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ABSTRACT

Cluster analysis is an integral part of precision medicine and systems biology, used to define1

groups of patients or biomolecules. Consensus clustering is an ensemble approach that2

is widely used in these areas, which combines the output from multiple runs of a non-3

deterministic clustering algorithm. Here we consider the application of consensus clustering4

to a broad class of heuristic clustering algorithms that can be derived from Bayesian mixture5

models (and extensions thereof) by adopting an early stopping criterion when performing6

sampling-based inference for these models. While the resulting approach is non-Bayesian, it7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2021. ; https://doi.org/10.1101/2020.12.17.423244doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423244
http://creativecommons.org/licenses/by/4.0/


Consensus clustering for Bayesian mixture models

inherits the usual benefits of consensus clustering, particularly in terms of computational8

scalability and providing assessments of clustering stability/robustness.9

In simulation studies, we show that our approach can successfully uncover the target clus-10

tering structure, while also exploring different plausible clusterings of the data. We show11

that, when a parallel computation environment is available, our approach offers significant12

reductions in runtime compared to performing sampling-based Bayesian inference for the13

underlying model, while retaining many of the practical benefits of the Bayesian approach,14

such as exploring different numbers of clusters. We propose a heuristic to decide upon15

ensemble size and the early stopping criterion, and then apply consensus clustering to a16

clustering algorithm derived from a Bayesian integrative clustering method. We use the17

resulting approach to perform an integrative analysis of three ’omics datasets for budding18

yeast and find clusters of co-expressed genes with shared regulatory proteins. We validate19

these clusters using data external to the analysis. These clusters can help assign likely20

function to understudied genes, for example GAS3 clusters with histones active in S-phase,21

suggesting a role in DNA replication.22

Our approach can be used as a wrapper for essentially any existing sampling-based Bayesian23

clustering implementation, and enables meaningful clustering analyses to be performed using24

such implementations, even when computational Bayesian inference is not feasible, e.g. due25

to poor scalability. This enables researchers to straightforwardly extend the applicability of26

existing software to much larger datasets, including implementations of sophisticated models27

such as those that jointly model multiple datasets.28

Keywords Cluster analysis ·Multiomics · Ensemble learning29

Background30

From defining a taxonomy of disease to creating molecular sets, grouping items can help us to understand31

and make decisions using complex biological data. For example, grouping patients based upon disease32

characteristics and personal omics data may allow the identification of more homogeneous subgroups,33

enabling stratified medicine approaches. Defining and studying molecular sets can improve our understanding34

of biological systems as these sets are more interpretable than their constituent members (1), and study of35

their interactions and perturbations may have ramifications for diagnosis and drug targets (2, 3). The act36

of identifying such groups is referred to as cluster analysis. Many traditional methods such as K-means37
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clustering (4, 5) condition upon a fixed choice ofK, the number of clusters. These methods are often heuristic38

in nature, relying on rules of thumb to decide upon a final value for K. For example, different choices of K39

are compared under some metric such as silhouette (6) or the within-cluster sum of squared errors (SSE) as a40

function of K. Moreover, K-means clustering can exhibit sensitivity to initialisation, necessitating multiple41

runs in practice (7).42

Another common problem is that traditional methods offer no measure of the stability or robustness of the43

final clustering. Returning to the stratified medicine example of clustering patients, there might be individuals44

that do not clearly belong to any one particular cluster; however if only a point estimate is obtained, this45

information is not available. Ensemble methods address this problem, as well as reducing sensitivity to46

initialisation. These approaches have had great success in supervised learning, most famously in the form of47

Random Forest (8) and boosting (9). In clustering, consensus clustering (10) is a popular method which has48

been implemented in R (11) and to a variety of methods (12, 13) and been applied to problems such as cancer49

subtyping (14, 15) and identifying subclones in single cell analysis (16). Consensus clustering uses W runs50

of some base clustering algorithm (such as K-means). These W proposed partitions are commonly compiled51

into a consensus matrix, the (i, j)th entries of which contain the proportion of model runs for which the ith52

and jth individuals co-cluster (for this and other definitions see section 1 of the Supplementary Material),53

although this step is not fundamental to consensus clustering and there is a large body of literature aimed at54

interpreting a collection of partitions (see, e.g., 17, 18, 19). This consensus matrix provides an assessment55

of the stability of the clustering. Furthermore, ensembles can offer reductions in computational runtime56

because the individual members of the ensemble are often computationally inexpensive to fit (e.g, because57

they are fitted using only a subset of the available data) and because the learners in most ensemble methods58

are independent of each other and thus enable use of a parallel environment for each of the quicker model59

runs (20).60

Traditional clustering methods usually condition upon a fixed choice of K, the number of clusters with the61

choice of K being a difficult problem in itself. In consensus clustering, Monti et al. (10) proposed methods62

for choosing K using the consensus matrix and Ünlü et al. (21) offer an approach to estimating K given63

the collection of partitions, but each clustering run uses the same, fixed, number of clusters. An alternative64

clustering approach, mixture modelling, embeds the cluster analysis within a formal, statistical framework65

(22). This means that models can be compared formally, and problems such as the choice of K can be66

addressed as a model selection problem (23). Moreover, Bayesian mixture models can be used to try to67

directly infer K from the data. Such inference can be performed through use of a Dirichlet Process mixture68

model (24, 25, 26), a mixture of finite mixture models (27, 28) or an over-fitted mixture model (29). These69
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models and their extensions have a history of successful application to a diverse range of biological problems70

such as finding clusters of gene expression profiles (30), cell types in flow cytometry (31, 32) or scRNAseq71

experiments (33), and estimating protein localisation (34). Bayesian mixture models can be extended to72

jointly model the clustering across multiple datasets (35, 36) (section 2 of the Supplementary Material).73

Markov chain Monte Carlo (MCMC) methods are the most common tool for performing computational74

Bayesian inference. In Bayesian clustering, they are used to draw a collection of clustering partitions from75

the posterior distribution. However, in practice, chains can become stuck in local posterior modes preventing76

convergence (see, e.g., the Supplementary Materials of 37) and/or can require prohibitively long runtimes,77

particularly when analysing high-dimensional datasets. Some MCMC methods make efforts to overcome78

the problem of exploration, often at the cost of increased computational cost per iteration (38). There are79

MCMC methods that use parallel chains to improve the scalability or reduce the bias of the Monte Carlo80

estimate. However, these methods have various limitations. For instance, divide-and-conquer strategies81

such as Asymptotically Exact, Embarrassingly Parallel MCMC (39) use subsamples of the dataset with each82

chain to improve scaling with the number of items being clustered. This assumes that each subsample is83

representative of the population, and is less helpful in situations where we have high-dimension but only84

moderate sample size, such as analysis of ’omics data. Alternative approaches, such as distributed MCMC85

(40) and coupling (41) have to account for burn-in bias; moreover, coupling further assumes the chains meet86

in finite time and then stay together. In practice, a further challenge associated with these methods is that87

their implementation may necessitate a substantial redevelopment of existing software.88

Motivated by the lack of scalability of existing implementations of sampling-based Bayesian clustering (due89

to prohibitive computational runtimes, as well as poor exploration, as described above), here we aim to90

develop a general and straightforward procedure that exploits the flexibility of these methods, but extends91

their applicability. Specifically, we make use of existing sampling-based Bayesian clustering implementations,92

but only run them for a fixed (and relatively small) number of iterations, stopping before they have converged93

to their target stationary distribution. Doing this repeatedly, we obtain an ensemble of clustering partitions,94

which we use to perform consensus clustering. We propose a heuristic for deciding upon the ensemble size95

(the number of learners used, W ) and the ensemble depth (the number of iterations, D), inspired by the use96

of scree plots in Principal Component Analysis (PCA; 42).97

We show via simulation that our approach can successfully identify meaningful clustering structures. We then98

illustrate the use of our approach to extend the applicability of existing Bayesian clustering implementations,99

using as a case study the Multiple Dataset Interation (MDI; 35) model for Bayesian integrative clustering100

applied to real data. While the simulation results serve to validate our method, it is important to also evaluate101
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methods on real data which may represent more challenging problems. For our real data, we use three ’omics102

datasets relating to the cell cycle of Saccharomyces cerevisiae with the aim of inferring clusters of genes103

across datasets. As there is no ground truth available, we then validate these clusters using knowledge external104

to the analysis.105

Material and methods106

Consensus clustering for Bayesian mixture models107

We apply consensus clustering to MCMC based Bayesian clustering models using the method described in108

algorithm 1. Our application of consensus clustering has two main parameters at the ensemble level, the

Data: X = (x1, . . . , xN )
Input:
The number of chains to run, W
The number of iterations within each chain, D
A clustering method that uses MCMC methods to generate samples of clusterings of the data
Cluster(X, d)
Output:
A predicted clustering, Ŷ
The consensus matrix M
begin

/* initialise an empty consensus matrix */
M← 0N×N ;
for w = 1 to W do

/* set the random seed controlling initialisation and MCMC moves */
set.seed(w);
/* initialise a random partition on X drawn from the prior distribution

*/
Y(0,w) ← Initialise(X);
for d = 1 to D do

/* generate a markov chain for the membership vector */
Y(d,w) ← Cluster(X, d);

end
/* create a coclustering matrix from the Dth sample */
B(w) ← Y(D,w);
M←M + B(w);

end
M← 1

WM;
Ŷ ← partition X based upon M;

end
Algorithm 1: Consensus clustering for Bayesian mixture models.

