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Abstract 1 

Motor planning plays a critical role in producing fast and accurate movement. Yet, the neural 2 

processes that occur in human primary motor and somatosensory cortex during planning, 3 

and how they relate to those during movement execution, remain poorly understood. Here 4 

we used 7T functional magnetic resonance imaging (fMRI) and a delayed movement 5 

paradigm to study single finger movement planning and execution. The inclusion of no-go 6 

trials and variable delays allowed us to separate what are typically overlapping planning and 7 

execution brain responses. Although our univariate results show widespread deactivation 8 

during finger planning, multivariate pattern analysis revealed finger-specific activity patterns 9 

in contralateral primary somatosensory cortex (S1), which predicted the planned finger 10 

movements. Surprisingly, these activity patterns were similarly strong to those found in 11 

contralateral primary motor cortex (M1). Control analyses ruled out the possibility that the 12 

detected information was an artifact of subthreshold movements during the preparatory 13 

delay. Furthermore, we observed that finger-specific activity patterns during planning were 14 

highly correlated to those during movement execution. These findings reveal that motor 15 

planning activates the specific S1 and M1 circuits that are engaged during the execution of 16 

a finger movement – while activity in S1 and M1 is overall suppressed. We propose that 17 

preparatory states in S1 may improve movement control through changes in sensory 18 

processing or via direct influence of spinal motor neurons. 19 

 20 

Key words 21 
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Significance statement 24 

Motor planning is important for good motor performance, yet it is unclear which neural 25 

processes underlie the preparation of the nervous system for an upcoming movement. Using 26 

high-resolution functional neuroimaging, we investigated how the planning of finger 27 

movements changes the activity state in primary motor (M1) and somatosensory (S1) cortex, 28 

and how brain responses during planning and execution relate to each other. We show that 29 

planning leads to finger-specific activation in both M1 and S1, which is highly similar to the 30 

finger-specific activity patterns elicited during movement execution. Our findings suggest 31 

that even S1 is being specifically prepared for an upcoming movement, either to actively 32 

contribute to the outflowing motor command or to enable movement-specific sensory gating. 33 

  34 
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Introduction 35 

Animals are capable of generating a wide variety of dexterous behaviors accurately and 36 

effortlessly on a daily basis. This remarkable ability relies on the motor system reaching the 37 

appropriate preparatory state before each movement is initiated. At the level of behavior, the 38 

process of motor programming, or planning, has long been shown to be beneficial to 39 

performance (1–3), leading to faster reaction times (4–6) and more accurate response 40 

selection (7–10). The behavioral study of motor planning has spurred the neurophysiological 41 

investigation of what movement parameters are specified in the neuronal firing of a number 42 

of cortical regions including the dorsal premotor cortex, PMd (11–13), the supplementary 43 

motor area, SMA (14), and the posterior parietal cortex, PPC (15–17). Building on this work, 44 

human neuroimaging studies have shown that activity in parieto-frontal brain regions during 45 

planning of prehension movements can be used to decode several movement properties 46 

such as grip type (18, 19), action order (20), and effector (21–24). At the level of neural 47 

population dynamics (25), motor planning can be understood as bringing the neuronal state 48 

towards an ideal preparatory point. Once this state is reached and the execution is triggered, 49 

the intrinsic dynamics of the system then let the movement unfold (26, 27). While the neuronal 50 

correlates of movement planning have largely been studied in non-human primates using 51 

upper limb movements, such as reaching and grasping, motor planning also plays a crucial 52 

role in fine hand control (7). 53 

Despite their importance for everyday dexterous behaviors such as typing, writing, or 54 

tying a knot, finger movements have not been closely investigated at the single neuron level. 55 

In humans, previous fMRI studies of finger movements have not separated planning from 56 

execution (28–35). Therefore, we have an incomplete picture of how motor planning readies 57 

the human sensorimotor system for the production of individuated finger movements. Based 58 

on previous work in reaching, we expected that the primary motor cortex (M1) should 59 

represent movements during both planning and execution (36–38). What is unclear, however, 60 

is whether the primary somatosensory cortex (S1) also receives information about the 61 

planned movement before movement onset. Furthermore, we currently do not know how 62 

brain representations of planned finger movements relate to those during movement 63 

execution. To address these gaps, we designed a high-field (7T) fMRI experiment to study 64 

what brain regions underlie the planning of individual finger movements. We used no-go trials 65 
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and variable delays to temporally separate the evoked responses to movement planning and 66 

execution, and advanced multivariate pattern analyses to examine the correspondence 67 

between fMRI correlates of planned and executed finger movements. 68 

 69 

Results 70 

Deactivation in sensorimotor regions during planning of finger movements 71 

We instructed 22 participants to plan and execute repeated keypresses with individual 72 

fingers of their right hand on a keyboard device while being scanned with 7T fMRI. The key 73 

to be pressed corresponded to one of three fingers (thumb, middle, and little) and was cued 74 

during the preparation phase by numbers on the screen (1=thumb, 3=middle, 5=little, e.g., 75 

