selecting the threshold
for cluster isolation as a multiple of the mean value of
an exponential distribution covers most of the distribu-
tions when a multiple takes values from the range [3,
5]. As the ISI distribution exhibits an exponential decay
for long ISIs regardless of the strength of the fluctuat-
ing input (Ostojic, 2011), the suggested idle threshold
as b ·mean(ISI stream) can efficiently separate ISIs of
short or moderate duration from longer ISIs.

Compared with existing pairwise measures of neu-
ral synchrony (Cutts and Eglen, 2014), the proposed
CFIMI index is different in the fact that, focusing on
the co-occurrence of working and non-working states in
two spike trains, it disregards the fine time-resolution

properties of neural firing. In this way, at the price
of losing information, our measure is robust against
noise and free from the setting of resolution parame-
ters. Nevertheless, as it is ultimately designed to cap-
ture correlations in neural spike trains, a comparison
with existing measures is envisaged. In a preliminary
investigation (Mijatovic et al., 2020, accepted paper),
we used synthetic Poisson trains to compare our in-
dex with three well-established correlation measures:
the Spike Count Correlation Coefficient (SCCC) (Eg-
germont, 2010), Kerschensteiner and Wong correlation
(KWC) (Kerschensteiner and Wong, 2008), and the Spike
Time Tiling Coefficient (STTC) (Cutts and Eglen, 2014)

with respect to correlation range and robustness to the
firing rate and duration of recording. Besides to higher
robustness to variations in the firing rate and dura-
tion of recording, CFIMI exhibits smaller variance in
the detection of uncoupled firing activities and higher
sensitivity to variations in coupling (Mijatovic et al.,
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2020, accepted paper). However, the interpretation of
the CFIMI values and relation to the other established
synchrony (correlation) measures have to be elaborated
in terms of both underlying methodology and temporal
scale.

The proposed measure satisfies all the necessary prop-
erties formalized in (Cutts and Eglen, 2014) for a mea-
sure of neural synchrony: symmetry, boundedness, ro-
bustness to both firing rate and recording duration, and
stability with respect to small variations in the input
parameters. These properties were tested both theo-
retically and in controlled simulation scenarios involv-
ing coupled and uncoupled Poisson spike trains. In a
theoretical example, we showed that CFIMI is strictly
bounded and can reflect either positive correlation, ab-
sence of correlation or anti-correlation, taking values
equal to 1, 0 and -1, respectively when the spike trains
produce identical, independent and opposite binary pro-
files.

In simulations of uncoupled Poisson trains we showed
the stability of the measure across different firing rate
ratios and duration of the two trains. In a customized

simulation of coupled Poisson spike trains enabling fine
tuning of correlation and anti-correlation levels between
spike trains, we investigated the various levels of sen-
sitivity to positive and negative correlations; exploring

different values of the modulation parameter γ cover-
ing the whole correlation range, and different values of
input parameter b in [1, 5], we showed that the sign of

CFIMI unequivocally corresponds to the sign of corre-
lation between the firing patterns.

The simulation of a fully connected neural network

of RL-LTS units provided a more complex but realis-
tic scenario, inspired by the mammalian cortex. In this
scenario, we assessed the capability of the CFIMI in-
dex to reflect the changes in a coupling strength be-
tween neural units as defined by the synaptic matrix
S (Sect. 3.1). The linear scaling of the coefficient in S
led to a progressive decrease of the synaptic strength
and weakening of the neural inputs, and consequently
to reduced and decoupled overall firing activity. The
CFIMI index scaled with the coupling strength, ranging
from highly correlated to non significant values. Its sign
did not reflect the type of synapse (excitatory and in-
hibitory, i.e. positive and negative); this is however ex-

pected because, as long as the connected neural units
exhibit synchronous concomitant firing as a result of
the synaptic connections, the index should reflect the
strictly positive correlations.

We also provide evidence for the applicability of the
proposed approach to real spike train data, showing

how it can uncover concomitant firing patterns in ex-
perimental recordings of retinal ganglion cells of mouse

retinal explants. The group of 11 RGCs from the same
retina, exemplified in Sect. 3.2, was identified by the
specific pattern of the pairwise CFIMI index values that
revealed highly synchronized segments of their activa-
tion. This result is consistent with the previous research,
extensively documented in many species, showing that
RGCs frequently exhibit synchronized firing reflecting
functional connectivity (Schnitzer and Meister, 2003;
Ishikane et al., 2005; Shlens et al., 2008). Synchronized
firing patterns can include at least 10 RGCs (Schnei-
dman et al., 2006; Shlens et al., 2006), although their
full extent is unknown (Shlens et al., 2008). Previous
characterization of the patterns of electrical activity in
primate RGCs reports that the structure of synchro-
nized patterns is determined by the cell type, and may
be understood almost entirely based on pairwise inter-
actions mostly limited to adjacent cells in the neural
mosaic (Shlens et al., 2006). In this context, we iden-
tified a small group of synchronized cells by means of
their CFIMI values, which resulted as statistically sig-
nificant according to the hypothesis test employed. The

identified synchronized cells exhibit temporal patterns
of concurrent firing that alternate intermittently during
the exposure to gradually increasing illumination. The
absence of a clear dependence of the CFIMI value on

the gradual change in illumination might suggest that
synchronized activity is not necessarily related only to
the absolute value of stimulus intensity, just as their

firing rate is, as shown in (Milosavljevic et al., 2018).
However, the pattern of co-occurrence of the firing ac-
tivity in the explored sub-population (Fig. 8a) reveals

more coherent activation as the illumination level in-
creases, further confirmed by the raster plots (Fig. 8c).
This implies that not only the values of CFIMI, but also
its rate and the pattern of its temporal changes, should
be used to explore the response of synchronized firing
activation to a stimulus presentation, or to any other
experimental maneuver.

In conclusion, the proposed information-theoretic
approach provides a simple and efficient way for the
detection of synchronously firing units, yielding an in-
dex whose value and sign indicate the preference of two
neurons to fire simultaneously or in alternation. Future
work is envisaged to extend the sensitivity of the pro-
posed measure to more than two functional states, e.g.
differentiating bursting from moderate firing in the de-
tection of coupled activity; further research will also
point to the description of multivariate and dynamic in-
teractions for allowing the causal analysis of networked

neural interactions. These extensions will facilitate the
characterization of multivariate correlations in a large
variety of experimental settings and neurophysiological
states.
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Mijatović G, Lončar-Turukalo T, Procyk E, Bajić D
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