109

chain depth, D, and ensemble width, W . We infer a point clustering from the consensus matrix using the110

maxpear function (43) from the R package mcclust (44) which maximises the posterior expected adjusted111

5
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Rand index between the true clustering and point estimate if the matrix is composed of samples drawn from112

the posterior distribution (section 3 of the Supplementary Material for details). There are alternative choices113

of methods to infer a point estimate which minimise different loss functions (see, e.g., 45, 46, 47).114

Determining the ensemble depth and width115

As our ensemble sidesteps the problem of convergence within each chain, we need an alternative stopping rule116

for growing the ensemble in chain depth, D, and number of chains, W . We propose a heuristic based upon117

the consensus matrix to decide if a given value of D and W are sufficient. We suspect that increasing W and118

D might continuously improve the performance of the ensemble, but we observe in our simulations that these119

changes will become smaller and smaller for greater values, eventually converging for each of W and D. We120

notice that this behaviour is analogous to PCA in that where for consensus clustering some improvement121

might always be expected for increasing chain depth or ensemble width, more variance will be captured by122

increasing the number of components used in PCA. However, increasing this number beyond some threshold123

has diminishing returns, diagnosed in PCA by a scree plot. Following from this, we recommend, for some124

set of ensemble parameters, D′ = {d1, . . . , dI} and W ′ = {w1, . . . , wJ}, find the mean absolute difference125

of the consensus matrix for the dthi iteration from wj chains to that for the dth(i−1) iteration from wj chains126

and plot these values as a function of chain depth, and the analogue for sequential consensus matrices for127

increasing ensemble width and constant depth.128

If this heuristic is used, we believe that the consensus matrix and the resulting inference should be stable129

(see, e.g., 48, 49), providing a robust estimate of the clustering. In contrast, if there is still strong variation130

in the consensus matrix for varying chain length or number, then we believe that the inferred clustering is131

influenced significantly by the random initialisation and that the inferred partition is unlikely to be stable for132

similar datasets or reproducible for a random choice of seeds.133

Simulation study134

We use a finite mixture with independent features as the data generating model within the simulation study.

Within this model there exist “irrelevant features” (50) that have global parameters rather than cluster specific

parameters. The generating model is

p(X, c, θ, π|K) =

p(K)p(π|K)p(θ|K)

N∏
i=1

p(ci|π,K)

P∏
p=1

p(xip|ci, θcip)φpp(xip|θp)(1−φp) (1)

6
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Figure 1: Example of generated datasets. Each row is an item being clustered and each column a feature
of generated data. The 2D dataset (which is ordered by hierarchical clustering here) should enable proper
mixing of chains in the MCMC. The small N , large P case has clear structure (observable by eye). This is
intended to highlight the problems of poor mixing due to high dimensions even when the generating labels
are quite identifiable. In the irrelevant features case, the structure is clear in the relevant features (on the
left-hand side of this heatmap). This setting is intended to test how sensitive each approach is to noise.

for data X = (x1, . . . , xN ), cluster label or allocation variable c = (c1, . . . , cN ), cluster weight π =135

(π1, . . . , πK), K clusters and the relevance variable, φ ∈ {0, 1} with φp = 1 indicating that the pth feature136

is relevant to the clustering. We used a Gaussian density, so θkp = (µkp, σ
2
kp). We defined three scenarios137

and simulated 100 datasets in each (figure 1 and table 1). Additional details of the simulation process and138

additional scenarios are included in section 4.1 of the Supplementary Materials.139

Table 1: Parameters defining the simulation scenarios as used in generating data and labels. ∆µ is the distance
between neighbouring cluster means within a single feature. The number of relevant features (Ps) is

∑
p φp,

and Pn = P − Ps.

Scenario N Ps Pn K ∆µ σ2 π

2D 100 2 0 5 3.0 1 (15 ,
1
5 ,

1
5 ,

1
5 ,

1
5)

Small N, large P 50 500 0 5 1.0 1 (15 ,
1
5 ,

1
5 ,

1
5 ,

1
5)

Irrelevant features 200 20 100 5 1.0 1 (15 ,
1
5 ,

1
5 ,

1
5 ,

1
5)
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In each of these scenarios we apply a variety of methods (listed below) and compare the inferred point140

clusterings to the generating labels using the Adjusted Rand Index (ARI, 51).141

• Mclust, a maximum likelihood implementation of a finite mixture of Gaussian densities (for a range142

of modelled clusters, K),143

• 10 chains of 1 million iterations, thinning to every thousandth sample for the overfitted Bayesian144

mixture of Gaussian densities, and145

• A variety of consensus clustering ensembles defined by inputs of W chains and D iterations within146

each chain (see algorithm 1) with W ∈ {1, 10, 30, 50, 100} and D ∈ {1, 10, 100, 1000, 10000}147

where the base learner is an overfitted Bayesian mixture of Gaussian densities.148

Note that none of the applied methods include a model selection step and as such there is no modelling of the149

relevant variables. This and the unknown value of K is what separates the models used and the generating150

model described in equation 1. More specifically, the likelihood of a point Xn for each method is151

p(Xn|µ,Σ, π) =
K∑
k=1

πkp(Xn|µk,Σk), (2)

where p(Xn|µk,Σk) is the probability density function of the multivariate Gaussian distribution parameterised152

by a mean vector, µk, and a covariance matrix, Σk, and πk is the component weight such that
∑K

k=1 πk = 1.153

The implementation of the Bayesian mixture model restricts Σk to be a diagonal matrix while Mclust models154

a number of different covariance structures. Note that while we use the overfitted Bayesian mixture model,155

this is purely from convenience and we expect that a true Dirichlet Process mixture or a mixture of mixture156

models would display similar behaviour in an ensemble.157

The ARI is a measure of similarity between two partitions,c1, c2, corrected for chance, with 0 indicating c1 is158

no more similar to c2 than a random partition would be expected to be and a value of 1 showing that c1 and159

c2 perfectly align. Details of the methods in the simulation study can be found in sections 4.2, 4.3 and 4.4 of160

the Supplementary Material.161

Mclust162

Mclust (52) is a function from the R package mclust. It estimates Gaussian mixture models for K clusters163

based upon the maximum likelihood estimator of the parameters. It initialises upon a hierarchical clustering164

of the data cut to K clusters. A range of choices of K and different covariance structures are compared and165
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the “best” selected using the Bayesian information criterion, (53) (details in section 4.2 of the Supplementary166

Material).167

Bayesian inference168

To assess within-chain convergence of our Bayesian inference we use the Geweke Z-score statistic (54). Of169

the chains that appear to behave properly we then asses across-chain convergence using R̂ (55) and the recent170

extension provided by (56). If a chain has reached its stationary distribution the Geweke Z-score statistic is171

expected to be normally distributed. Normality is tested for using a Shapiro-Wilks test (57). If a chain fails172

this test (i.e., the associated p-value is less than 0.05), we assume that it has not achieved stationarity and it is173

excluded from the remainder of the analysis. The samples from the remaining chains are then pooled and a174

posterior similarity matrix (PSM) constructed. We use the maxpear function to infer a point clustering. For175

more details see section 4.3 of the Supplementary Material.176

Analysis of the cell cycle in budding yeast177

Datasets178

The cell cycle is crucial to biological growth, repair, reproduction, and development (58, 59, 60) and is highly179

conserved among eukaryotes (60). . This means that understanding of the cell cycle of S. cerevisiae can180

provide insight into a variety of cell cycle perturbations including those that occur in human cancer (61, 59)181

and ageing (62). We aim to create clusters of genes that are co-expressed, have common regulatory proteins182

and share a biological function. To achieve this, we use three datasets that were generated using different183

’omics technologies and target different aspects of the molecular biology underpinning the cell cycle process.184

• Microarray profiles of RNA expression from (63), comprising measurements of cell-cycle-regulated185

gene expression at 5-minute intervals for 200 minutes (up to three cell division cycles) and is referred186

to as the time course dataset. The cells are synchronised at the START checkpoint in late G1-phase187

using alpha factor arrest (63). We include only the genes identified by (63) as having periodic188

expression profiles.189

• Chromatin immunoprecipitation followed by microarray hybridization (ChIP-chip) data from (64).190

This dataset discretizes p-values from tests of association between 117 DNA-binding transcriptional191

regulators and a set of yeast genes. Based upon a significance threshold these p-values are represented192

as either a 0 (no interaction) or a 1 (an interaction).193
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• Protein-protein interaction (PPI) data from BioGrid (65). This database consists of of physical194

and genetic interactions between gene and gene products, with interactions either observed in high195

throughput experiments or computationally inferred. The dataset we used contained 603 proteins196

as columns. An entry of 1 in the (i, j)th cell indicates that the ith gene has a protein product that is197

believed to interact with the jth protein.198

The datasets were reduced to the 551 genes with no missing data in the PPI and ChIP-chip data, as in (35).199

Multiple dataset integration200

We applied consensus clustering to MDI for our integrative analysis. Details of MDI are in section 2.2 of the201

Supplementary Material, but in short MDI jointly models the clustering in each dataset, inferring individual202

clusterings for each dataset. These partitions are informed by similar structure in the other datasets, with MDI203

learning this similarity as it models the partitions. The model does not assume global structure. This means204

that the similarity between datasets is not strongly assumed in our model; individual clusters or genes that205

align across datasets are based solely upon the evidence present in the data and not due to strong modelling206

assumptions. Thus, datasets that share less common information can be included without fearing that this207

will warp the final clusterings in some way.208

The datasets were modelled using a mixture of Gaussian processes in the time course dataset and Multinomial209

distributions in the ChIP-chip and PPI datasets.210

Results211

Simulated data212

We use the ARI between the generating labels and the inferred clustering of each method to be our metric213

of predictive performance. In figure 2, we see Mclust performs very well in the 2D and Small N , large P214

scenarios, correctly identifying the true structure. However, the irrelevant features scenario sees a collapse in215

performance, Mclust is blinded by the irrelevant features and identifies a clustering of K = 1.216

The pooled samples from multiple long chains performs very well across all scenarios and appears to act as217

an upper bound on the more practical implementations of consensus clustering.218

Consensus clustering does uncover some of the generating structure in the data, even using a small number219

of short chains. With sufficiently large ensembles and chain depth, consensus clustering is close to the220

pooled Bayesian samples in predictive performance. It appears that for a constant chain depth increasing221

10
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Figure 2: Model performance in the 100 simulated datasets for each scenario, defined as the ARI between the
generating labels and the inferred clustering. CC(d,w) denotes consensus clustering using the clustering
from the dth iteration from w different chains.