Fig. 1A). 76 

 77 

 
Figure 1 | fMRI task and BOLD responses. A. Example trial with timing information. 
Background colors indicate different experimental phases (yellow = preparation; green = 
movement (go) or wait (no-go); purple = reward; gray = inter-trial interval, ITI). B. Group-
averaged BOLD response (N = 22) for go (blue) and no-go (orange) trials in a region that 
shows no planning evoked activity (Left M1, top), and one that shows some planning evoked 
activity (Left aSPL, bottom). Shaded areas indicate standard error of the mean (SEM). 
Background colors correspond to trial phases as in A. 
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 78 

After a variable delay (4–8 seconds), participants received a color cue indicating whether to 79 

press the planned finger (go trials), or whether to withhold the response (no-go trials). Upon 80 

the go cue, participants had to initiate the correct response as fast as possible and make 6 81 

presses of the designated finger, before receiving accuracy points for reward (see Methods). 82 

To control for involuntary overt movements during the preparation phase, we required 83 

participants to maintain a steady force on all of the keys during the delay, which was closely 84 

monitored online. To ensure that planning results would not be biased by the subsequent 85 

execution, we restricted all our analyses to no-go trials without a subsequent movement (see 86 

Methods). First, we asked which brain regions showed an evoked response during the 87 

planning of finger movements (e.g., Fig. 1B). We focused our analysis on the lateral aspect 88 

of the contralateral (left) hemisphere (purple and white areas of the Fig. 2 inset) which 89 

included premotor, primary motor, primary somatosensory, and anterior parietal cortical 90 

regions. To examine brain activation during finger planning, we performed a univariate 91 

contrast of the preparation phase (across the three fingers) versus the resting baseline (Fig. 92 

2A). Overall, the instruction stimulus evoked little to no activation in our regions of interest 93 

(ROIs, Fig. 2A). In fact, compared to resting baseline, we observed significant deactivation 94 

(Fig. 2E) in dorsal premotor cortex (PMd, t21= -2.642, p = 0.015), primary motor cortex (M1, 95 

t21 = -7.592, p = 1.887e-07), and primary somatosensory cortex (S1, t21 = -6.618, p = 1.491e-96 

06). In comparison, movement execution strongly activated M1 and S1 (Fig. 2C), with 97 

activation being significant in all our ROIs (Fig. 2E, all t21 > 14.469, all p < 2.153e-12). 98 

 99 

Planning induces informative patterns in primary motor and somatosensory cortex 100 

Although we found little univariate activation in our main ROIs, preparatory processes need 101 

not increase the overall activation in a region. Rather, the region could converge to a specific 102 

preparatory neural state (26), while activity increments and decrements within the region (i.e., 103 

at a finer spatial scale) average each other out. In this case, information about planned 104 

movements would be present in the multivoxel activity patterns in that region. To test this 105 

idea, we calculated the crossnobis dissimilarity (see Methods) between activity patterns. 106 

Systematically positive values of this dissimilarity measure indicate that the patterns reliably 107 

differentiate between the different planned actions (39, 40). Indeed, a surface-based 108 

searchlight approach (41) revealed reliably positive crossnobis dissimilarity between the 109 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 7, 2021. ; https://doi.org/10.1101/2020.12.17.423254doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423254
http://creativecommons.org/licenses/by-nd/4.0/


 7 

activity patterns related to planning of individual finger movements (Fig. 2B) in both M1 (t21 = 110 

2.734, p = 0.012) and S1 (t21 = 2.987, p = 0.007, Fig. 2F). 111 

 112 

 
Figure 2 | Activation and distance analyses of movement planning and execution. The inset 
shows the inflated cortical surface of the contralateral (left) hemisphere, highlighting the area 
of interest (purple) and the strip used for cross-section analysis (white). Major sulci are 
indicated by white dotted lines. A. Univariate activation map (percent signal change) for the 
contrast planning>baseline (no-go trials only). B. Multivariate searchlight map of the mean 
crossnobis distance between the planning of the three fingers (no-go trials only). C. Same as 
A, but for the univariate contrast execution>baseline. D. Same as B, but for the mean 
crossnobis distance between fingers during movement execution. E. Cross-section analysis 
of the mean percent signal change (± SEM) during planning (orange) and execution (blue). 
Horizontal bars indicate significance (p < 0.05) in a 2-sided one-sample t-test vs zero for 
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selected ROIs. F. Same as E, but for the mean crossnobis distance (± SEM). Pre-CS = 
precentral sulcus; CS = central sulcus; Post-CS = postcentral sulcus; PMd = dorsal premotor 
cortex; M1 = primary motor cortex; S1 = primary somatosensory cortex; aSPL = anterior 
superior parietal lobule. 