the ensemble width used follows a pattern of diminishing returns. There are strong initial gains for a greater222

ensemble width, but the improvement decreases for each successive chain. A similar pattern emerges in223

increasing chain length for a constant number of chains (figure 2).224

For the PSMs from the individual chains, all entries are 0 or 1 (figure 3). This means only a single clustering225

is sampled within each chain, implying very little uncertainty in the partition. However, three different226

clustering solutions emerge across the chains, indicating that each individual chain is failing to explore the227

full support of the posterior distribution of the clustering. In general, while MCMC convergence theorems228

hold as the number of iterations tend to infinity, any finite chain might suffer in representing the full support229

of the posterior distribution, as we observe here. Moreover, the mixing of each chain can be poor as well (i.e.230

it may take a long time to reach the stationary distribution from an arbitrary initialisation). In our empirical231

study, we find that using many short runs provide similar point and interval estimates to running a small232

number of long chains (figure 3), while being computationally less expensive (figure 4), and hence more233

convenient for our applications.234

Figure 4 shows that chain length is directly proportional to the time taken for the chain to run. This means235

that using an ensemble of shorter chains, as in consensus clustering, can offer large reductions in the time236

cost of analysis when a parallel environment is available compared to standard Bayesian inference. Even on a237
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Figure 3: Comparison of similarity matrices from a dataset for the Small N , large P scenario. In each matrix,
the (i, j)th entry is the proportion of clusterings for which the ith and jth items co-clustered for the method
in question. In the first row the PSM of the pooled Bayesian samples is compared to the CM for CC(100, 50),
with a common ordering of rows and columns in both heatmaps. In the following rows, 6 of the long chains
that passed the tests of convergence are shown.

laptop of 8 cores running an ensemble of 1,000 chains of length 1,000 will require approximately half as238

much time as running 10 chains of length 100,000 due to parallelisation, and the potential benefits are far239

greater when using a large computing cluster.240

Additional results for these and other simulations are in section 4.4 of the Supplementary Material.241

Multi-omics analysis of the cell cycle in budding yeast242

We use the stopping rule proposed in to determine our ensemble depth and width. In figure 5, we see that the243

change in the consensus matrices from increasing the ensemble depth and width is diminishing in keeping244

with results in the simulations. We see no strong improvement after D = 6, 000 and increasing the number245

of learners from 500 to 1,000 has small effect. We therefore use the largest ensemble available, a depth246
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Figure 4: The time taken for different numbers of iterations of MCMC moves in log10(seconds). The
relationship between chain length, D, and the time taken is linear (the slope is approximately 1 on the log10
scale), with a change of intercept for different dimensions. The runtime of each Markov chain was recorded
using the terminal command time, measured in milliseconds.

D = 10001 and width W = 1000, believing this ensemble is stable (additional evidence in section 5.1 of the247

Supplementary Material).248

We focus upon the genes that tend to have the same cluster label across multiple datasets. More formally, we249

analyse the clustering structure among genes for which P̂ (cnl = cnm) > 0.5, where cnl denotes the cluster250

label of gene n in dataset l. In our analysis it is the signal shared across the time course and ChIP-chip251

datasets that is strongest, with 261 genes (nearly half of the genes present) in this pairing tending to have a252

common label, whereas only 56 genes have a common label across all three datasets. Thus, we focus upon253

this pairing of datasets in the results of the analysis performed using all three datasets. We show the gene254

expression and regulatory proteins of these genes separated by their cluster in figure 6. In figure 6, the clusters255

in the time series data have tight, unique signatures (having different periods, amplitudes, or both) and in the256

ChIP-chip data clusters are defined by a small number of well-studied transcription factors (TFs) (see table 2257

of the Supplementary Material for details of these TFs, many of which are well known to regulate cell cycle258

expression, 66).259
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Figure 5: The mean absolute difference between the sequential Consensus matrices. For a set of chain lengths,
D′ = {d1, . . . , dI} and number of chains, W ′ = {w1, . . . , wJ}, we take the mean of the absolute difference
between the consensus matrix for (di, wj) and (di−1, wj) (here D′ = {101, 501, 1001, 2001, . . . , 10001}
and W ′ = {100, 500, 1000}).

As an example, we briefly analyse clusters 9 and 16 in greater depth. Cluster 9 has strong association with260

MBP1 and some interactions with SWI6, as can be seen in figure 6. The Mbp1-Swi6p complex, MBF, is261

associated with DNA replication (67). The first time point, 0 minutes, in the time course data is at the START262

checkpoint, or the G1/S transition. The members of cluster 9 begin highly expressed at this point before263

quickly dropping in expression (in the first of the 3 cell cycles). This suggests that many transcripts are264

produced immediately in advance of S-phase, and thus are required for the first stages of DNA synthesis.265

These genes’ descriptions (found using org.Sc.sgd.db, 68, and shown in table 3 of the Supplementary266

Material) support this hypothesis, as many of the members are associated with DNA replication, repair and/or267

recombination. Additionally, TOF1, MRC1 and RAD53, members of the replication checkpoint (69, 70)268

emerge in the cluster as do members of the cohesin complex. Cohesin is associated with sister chromatid269

cohesion which is established during the S-phase of the cell cycle (71) and also contributes to transcription270

regulation, DNA repair, chromosome condensation, homolog pairing (72), fitting the theme of cluster 9.271

Cluster 16 appears to be a cluster of S-phase genes, consisting of GAS3, NRM1 and PDS1 and the genes272

encoding the histones H1, H2A, H2B, H3 and H4. Histones are the chief protein components of chromatin273
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(73) and are important contributors to gene regulation (74). They are known to peak in expression in274

S-phase (63), which matches the first peak of this cluster early in the time series. Of the other members,275

NRM1 is a transcriptional co-repressor of MBF-regulated gene expression acting at the transition from G1276

to S-phase (75, 76). Pds1p binds to and inhibits the Esp1 class of sister separating proteins, preventing277

sister chromatids separation before M-phase (77, 71). GAS3, is not well studied. It interacts with SMT3278

which regulates chromatid cohesion, chromosome segregation and DNA replication (among other things).279

Chromatid cohesion ensures the faithful segregation of chromosomes in mitosis and in both meiotic divisions280

(78) and is instantiated in S-phase (71). These results, along with the very similar expression profile to the281

histone genes in the time course data, suggest that GAS3 may be more directly involved in DNA replication282

or chromatid cohesion than is currently believed.283

We attempt to perform a similar analysis using traditional Bayesian inference of MDI, but after 36 hours of284

runtime there is no consistency or convergence across chains. We use the Geweke statistic and R̂ to reduce to285

the five best behaved chains (none of which appear to be converged, see section 5.2 of the Supplementary286

Material for details). If we then compare the distribution of sampled values for the φ parameters for these287

long chains, the final ensemble used (D = 10001, W = 1000) and the pooled samples from the 5 long chains,288

then we see that the distribution of the pooled samples from the long chains (which might be believed to289

sampling different parts of the posterior distribution) is closer in appearance to the distributions sampled by290

the consensus clustering than to any single chain (figure 7). Further disagreement between chains is shown in291

the Gene Ontology term over-representation analysis in section 5.3 of the Supplementary Material.292

Discussion293

Our proposed method has demonstrated good performance on simulation studies, uncovering the generating294

structure in many cases and performing comparably to Mclust and long chains in many scenarios. We saw295

that when the chains are sufficiently deep that the ensemble approximates Bayesian inference, as shown by296

the similarity between the PSMs and the CM in the 2D scenario where the individual chains do not become297

trapped in a single mode. We have shown cases where many short runs are computationally less expensive298

than one long chain and give meaningful point and interval estimates; estimates that are very similar to those299

from the limiting case of a Markov chain. Thus if individual chains are suffering from mixing problems or300

are too computationally expensive to run, consensus clustering may provide a viable option. We also showed301

that the ensemble of short chains is more robust to irrelevant features than Mclust.302
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Figure 7: The sampled values for the φ parameters from the long chains, their pooled samples and the
consensus using 1000 chains of depth 10,001. The long chains display a variety of behaviours. Across chains
there is no clear consensus on the nature of the posterior distribution. The samples from any single chain are
not particularly close to the behaviour of the pooled samples across all three parameters. It is the consensus
clustering that most approaches this pooled behaviour.

We proposed a method of assessing ensemble stability and deciding upon ensemble size which we used when303

performing an integrative analysis of yeast cell cycle data using MDI, an extension of Bayesian mixture304

models that jointly models multiple datasets. We uncovered many genes with shared signal across several305

datasets and explored the meaning of some of the inferred clusters using data external to the analysis. We306

found biologically meaningful results as well as signal for possibly novel biology. We also showed that307

individual chains for the existing implementation of MDI do not converge in a practical length of time, having308

run 10 chains for 36 hours with no consistent behaviour across chains. This means that Bayesian inference of309

the MDI model is not practical on this dataset with the software currently available.310

However, consensus clustering does lose the theoretical framework of true Bayesian inference. We attempt to311

mitigate this with our assessment of stability in the ensemble, but this diagnosis is heuristic and subjective, and312
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while there is empirical evidence for its success, it lacks the formal results for the tests of model convergence313

for Bayesian inference.314

More generally, we have benchmarked the use of an ensemble of Bayesian mixture models, showing that this315

approach can infer meaningful clusterings and overcomes the problem of multi-modality in the likelihood316

surface even in high dimensions, thereby providing more stable clusterings than individual long chains that317

are prone to becoming trapped in individual modes. We also show that the ensemble can be significantly318

quicker to run. In our multi-omics study we have demonstrated that the method can be applied as a wrapper to319

more complex Bayesian clustering methods using existing implementations and that this provides meaningful320

results even when individual chains fail to converge. This enables greater application of complex Bayesian321

clustering methods without requiring re-implementation using more clever MCMC methods, a process that322

would involve a significant investment of human time.323

We expect that researchers interested in applying some of the Bayesian integrative clustering models such324

as MDI and Clusternomics (36) will be enabled to do so, as consensus clustering overcomes some of the325

unwieldiness of existing implementations of these complex models. More generally, we expect that our326

method will be useful to researchers performing cluster analysis of high-dimensional data where the runtime327

of MCMC methods becomes too onerous and multi-modality is more likely to be present.328
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Consensus clustering for Bayesian mixture

models: Supplementary materials

Stephen Coleman, Paul DW Kirk and Chris Wallace

1 Definitions

Definition 1 (Coclustering matrix) The coclustering matrix describes a clus-
tering or partition in a binary matrix with the (i, j)th entry indicating if items
i and j are allocated to the same cluster.

Definition 2 (Consensus matrix) Given W clusterings for a dataset of N
items, cs = (cs1, . . . , csN ), the consensus matrix is a N × N matrix where the
(i, j)th entry records the proportions of clusterings for which items i and j are
allocated the same label. More formally, it is the matrix C such that

C(i, j) =
1

W

W∑
s=1

I(csi = csj) (1)

where I(·) is the indicator function taking a value of 1 if the argument is true
and 0 otherwise.

Definition 3 (Posterior similarity matrix) A consensus matrix for which
all the clusterings are generated from a converged Markov chain for some Bayesian
clustering model. Sometimes abbreviated to PSM.

Definition 4 (Partition or Clustering) For a dataset of items X = (x1, . . . , xN ),
a partition or clustering is a set of disjoint sets covering X, normally indicated
by a N -vector of integers indicating which set each item is associated with. Note
that these labels only have meaning relative to each other, they are symbolic.
Each set within the clustering is referred to as a cluster.

2 The models

2.1 Individual dataset

In the simulations (see section 4) where individual datasets are modelled a
Bayesian mixture model is used. We write the basic mixture model for inde-
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pendent items X = (x1, . . . , xN ) as

xn ∼
K∑

k=1

πkf(xn|θk) independently for n = 1, . . . , N (2)

where f(·|θ) is some family of densities parametrised by θ. A common choice
is the Gaussian density function, with θ = (µ, σ2) (as in our simulation study).
K, the number of subgroups in the population, {θk}Kk=1, the component pa-
rameters, and π = (π1, . . . , πK), the component weights are the objects to be
inferred. In the context of clustering, such a model arises due to the belief that
the population from which the random sample under analysis has been drawn
consists of K unknown groups proportional to π. In this setting it is natu-
ral to include a latent allocation variable, c = (c1, . . . , cN ), to indicate which
group each item is drawn from, with each non-empty component of the mixture
corresponds to a cluster. The model is

p(cn = k) = πk for k = 1, . . . ,K,
xn|cn ∼ f(xn|θk) independently for n = 1, . . . , N .

(3)

The joint model can then be written

p(X, c,K, π, θ) = p(X|c, π,K, θ)p(θ|c, π,K)p(c|π,K)p(π|K)p(K)

We assume conditional independence between certain parameters such that the
model reduces to

p(X, c, θ, π,K) = p(π|K)p(θ|K)p(K)

N∏
n=1

p(xn|cn, θcn)p(cn|π,K). (4)

Additional flexibility is provided by the inclusion of hyperparameters on the
priors for π and θ, denoted α and η respectively. In our context where θ =
(µ, σ2), we use

σ2 ∼ Γ−1(a, b), (5)

µ ∼ N (ξ,
1

λ
σ2), (6)

π ∼ Dirichlet(α). (7)

The directed acyclic graph (DAG) for this model is shown in figure 1. The
value of the hyperparameters we use are

α = 1, (8)

ξ = 0.0, (9)

λ = 1.0, (10)

a = 2.0, (11)

b = 2.0. (12)

2
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Figure 1: Directed acyclic graph for a mixture of Gaussians with independent
features, as used in the simulation study.

2.2 Integrative clustering

We are interested in the use of consensus clustering for integrative methods.
We used Multiple Dataset Integration (MDI, Kirk et al., 2012) as an example
of a Bayesian integrative clustering method. MDI models dataset specific clus-
terings, in contrast to, for example, Clusternomics (Gabasova et al., 2017) in
which a global clustering is inferred.

The defining aspect of MDI is the prior on the allocation of the nth item
across the L datasets

p(cn1, . . . , cnL) ∝
L∏

l=1

πcnll

L−1∏
l=1

L∏
m=l+1

(1 + ϕlmI(cnl = cnm)) for n = 1, . . . , N .

(13)

ϕlm is the parameter defined by the similarity of the clusterings for the lth and
mth datasets and is also sampled in each iteration. As ϕlm increases more mass
is placed on the common partition for these datasets. Conversely, in the limit
ϕlm → 0 we have independent mixture models. In other words, MDI allows
datasets with similar clustering of the items to inform the clustering in each
other more strongly than the clustering for an unrelated dataset. The DAG for
this model for three datasets is shown in figure 2.
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3 Consensus clustering

Consensus clustering as described by Monti et al. (2003) applies W independent
runs of the underlying clustering algorithm to perturbed versions of the dataset
and combines the W final partitions in a consensus matrix which can be used
to infer a final clustering. An outline of this is described in algorithm 1.

The consensus matrix is a symmetric matrix with the (i, j)th entry being the
proportions of model runs for which the ith and jth items are clustered together.

Data: X = (x1, . . . , xN )
Input: A resampling scheme Resample
A clustering algorithm Cluster
Number of resampling iterations W
Set of cluster numbers to try K = {K1, . . . ,Kmax}
Output: A predicted clustering, Ŷ
The predicted number of clusters present K̂
begin

for K ∈ K do
/* initialise an empty consensus matrix */

M(K) ← 0N×N ;
for w = 1 to W do

X(s) ← Resample(X);
/* Cluster the peturbed dataset, represented in a

coclustering matrix */

B(w) ← Cluster(X(w),K);

M(K) ←M(K) +B(s);

end

M(K) ← 1
W M(K);

end

K̂ ← best K ∈ K based upon all M(K);

Ŷ ← partition X based upon M(K̂);

end
Algorithm 1: Consensus clustering algorithm

To partition X based upon the consensus matrix, we use the R function
maxpear (Fritsch, 2012). maxpear uses a sample average clustering, inferring
this by maximising the quantity∑

i<j I(c∗i = c∗j )pij −
∑

i<j I(c∗i = c∗j )
∑

i<j pij/
(
N
2

)
1
2

[∑
i<j I(c∗i = c∗j ) +

∑
i<j pij

]
−
∑

i<j I(c∗i = c∗j )
∑

i<j pij/
(
N
2

) (14)

where pij is the (i, j)th entry of the consensus matrix (Fritsch et al., 2009).
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4 Simulated data

4.1 Scenario description

We defined 12 scenarios to simulate data within to test consensus clustering
and to compare it to some alternative tools. Table 1 describes the parameters
defining these scenarios and algorithm 2 describes how individual simulations
were generated.

Scenario N Ps Pn K ∆µ σ2 π
2D 100 2 0 5 3.0 1 ( 15 ,

1
5 ,

1
5 ,

1
5 ,

1
5 )

No structure 100 0 2 1 0.0 1 1
Base Case 200 20 0 5 1.0 1 ( 15 ,

1
5 ,

1
5 ,

1
5 ,

1
5 )

Large standard deviation 200 20 0 5 1.0 9 ( 15 ,
1
5 ,

1
5 ,

1
5 ,

1
5 )

Large standard deviation 200 20 0 5 1.0 25 ( 15 ,
1
5 ,

1
5 ,

1
5 ,

1
5 )

Irrelevant features 200 20 10 5 1.0 1 ( 15 ,
1
5 ,

1
5 ,

1
5 ,

1
5 )

Irrelevant features 200 20 20 5 1.0 1 ( 15 ,
1
5 ,

1
5 ,

1
5 ,

1
5 )

Irrelevant features 200 20 100 5 1.0 1 ( 15 ,
1
5 ,

1
5 ,

1
5 ,

1
5 )

Varying proportions 200 20 0 5 1.0 1 (12 ,
1
4 ,

1
8 ,

1
16 ,

1
16 )

Varying proportions 200 20 0 5 0.4 1 (12 ,
1
4 ,

1
8 ,

1
16 ,

1
16 )

Small N , large P 50 500 0 5 1.0 1 (15 ,
1
5 ,

1
5 ,

1
5 ,

1
5 )

Small N , large P 50 500 0 5 0.2 1 (15 ,
1
5 ,

1
5 ,

1
5 ,

1
5 )

Table 1: Parameters defining the simulation scenarios as used in generating data
and labels.

We intend the scenarios to test different aspects of real data or to benchmark
performance for comparison in the more challenging situations.

� 2D : a low dimensional scenario within which we expected Mclust to per-
form well and the long chains to converge and explore the full support of
the posterior distribution.

� No structure: we included this scenario to reassure fears that consensus
clustering has a predilection to finding clusters where none exist (S, enbabaoğlu
et al., 2014a,b).

� Base case: highly informative datasets within which we expected methods
to find the true generating labels quite easily. We included this scenario
to benchmark the others that are variations of this setting.

� Large standard deviation: these two scenarios investigated the degree of
distinction required between clusters for the methods to uncover their
structure.

� Irrelevant features: we included these scenarios to investigate how robust
the methods are to irrelevant features.
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Algorithm: Simulation generation

Input: Distance between means ∆µ

A common standard deviation σ2

A number of clusters K
The number of items to generate in total N
The number of features to generate in total P
An indicator vector of feature relevance ϕ = (ϕ1, . . . , ϕP )
The expected proportion of items in each cluster π = (π1, . . . , πK)
A method for sampling x times from the array y, with weights π:
Sample(y, x, π)
A method for permuting a vector x: Permute(x)
A method for generating a value from a univariate Gaussian
distribution with mean µ and standard deviation σ2: Gaussian(µ, σ2)
Output: A dataset, X
The generating cluster labels c = (c1, . . . , cN )
begin

/* initialise the empty data matrix */

X ← 0N×P ;
/* create a matrix of K means */

µ← (∆µ, . . . ,K∆µ);
/* generate the allocation vector */

c← Sample(1 : K,N, π);
M← 0N×N ;
for p = 1 to P do

/* Test if the feature is relevant, if relevant

generate data from a mixture of univariate

Gaussians, otherwise draw all items from the same

distribution */

if ϕp = 1 then
ν ← Permute(µ);
for n = 1 to N do

X(n, p)← Gaussian(νcn , σ
2)

end

end
if ϕp = 0 then

for n = 1 to N do
X(n, p)← Gaussian(0, σ2)

end

end

end
/* Mean centre and scale the data */

X ← Normalise(X)
end

Algorithm 2: Data generation for a mixture of Gaussian with
independent features. This algorithm is implemented in the
generateSimulationDataset function from the mdiHelpR package
available at www.github.com/stcolema/mdiHelpR.
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� Varying proportions: these scenarios investigated how well each method
uncovers clusters when the clusters have significantly different membership
counts.

� Small N , large P : an investigation of behaviour when the number of
features is far greater than the number of items.

4.2 Mclust

We called Mclust using the default settings and a range of inputs for the choice
of K. We used K = (2, . . . ,min(N2 , 50)) to mirror the choice of Kmax = 50 used
for the overfitted mixture models (the default in the software we used), with
the bound of N

2 to avoid fitting 50 clusters in the Small N , large P scenario
where N = 50 = Kmax. In the No structure scenarios we extended to range to
K = (1 . . . , 50) to include the correct structure as an option. The model choice
was performed using the Bayesian Information Criterion (Schwarz et al., 1978,
as implemented in Mclust). Mclust tries different covariance matrices and thus
the model choice is not just between different values of K.

4.3 Bayesian analysis

We use the implementation of Bayesian mixture models in C++ provided by
Mason et al. (2016). Rather than directly using a Dirichlet process (Fergu-
son, 1973) to infer the number of clusters or a mixture that grows and shrinks
(Richardson and Green, 1997), this implementation follows the logic of Rousseau
and Mengersen (2011) and Van Havre et al. (2015) using an overfitted mixture
model to approximate a Dirichlet process. In overfitted mixture models, the
number of components, Kmax, included in the model is set to number far larger
than the true number of clusters, K, present.

For each simulation we ran 10 chains for 1 million iterations, keeping every
thousandth sample. We discarded the first 10,000 iterations to account for burn-
in bias, leaving 990 samples per chain. To check if the chains were converged
we used

� the Geweke convergence diagnostic (Geweke et al., 1991) to investigate
within-chain stationarity, and

� the potential scale reduction factor (R̂, Gelman et al., 1992) and the Vats-
Knudson extension (stable R̂, Vats and Knudson, 2018) to check across-
chain convergence.

The Geweke convergence diagnostic is a standard Z-score; it compares the sam-
ple mean of two sets of samples (in this case buckets of samples from the first
half of the samples to the sample mean of the entire second half of samples). It
is calculated under the assumption that the two parts of the chain are asymp-
totically independent and if this assumption holds (i.e. the chain is sampling
the same distribution in both samples) than the scores are expected to be stan-
dard normally distributed. If a chain’s Geweke convergence diagnostic passed
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a Shapiro-Wilks test for normality (Shapiro and Wilk, 1965) (based upon a
threshold of 0.05), we considered it to have achieved stationarity and included
it in the model performance analysis.

R̂ is expected to approach 1.0 if the set of chains are converged. Low R̂ is not
sufficient in itself to claim chain convergence, but values above 1.1 are clear evi-
dence for a lack of convergence (Gelman et al., 2013). Vats and Knudson (2018)
show that this threshold is significantly too high (1.01 being a better choice) and
propose extensions to R̂ that enable a more formal rule for a threshold. We use
their method as implemented in the R package stableGR (Knudson and Vats,
2020) as the final check of convergence. An example of the R̂ series across the
100 simulations for a scenario where chains are well-behaved is shown in figure
3.

We focused upon stationarity of the continuous variables as assesing conver-
gence of the allocation labels is difficult due to label-switching. In our simula-
tions the only recorded continuous variable is the concentration parameter of
the Dirichlet distribution for the component weights.

We pooled the samples from the stationary chains and used these to form
a PSM. This and the point estimate clustering found by applying the R func-
tion maxpear. In Bayesian inference, maxpear attempts to find the clustering
that maximises the Adjusted Rand Index to the true clustering by using an
approximation of the expected clustering under the posterior, E(c|X), believing
that this converges to the true clustering. A sample average clustering is used
to approximate the expected clustering. This is estimated from the PSM by
maximising ∑

i<j I(c∗i = c∗j )pij −
∑

i<j I(c∗i = c∗j )
∑

i<j pij/
(
N
2

)
1
2

[∑
i<j I(c∗i = c∗j ) +

∑
i<j pij

]
−
∑

i<j I(c∗i = c∗j )
∑

i<j pij/
(
N
2

) (15)

where pij is the (i, j)th entry of the PSM (Fritsch et al., 2009). When the chain
has converged this maximises the posterior expected ARI to the true clustering.

There are three possibilities to consider the decision to pool the samples
across chains under:

� The chains are converged and agree upon the distribution sampled (see
figure 4 for an example).

� The chains are not in agreement upon the partition sampled, becoming
trapped in different modes. However, a mode does dominate being the
mode present in a majority of chains (see figure 5 for an example of this
behaviour).

� The chains are not in agreement and no one mode dominates among chains
(see figure 6 for an example of this behaviour).

In the first case pooling has no effect upon the predicted clustering compared
to using any one chain. In the second case it feels natural that one would use
the mode that dominates. Pooling the samples effectively does this for the

9
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Figure 3: The R̂ values for each simulation (in dotted grey), the median value
and the interquartile range across simulations. One can see that R̂ approaches
1.0, being below 1.01 for every simulation by the end of the chains. The “0%
of simulations failed to converge” is a statement based upon the percentage of
simulations which passed the test of stable R̂.
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Figure 4: Posterior similarity matrices for the simulation generated using a
random seed set to 1 for the first large standard deviation scenario from table
1. This is an example of all stationary chains agreeing in a simulation (and thus
pooling of samples is no different to using any choice of chain for the performance
analysis). Ordering of rows and columns is defined by hierarchical clustering of
the first matrix in the series, in this case that from Chain 1.

predictive performance of the method as the mode with the greatest number
of samples across the chains dominates; however, the uncertainty for this mode
is increased. In the third case the analysis is non-trivial and further thought,
chains and samples would be required. In our simulations this case only arises in
the most pathological form in the second Large N , small P scenario, where each
chain remains trapped in the initial partition. The clustering inferred from any
chain is not meaningful being a random clustering; thus the clustering predicted
by pooling the PSMs is no more or less relevant as it too is random.
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Figure 5: Posterior similarity matrices for the simulation generated using a
random seed set to 1 for the first small N , large P scenario from table 1. This
is an example of different chains becoming trapped in different modes, but one
mode (which does represent the generating structure well) is dominant, being
fully present in 3 of the 6 chains, with the two other modes present having
significant overlap. Ordering of rows and columns is defined by hierarchical
clustering of the first matrix in the series, in this case that from Chain 1.
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Figure 6: Posterior similarity matrices for the simulation generated using a
random seed set to 1 for the second small N , large P scenario from table 1.
This is an example of different chains becoming trapped in different modes
with no mode being dominant. In this scenario each chain remains trapped in
initialisation. Ordering of rows and columns is defined by hierarchical clustering
of the first matrix in the series, in this case that from Chain 1.
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Figure 7: Consensus matrices for the simulation generated using a random seed
set to 1 for the third irrelevant features scenario from table 1. D is the individual
chain length and W is the number of chains used. In this example there are
several modes present (as seen in the entries with values between 0 and 1) but
one mode is clearly dominant (the 5 dark squares along the diagonal which
correspond closely to the generating labels).

4.4 Consensus clustering analysis

We investigated a range of ensembles, using all combinations of chain depth,D =
{1, 10, 100, 1000, 10000}, and the number of chains, W = {1, 10, 30, 50, 100}.
This gave a total of 25 different ensembles. A consensus matrix was constructed
from the samples generated by each ensemble by finding the proportion of sam-
ples within which any pair of items are coclustered. An example of the Consen-
sus matrices for each ensemble in a given simulation is shown in figure 7.

4.5 Model performance

The different models (Bayesian (pooled), Mclust and the 25 consensus clus-
tering ensembles) were compared under their ability to uncover the generating
clustering.
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In figure 11 the ARI between the generating labels and the point estimate
clustering from each method is shown. For two partitions c1, c2,

� ARI(c1, c2) = 1.0: a perfect match between the two partitions,

� ARI(c1, c2) = 0.0: c1 is no more similar to c2 than is expected for a
random partition of the data.

In several scenarios Mclust performs the best under this metric (e.g. in the
scenarios 2D, Small N , large P (∆µ = 0.2)). However when the number of
irrelevant features is large Mclust performs less well (see Irrelevant features
(Pn = 20) and (Pn = 100)) than the other methods. In the scenario that
Pn = 100 failing to find structure is not inherently wrong as a majority of the
features suggest that there are no subpopulations.

For the ensembles there are two parameters changing between each model,
the iteration used to provide the clustering in the ensemble, D, and the number
of chains (and hence samples) used, W . In many of the scenarios we find that the
benefit of increasing D stabilises by approximately D = 10. We believe that in
a low-dimensional dataset (such as 2D), or a highly informative dataset (such as
Base case or any of the higher dimensional scenarios with no irrelevant features
where ∆µ

σ2 ≥ 1) the chains quickly find a “sensible” partition of the data and
thus increasing the depth within the chain does not increase the probability that
any partition sampled will be closer to the generating partition. For example
in figure 11 in the Small N , large P case, the distribution of the ARI across
the ensembles for which D ≥ 10 and W = 1 is nearly identical; this suggests
that the chain is sampling a very similar partition again and again for 9,990
iterations (and possibly beyond based upon the PSMs shown in figure 5) and it
is through adding more chains rather than using particularly long chains that
we improve the ability to uncover the generating structure.

We also notice that even if the behaviour has not stabilised for D that the
ensemble can uncover meaningful structure. The ARI for the ensembles of short
chains can be quite high (as is the case in many of the scenarios). The behaviour
of the consensus matrices also shows that low D is not a disqualifier from mean-
ingful inference even if longer chains would be ideal, a result that might be
useful in real applications with large datasets and complex models. Consider
the consensus matrices in figure 7, it can be seen that the behaviour has not
stabilised before D = 10000 (and possibly there is still some benefit in increas-
ing D beyond this value), but the structure being uncovered when there is a
sufficient number of chains and D is small does correspond to the structure un-
covered in the largest and deepest ensemble. We believe that the order in which
components merge and items are co-clustered varies depending on initialisation,
and thus if the chain is not sufficiently deep that all of the final mergings have
occured that a sufficiently large ensemble can still perform meaningful inference
of the subpopulation structure despite the poor performance of any individual
model. Even though each learner probably has too many clusters for small D
the consensus among them will have less if the individual learners have low cor-
relation between their partitions (something we might expect if the chains are
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stopped very early). This is why the entries of the consensus matrix for D = 100
and W = 100 in figure 7 are more pale than in deeper ensembles; very few items
correctly (possibly none) cocluster in every partition, it is only in observing the
consensus that the global structure of interest emerges. Thus if there is some
limit to the length of chains available for an analysis (e.g. computational or
temporal constraints) than the inference obtained from the shorter chains can
still be meaningful, with the caveat that the point clustering might have more
clusters than the same analysis with longer chains would provide. Additional
post-hoc merging of some clusters might be necessary in this case.

In contrast, when the dataset is sparse or contains many irrelevant features,
we believe that deeper chains are required to reach this steady-state sampling
where no single sample is expected to be better than any other (see the Irrelevant
features (Pn = 100) facet of figure 11).

In some scenarios no method is successful in uncovering the generating labels.
In the Large standard deviation (σ2 = 25) and Small N , large P (∆µ = 0.2)
this is due to the lack of signal - the clusters overlap so significantly that it is not
possible for any of these methods to uncover much of the generating structure.
In the No structure case it is different (although Mclust does perform well
here). In this case all items are generated from a common distributions. For
the Bayesian chains and the ensembles, a clustering of singletons is predicted;
each item is allocated a unique label (see figures 8 and 9). While failing to
perform well under the ARI, this is a sensible result. Rather than indicating
(as we did with the shared label) that no item is particularly distinct from the
others and thus all share a common label, this clustering of singletons states
that no item is more similar to any other and thus no two items should cluster
together. It is an alternative statement of the same result, i.e. that there
is no evidence for subpopulation structure. We consider this evidence that
an ensemble of Bayesian mixture models is not as susceptible to predicting
labels than an ensemble based upon K-means clustering as in S, enbabaoğlu
et al. (2014a,b).

Increasing W is also required when the dimensionality of the dataset is large.
In this case it is due to individual chains exploring only a single mode (as can
be seen in figure 5 where each chain appears to sample only a single partition).
In this example where each sample is a partition that appears to be a mode in
the posterior distribution of the allocation vector from very early in the chain
(based upon the stable performance for D ≥ 10), increasing W allows each
chain to “vote” on which mode is the global mode, as we believe that the mode
that attracts the most chains is the global mode (although in real datasets
the number of chains required might be greater than in our simulations). An
example of this behaviour may be seen in figure 10.

In figure 11, limiting behaviour for increases of W and D can be seen for the
ensemble. For most simulations there is no change in performance for greater
choices of W and D after some stabilising values.
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Figure 8: Posterior similarity matrices for simulation 1 of the No structure
scenario. Each item is allocated to a singleton.
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Figure 9: Consensus matrices for simulation 1 of the No structure scenario.
Each item is allocated to a singleton in many of the Consensus matrices.
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Figure 10: Consensus matrices for simulation 1 of the first Large N , small P
scenario. One can see that by iteration ten the sample being drawn is from the
mode (for W = 1, D = 10), and that an ensemble of chains does find structure
that recalls the generating labels (see figure 11, the ARI for CC(10, s) is 1.0 for
s > 1, meaning that the true labels perfectly align with those predicted by the
consensus matrix).
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Figure 12: Heatmap of the yeast datasets. Each plot has a common row order
corresponding to the gene products being clustered. This order was decided
by a hierarchical clustering of the rows of the time course expression matrix.
The time course data is associated with the “Gene expression” legend and the
ChIP-chip and PPI data with “Protein interaction” legend.

5 Multi-omics analysis of the cell cycle in bud-
ding yeast

We chose our three datasets (shown in figure 12) to perform an integrative
analysis as many of the protein encoding genes in the mitotic cell cycle have
well studied genomic binding sites with mapped transcription factors (TFs)
that control phase-specific expression (Cho et al., 1998; Spellman et al., 1998);
thus the inclusion of the ChIP-chip data means that the clusters that align
across the datasets should include well studied regulatory proteins and thus be
of biological interest. If a cluster of genes are similarly expressed in the time
course , share associated regulatory protein in the ChIP-chip and are associated
with common protein complexes in the PPI data, than this implies a gene set
with strong biological significance.

In contrast, if we cluster the time course dataset alone, any clusters that
we find are defined by correlation across time. This might be assumed to be
driven by shared regulatory mechanisms, but other sources of structure might
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be encouraging this, even experimental error. However, if a cluster aligns across
both the time course dataset and the ChIP-chip dataset we can be more certain
that these genes are part of some regulatory network; if this cluster also emerges
in the PPI dataset we might believe that the genes are co-regulated as part of
the formation of some protein complex. Furthermore, this integrative aspect
means that clusters that might merge in the time course dataset due to simi-
lar periodicity in a standalone analysis might remain separate due to different
associated transcription factors in the ChIP-chip dataset.

Thus we performed an integrative analysis using MDI to avoid agressive
assumptions about either the biology defining any clusters and modelling as-
sumptions about the latent structure.

We expect that the complexity of this data and model means that the time
required for convergence of the MCMC algorithm would be very large. We
avoid this problem by using consensus clustering of MDI, instead basing our
final ensemble choice on the stopping rule described in the main paper.

The datasets were modelled using a mixture of Gaussian processes in the time
course dataset and Multinomial distributions in the ChIP-chip and PPI datasets.
To ensure that our mixture model is initially overfitted we set Kmax = 275 ≈ N

2 ,
and following from this the point estimate was inferred from the consensus
matrix using maxpear as in the simulated data except we set k.max = 275.

5.1 Consensus clustering analysis

We include the consensus matrices for each dataset for a range of ensembles for
further evidence that the ensemble was stable for the 10, 000th iteration from
1,000 chains in figures 13, 14 and 15. In these figures, there is no strong change
between the consensus matrices for D = 5001 and D = 10001.

We wish to identify groups of genes that tend to be grouped together in
multiple datasets. We focus upon the genes that tend to have the same cluster
label in multiple datasets, those which have a common label across some set of
datasets in more than half of the observed clusterings, or P̂ (cnl = cnm) > 0.5,
where cnl denotes the cluster label of gene n in dataset l. This based upon the
the concept of fused genes proposed by Savage et al. (2010) and used by Kirk
et al. (2012), but to avoid confusion due to other possible ideas of fused genes
(e.g. those that contribute to a common protein complex, the behaviour of TFs
upon a gene) we avoid this term. These genes with common clustering across
datasets are those most affected by the integrative aspect of the analysis and
therefore we focus upon these in the our cluster analysis. In our case we have
the possible sets of:

� {Time course}, {ChIP-chip}, {PPI},

� {Time course, ChIP-chip}, {Time course, PPI}, {ChIP-chip, PPI}, and

� {Time course, ChIP-chip, PPI}.

The number of genes meeting this criteria between any two datasets is in-
dicative of how strongly they influence each other and is expected to align with
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Figure 13: Consensus matrices for different ensembles of MDI for the time course
data. This dataset has stable clustering across the different choices of number
of chains, W , and chain depth, D, with some components merging as the chain
depth increases.
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Figure 14: The ChIP-chip dataset is more sparse than the time course data.
In keeping with the results from the simulations for mixture models, deeper
chains are required for better performance. It is only between D = 5, 001 and
D = 10, 001 that no change in the clustering can be observed and the result is
believed to be stable. In this dataset the number of chains used, W , appears
relatively unimportant, with similar results for W = 100, 500, 1000.
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Figure 15: The PPI dataset has awkward characteristics for modelling. A wide,
sparse dataset it is chain depth that we found to be the most important pa-
rameter for the ensemble. Similar to the results in figure 14, the matrices only
stabilise from D = 5001 to D = 10001.
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the ϕlm parameters from the MDI model. We find the following number of
unique genes integrated between each combination of datasets:

� Time course + ChIP-chip + PPI: 56,

� Time course + ChIP-chip: 205 (261 including the 56 integrated across all
datasets),

� Time course + PPI: 12 (68),

� ChIP-chip + PPI: 43 (99). .

This shows that the time course and ChIP-chip datasets contain very similar
structure, the ChIP-chip and PPI datasets have some similarity but significantly
less and the time course and PPI datasets have less shared signal again.

Compare this to the original analysis of this data in Kirk et al. (2012), where
the number of such genes in each combination is:

� Time course + ChIP-chip + PPI: 16,

� Time course + ChIP-chip: 32 (48),

� Time course + PPI: 16 (32),

� ChIP-chip + PPI: 15 (31).

Our analysis has found significantly more shared structure.

5.1.1 Time course ChIP-chip analysis

We focus upon the dataset pairing of time course + ChIP-chip within the in-
tegrative analysis as the combination with the greatest number of genes with
shared clustering. We show these genes grouped by their inferred cluster in
figure 16. In this plot we exclude the 15 clusters where more than half of the
member genes have no interactions in the ChIP-chip data and any clusters of
one. We find that a small number of transcription factors dominate, with differ-
ent combinations emerging across the 10 clusters shown here in table 2. Many of
these 10 correspond to transcription factors that are well known to regulate cell
cycle expression, namely MBP1, SWI4, SWI6, MCM1, FKH1, FKH2, NDD1,
SWI5, and ACE2 (Simon et al., 2001).

Table 2: Table of transcription factors prominent in clusters of
genes with shared labels for a majority of samples for the time
course and ChIP-chip datasets.

Gene Name Description
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YLR131C ACE2 Transcription factor required for septum destruction af-
ter cytokinesis; phosphorylation by Cbk1p blocks nu-
clear exit during M/G1 transition; phosphorylation by
cyclins Cdc28p and Pho85p prevents nuclear import
during cell cycle phases other than cytokinesis; part of
RAM network that regulates cellular polarity and mor-
phogenesis; ACE2 has a paralog, SWI5, that arose from
the whole genome duplication

YPL049C DIG1 MAP kinase-responsive inhibitor of the Ste12p tran-
scription factor; involved in the regulation of mating-
specific genes and the invasive growth pathway; Dig1p
and paralog Dig2p bind to Ste12p

YIL131C FKH1 Forkhead family transcription factor; evolutionarily con-
served lifespan regulator; binds multiple chromosomal
elements with distinct specificities, cell cycle dynamics;
regulates transcription elongation, chromatin silencing
at mating loci, expression of G2/M phase genes

YNL068C FKH2 Forkhead family transcription factor; rate-limiting ac-
tivator of replication origins; evolutionarily conserved
regulator of lifespan; binds multiple chromosomal el-
ements with distinct specificities, cell cycle dynamics;
positively regulates transcriptional elongation; negative
role in chromatin silencing at HML and HMR; major
role in expression of G2/M phase genes

YDL056W MBP1 Transcription factor; involved in regulation of cell cy-
cle progression from G1 to S phase, forms a complex
with Swi6p that binds to MluI cell cycle box regulatory
element in promoters of DNA synthesis genes

YMR043W MCM1 Transcription factor; involved in cell-type-specific tran-
scription and pheromone response; plays a central role in
the formation of both repressor and activator complexes;
involved in the transcription of some M/G1 genes Simon
et al. (2001).

YOR372C NDD1 Transcriptional activator essential for nuclear division;
essential component of the mechanism that activates
the expression of a set of late-S-phase-specific genes;
turnover is tightly regulated during cell cycle and in re-
sponse to DNA damage

YHR084W STE12 Transcription factor that is activated by a MAPK signal-
ing cascade; activates genes involved in mating or pseu-
dohyphal/invasive growth pathways; cooperates with
Tec1p transcription factor to regulate genes specific for
invasive growth
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YER111C SWI4 DNA binding component of the SBF complex (Swi4p-
Swi6p); a transcriptional activator that in concert with
MBF (Mbp1-Swi6p) regulates late G1-specific transcrip-
tion of targets including cyclins and genes required for
DNA synthesis and repair

YDR146C SWI5 Transcription factor that recruits Mediator and Swi/Snf
complexes; activates transcription of genes expressed at
the M/G1 phase boundary and in G1 phase; required
for expression of the HO gene controlling mating type
switching; localization to nucleus occurs during G1 and
appears to be regulated by phosphorylation by Cdc28p
kinase; SWI5 has a paralog, ACE2, that arose from the
whole genome duplication

YLR182W SWI6 Transcription cofactor; forms complexes with Swi4p
(SBF) and Mbp1p (MBF) to regulate transcription at
the G1/S transition (Simon et al., 2001); involved in
meiotic gene expression; also binds Stb1p to regulate
transcription at START; also required for the unfolded
protein response, independently of its known transcrip-
tional coactivators

YBR083W TEC1 Transcription factor targeting filamentation genes and
Ty1 expression; Ste12p activation of most filamen-
tation gene promoters depends on Tec1p and Tec1p
transcriptional activity is dependent on its asso-
ciation with Ste12p; binds to TCS elements up-
stream of filamentation genes, which are regulated by
Tec1p/Ste12p/Dig1p complex; competes with Dig2p for
binding to Ste12p/Dig1p; positive regulator of chrono-
logical life span

YML027W YOX1 Homeobox transcriptional repressor; binds to Mcm1p
and to early cell cycle boxes (ECBs) in the promoters
of cell cycle-regulated genes expressed in M/G1 phase;
phosphorylated by the cyclin Cdc28p; relocalizes from
nucleus to cytoplasm upon DNA replication stress

These regulatory proteins are found in different combinations across the
clusters. Based upon these combinations we associate each cluster with phases
of the cell cycle and or some specific processes.

� Cluster 1: both ACE2 and SWI5 emerge. These regulate specific genes at
the end of M and early G1 (McBride et al., 1999; Simon et al., 2001).

� Cluster 2: SWI5. This is similar to cluster 1, as ACE2 is a paralog of
SWI5; therefore associated with M/G1. Furthermore, inspection of the
expression in the timecourse data shows that the members of cluster 2
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largely differentiate from those of cluster 1 based upon amplitude, not
periodicity, suggesting that these clusters could be merged.

� Cluster 5: MBP1, SWI4 and SWI6. The SBF complex (Swi4p-Swi6p)
is a transcriptional activator that in concert with MBF (Mbp1-Swi6p)
regulates late G1-specific transcription of targets including cyclins and
genes required for DNA synthesis and repair, controlling the transition to
S phase (Simon et al., 2001; Iyer et al., 2001; Aligianni et al., 2009).

� Cluster 9: MBP1 and SWI6. These combine to formMBF, which regulates
DNA replication and repair (Iyer et al., 2001).

� Cluster 11: DIG1, SWI4, SWI6, and STE12 emerge in all members with
some having associations with TEC1. TEC1 and STE12, controls devel-
opment, including cell adhesion and filament formation and is negatively
regulated by DIG1 and DIG2 (van der Felden et al., 2014).

� Cluster 12: MBP1 , SWI4 and SWI6. Similar to cluster 5 in both the
time course and ChIP-chip datasets and thus G1/S phase.

� Cluster 16: some MBP1, SWI4 and SWI6. The constituents of this cluster
are largely associated with proteins contributing to histones H1, H2A,
H2B, H3 and H4, suggesting an S-phase cluster (Ewen, 2000).

� Cluster 17: FKH1 and FKH2. Fkh1p and Fkh2p are required for cell-cycle
regulation of transcription during G2/M (Kumar et al., 2000).

� Cluster 20: NDD1 and MCM1 with some FKH2. Mcm1, together with
Fkh1 or Fkh2, recruits the Ndd1 protein in late G2, and thus controls the
transcription of G2/M genes (Simon et al., 2001; Koranda et al., 2000).

� Cluster 26: YOX1 and MCM1. YOX1 binds to Mcm1p and to early cell
cycle boxes (ECBs) in the promoters of cell cycle-regulated genes expressed
in M/G1 phase (Pramila et al., 2002).

Gene Name Cluster Description

YJL115W ASF1 9 Nucleosome assembly factor; involved in chromatin as-
sembly, disassembly; required for buffering mRNA syn-
thesis rate against gene dosage changes in S phase

YLR103C CDC45 9 DNA replication initiation factor; recruited to MCM
pre-RC complexes at replication origins; recruits elonga-
tion machinery; binds tightly to ssDNA, which disrupts
interaction with the MCM helicase and stalls it during
replication stress; mutants in human homolog may cause
velocardiofacial and DiGeorge syndromes
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YPL241C CIN2 9 GTPase-activating protein (GAP) for Cin4p; tubulin
folding factor C involved in beta-tubulin (Tub2p) fold-
ing; mutants display increased chromosome loss and
benomyl sensitivity; human homolog RP2 complements
yeast null mutant

YPR175W DPB2 9 Second largest subunit of DNA polymerase II (DNA
polymerase epsilon); required for maintenance of fi-
delity of chromosomal replication; essential motif in C-
terminus is required for formation of the four-subunit
Pol epsilon; expression peaks at the G1/S phase bound-
ary; Cdc28p substrate

YIL026C IRR1 9 Subunit of the cohesin complex; which is required for sis-
ter chromatid cohesion during mitosis and meiosis and
interacts with centromeres and chromosome arms

YCL061C MRC1 9 S-phase checkpoint protein required for DNA replica-
tion; couples DNA helicase and polymerase; defines a
novel S-phase checkpoint with Hog1p that coordinates
DNA replication and transcription upon osmostress;
protects uncapped telomeres; Dia2p-dependent degra-
dation mediates checkpoint recovery; mammalian
claspin homolog; subunit of a replication-pausing
checkpoint complex, Tof1p-Mrc1p-Csm3p; checkpoint-
mediator protein that functions during DNA replication
and activates the effector kinase Rad53 (Bando et al.,
2009); human ATR homolog (Lao et al., 2018)

YDR097C MSH6 9 Protein required for mismatch repair in mitosis and
meiosis; forms a complex with Msh2p to repair both
single-base and insertion-deletion mispairs; also involved
in interstrand cross-link repair; potentially phosphory-
lated by Cdc28p

YNL102W POL1 9 Catalytic subunit of the DNA polymerase I alpha-
primase complex; required for the initiation of DNA
replication during mitotic DNA synthesis and premei-
otic DNA synthesis

YBL035C POL12 9 B subunit of DNA polymerase alpha-primase complex;
required for initiation of DNA replication during mitotic
and premeiotic DNA synthesis; also functions in telom-
ere capping and length regulation

YKL113C RAD27 9 5’ to 3’ exonuclease, 5’ flap endonuclease; required for
Okazaki fragment processing and maturation, for long-
patch base-excision repair and large loop repair (LLR),
ribonucleotide excision repair

YPL153C RAD53 9 DNA damage response protein kinase; required for cell-
cycle arrest, regulation of copper genes in response to
DNA damage; human homolog CHEK2 implicated in
breast cancer can complement yeast null mutant
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YAR007C RFA1 9 Subunit of heterotrimeric Replication Protein A (RPA);
RPA is a highly conserved single-stranded DNA binding
protein involved in DNA replication, repair, and recom-
bination; RPA protects against inappropriate telomere
recombination, and upon telomere uncapping, prevents
cell proliferation by a checkpoint-independent pathway;
role in DNA catenation/decatenation pathway of chro-
mosome disentangling; relocalizes to the cytosol in re-
sponse to hypoxia

YNL312W RFA2 9 Subunit of heterotrimeric Replication Protein A (RPA);
RPA is a highly conserved single-stranded DNA binding
protein involved in DNA replication, repair, and recom-
bination; RPA protects against inappropriate telomere
recombination, and upon telomere uncapping, prevents
cell proliferation by a checkpoint-independent path-
way; in concert with Sgs1p-Top2p-Rmi1p, stimulates
DNA catenation/decatenation activity of Top3p; pro-
tein abundance increases in response to DNA replication
s

YAR008W SEN34 9 Subunit of the tRNA splicing endonuclease; tRNA splic-
ing endonuclease (Sen complex) is composed of Sen2p,
Sen15p, Sen34p, and Sen54p; Sen complex also cleaves
the CBP1 mRNA at the mitochondrial surface; Sen34p
contains the active site for tRNA 3’ splice site cleav-
age and has similarity to Sen2p and to Archaeal tRNA
splicing endonuclease

YJL074C SMC3 9 Subunit of the multiprotein cohesin complex; required
for sister chromatid cohesion in mitotic cells; also re-
quired, with Rec8p, for cohesion and recombination dur-
ing meiosis; phylogenetically conserved SMC chromoso-
mal ATPase family member

YNL273W TOF1 9 Subunit of a replication-pausing checkpoint complex;
Tof1p-Mrc1p-Csm3p acts at the stalled replication fork
to promote sister chromatid cohesion after DNA dam-
age, facilitating gap repair of damaged DNA; interacts
with the MCM helicase; checkpoint-mediator protein
that functions during DNA replication and activates
the effector kinase RAD53 (Bando et al., 2009); human
ATM homolog (Lao et al., 2018)

YMR215W GAS3 16 Putative 1,3-beta-glucanosyltransferase; has similarity
go other GAS family members; low abundance, possibly
inactive member of the GAS family of GPI-containing
proteins; localizes to the cell wall; mRNA induced dur-
ing sporulation
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YBR009C HHF1 16 Histone H4; core histone protein required for chromatin
assembly and chromosome function; one of two identical
histone proteins (see also HHF2); contributes to telom-
eric silencing; N-terminal domain involved in maintain-
ing genomic integrity

YNL030W HHF2 16 Histone H4; core histone protein required for chromatin
assembly and chromosome function; one of two identical
histone proteins (see also HHF1); contributes to telom-
eric silencing; N-terminal domain involved in maintain-
ing genomic integrity

YPL127C HHO1 16 Histone H1, linker histone with roles in meiosis and
sporulation; decreasing levels early in sporulation may
promote meiosis, and increasing levels during sporula-
tion facilitate compaction of spore chromatin; binds to
promoters and within genes in mature spores; may be
recruited by Ume6p to promoter regions, contributing to
transcriptional repression outside of meiosis; suppresses
DNA repair involving homologous recombination

YBR010W HHT1 16 Histone H3; core histone protein required for chromatin
assembly, part of heterochromatin-mediated telomeric
and HM silencing; one of two identical histone H3 pro-
teins (see HHT2); regulated by acetylation, methyla-
tion, and phosphorylation; H3K14 acetylation plays an
important role in the unfolding of strongly positioned
nucleosomes during repair of UV damage

YNL031C HHT2 16 Histone H3; core histone protein required for chromatin
assembly, part of heterochromatin-mediated telomeric
and HM silencing; one of two identical histone H3 pro-
teins (see HHT1); regulated by acetylation, methyla-
tion, and phosphorylation; H3K14 acetylation plays an
important role in the unfolding of strongly positioned
nucleosomes during repair of UV damage

YDR225W HTA1 16 Histone H2A; core histone protein required for chro-
matin assembly and chromosome function; one of
two nearly identical subtypes (see also HTA2); DNA
damage-dependent phosphorylation by Mec1p facili-
tates DNA repair; acetylated by Nat4p; N-terminally
propionylated in vivo

YBL003C HTA2 16 Histone H2A; core histone protein required for chro-
matin assembly and chromosome function; one of
two nearly identical (see also HTA1) subtypes; DNA
damage-dependent phosphorylation by Mec1p facili-
tates DNA repair; acetylated by Nat4p
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YDR224C HTB1 16 Histone H2B; core histone protein required for chro-
matin assembly and chromosome function; nearly identi-
cal to HTB2; Rad6p-Bre1p-Lge1p mediated ubiquitina-
tion regulates reassembly after DNA replication, tran-
scriptional activation, meiotic DSB formation and H3
methylation

YBL002W HTB2 16 Histone H2B; core histone protein required for chro-
matin assembly and chromosome function; nearly identi-
cal to HTB1; Rad6p-Bre1p-Lge1p mediated ubiquitina-
tion regulates reassembly after DNA replication, tran-
scriptional activation, meiotic DSB formation and H3
methylation

YNR009W NRM1 16 Transcriptional co-repressor of MBF-regulated gene ex-
pression; Nrm1p associates stably with promoters via
MCB binding factor (MBF) to repress transcription
upon exit from G1 phase

YDR113C PDS1 16 Securin; inhibits anaphase by binding separin Esp1p;
blocks cyclin destruction and mitotic exit, essential for
meiotic progression and mitotic cell cycle arrest; local-
ization is cell-cycle dependent and regulated by Cdc28p
phosphorylation

Table 3: Description of the genes with common labelling across the
time course and ChIP-chip datasets from clusters 9 and 16.

5.2 Bayesian analysis

We wished to compare our results from consensus clustering to a conventional
Bayesian approach. We ran 10 chains of MDI for 36 hours saving every thou-
sandth sample. This resulted in chains of varying length. We reduced the chains
to 666 samples as this was the number of samples achieved by the shortest chain.
Similar to section 4.3 these chains were then investigated for

� within-chain stationarity using the Geweke convergence diagnostic (Geweke
et al., 1991), and

� across-chain convergence using R̂ (Gelman et al., 1992) and the Vats-
Knudson extension (stable R̂, Vats and Knudson, 2018).

Again we focus upon stationarity of the continuous variables. In the implemen-
tation of MDI we used, the recorded continuous variables are the concentra-
tion parameters of the Dirichlet distribution for the dataset-specific component
weights and the ϕij parameter associated with the correlation between the ith

and jth datasets.
We plot the Geweke-statistic for each chain in figure 17. No chain is perfectly

behaved; as we cannot reduce to the set of stationary chains we thus exclude
the most poorly behaved chains. Our lack of belief in the convergence of these
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Figure 17: Chain 9 can be seen to have the most extreme behaviour in the
distribution of the Geweke diagnostic for the parameters. We remove this chain
from the analysis. Of the remaining chains we believe that 1, 2, 4 and 6 express
the distributions furthest removed from the desired behaviour and are dropped
from the analysis.

35

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2021. ; https://doi.org/10.1101/2020.12.17.423244doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423244
http://creativecommons.org/licenses/by/4.0/


Figure 18: The chains still appear to be unconverged with R̂ remaining above
1.25 for the ϕ12, ϕ13 and ϕ23 parameters. Stable R̂ is also too high with values
of 1.049, 1.052 and 1.057 for ϕ12, ϕ13 and ϕ23 respectively. The values of αl

cannot be seen due to the scaling of the y-axis.

chains is fortified by the behaviour of R̂ (which can be seen in figure 18) and
the different distributions sampled for the ϕlm parameters shown in figure 19.

We visualise the the PSMs for each dataset in figure 20.
If we compare the distribution of sampled values for the ϕ parameters for

the Bayesian chains that we keep based upon their convergence diagnostics, the
final ensemble used (D = 10001, W = 1000) and the pooled samples from the 5
long chains, then we see that the ensemble consisting of the long chains (which
might be believed to sampling different parts of the posterior distribution) is
closer in its appearance to the distributions sampled by the consensus clustering
than to any single chain.
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Figure 19: The densities of the continuous variables across the 5 chains kept for
analysis. The mean sampled values are α1 = 64.84, α2 = 69.85, α2 = 63.22,
ϕ12 = 81.76, ϕ13 = 13.87, and ϕ23 = 65.03. It can be seen that different modes
are being sampled for the ϕ parameters in each chain.
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Figure 20: PSMs for each chain within each dataset. The PSMs are ordered
by hierarchical clustering of the rows of the PSM for chain 3 in each dataset.
There is no marked difference between the matrices for the time course data
with disagreement becoming more prominent in the ChIP-chip data and more
so again in the PPI dataset.
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Figure 21: The sampled values for the ϕ parameters from the long chains, their
pooled samples and the consensus using 1000 chains of depth 10,001. The long
chains display a variety of behaviours. Across chains there is no clear consensus
on the nature of the posterior distribution. The samples from any single chain
are not particularly close to the behaviour of the pooled samples across all three
parameters. It is the consensus clustering that most approaches this pooled
behaviour.
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5.3 GO term over-representation

We further show the lack of disagreement between the long chains from section
5.2 in a Gene Ontology (GO) term over-representation analysis. We estimated
clusterings from the PSMs of the chains kept from section 5.2 visualised in figure
20 and the consensus matrix of the largest ensemble run (i.e. CC(10001, 1000))
using the maxpear function from the R package mcclust Fritsch (2012) using
default settings except for k.max which was set to 275 ≈ N/2. To perform
the GO term over-representation analysis we used the Bioconductor packages
clusterProfiler (Yu et al., 2012), biomaRt (Durinck et al., 2009) and the
annotation package org.Sc.sgd.db (Carlson et al., 2014).

We conditioned the test on the background set of the 551 yeast genes in the
data. The gene labelled YIL167W was not found in the annotation database
and was dropped from the analysis leaving a background universe of 550 genes.
A hypergeometric test was used to check if the number of genes associated
with specific GO terms within a cluster was greater than expected by random
chance. We corrected the p-values using the Benjamini-Hochberg correction
(Benjamini and Hochberg, 1995) and defined significance by a threshold of 0.01.
We plotted the over-represented GO terms for the different clusterings within
each dataset using the three different ontologies of “Molecular function” (MF),
“Biological process” (BP) and “Cellular component” (CC) (figures 22, 23 and
24 respectively).

As we expect based upon the disagreement shown in figure 21, we find that
the Bayesian chains have very significant disagreements between each other;
there is no consensus on the results with many terms enriched in one or two
chains. However, the consensus clustering finds many of the terms common to
all of the long chains. This is what we would expect based upon the similarity of
the ϕlm distribution in the ensemble and the pooled long chains. Consensus clus-
tering also finds some terms with low p-values common to a majority of chains
(such as DNA helicase activity in the MF ontology for the time course dataset)
and a small number of GO terms unique to itself. These terms that no long
chain find are normally related to other terms already over-represented within
either the consensus clustering or a number of the long chains. For example, the
transmembrane transporter activity and transporter activity terms uncovered
by the ensemble in the time course dataset are related to terms found across 3
of the chains and by consensus clustering (specifically transferase activity and
phosphotransferase).
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Figure 22: GO term over-representation for the Molecular function ontology for
each dataset from the final clustering of each method.
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Figure 23: GO term over-representation for the Biological process ontology for
each dataset from the final clustering of each method.
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Figure 24: GO term over-representation for the Cellular component ontology
for each dataset from the final clustering of each method.
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