 113 

Surprisingly, the distribution of these informative patterns was highly similar to the distribution 114 

of information during movement execution (Fig. 2D). Visual inspection suggested that the 115 

informative patterns during planning may be concentrated more dorsally in M1 and S1 116 

relative to execution. However, a Hotelling T2 test revealed no systematic difference in the 117 

location of the peak vertex between planning and execution across subjects (M1: T22,20 = 118 

0.725, p = 0.712; S1: T22,20 = 2.424, p = 0.335). Thus, our results show that information about 119 

single finger movements is already represented during motor planning in the same parts of 120 

the primary motor and somatosensory cortices that are engaged during execution of the 121 

movements. Given that we only used the activity estimates from no-go trials (~40% of total 122 

trials), this information cannot be explained by a spill-over from subsequent execution-related 123 

activity. An analysis using the estimates of planning activity from all trials yielded very similar 124 

results (see Fig. S1), demonstrating that we could separate planning from execution-related 125 

signals. 126 

 127 

Activity patterns are not caused by small movements during the preparation phase 128 

The presence of planning-related information in primary sensorimotor regions was surprising, 129 

especially in S1, where it had not previously been reported in comparable fMRI studies (18, 130 

20). To ensure that these results were not caused by overt movement, participants were 131 

instructed to maintain a steady force on the keyboard during the preparation phase, such 132 

that we could monitor even the smallest involuntary preparatory movements. Inspection of 133 

the average force profiles (Fig. 3A) revealed that participants were successful in maintaining 134 

a stable force between 0.2 and 0.4 N during preparation. However, averaging forces across 135 

trials may obscure small, idiosyncratic patterns visible during individual trials (Fig. 3B) that 136 

could be used to distinguish the different movements. To test for the presence of such 137 

patterns, we submitted both the mean and standard deviation of the force traces on each 138 

finger to a multivariate dissimilarity analysis (see Methods). 139 

 140 
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 9 

 
Figure 3 | Small involuntary movements do not explain preparatory activity patterns in M1 and 
S1. A. Mean finger force (± SEM) plotted in 10 ms bins, time-aligned to instruction onset 
(dotted vertical line) and end of the preparation phase (dashed vertical lines), separately for 
the three fingers and go (blue) and no-go (orange) trials. B. Example of an individual trial with 
a 6 s preparation phase, followed six presses of the little finger (green). Horizontal solid line 
denotes press threshold (1 N). Dash-dotted lines denote the boundaries of the finger pre-
activation red area in Fig. 1A (see Methods). RT = reaction time; MT = movement time. C. 
Pearson’s correlation (r) between behavioral and neural distances in M1 and S1 (see Methods) 
during the preparation phase (planning, orange). Each dot represents an individual 
participant (N = 22). Solid line shows linear regression, p-values refers to the slope of the line. 
D. Same as C, but during the movement phase (execution, blue). 
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 141 

Indeed, this sensitive analysis revealed that some participants showed small movement 142 

patterns predictive of the upcoming finger (Fig. 3C). These differences, however, were ~200-143 

300 times smaller than the average differences during execution (Fig. 3D). More importantly, 144 

the magnitude of the behavioral differences for the preparation phase was uncorrelated to 145 

the amount of planning information present in sensory-motor regions (both p-values for the 146 

slope of the linear fit > 0.3). Even after correcting for the influence behavioral patterns, the 147 

informative patterns in M1 and S1 remained significant, as shown by a significantly positive 148 

intercept in the linear fit in Fig. 3C (M1: p = 0.032; S1: p = 0.007). Thus, the finding of finger-149 

specific activity patterns in M1 and S1 cannot be explained by small involuntary movements 150 

during the preparation phase. 151 

 152 

Single finger activity patterns from planning to execution are positively correlated 153 

How do planning-related activity patterns in M1 and S1 relate to the activity patterns observed 154 

during execution? Neurophysiological experiments have suggested that patterns of 155 

movement preparation are orthogonal – or uncorrelated – to the patterns underlying active 156 

movement (42). This arrangement allows movement preparation to occur without causing 157 

overt movement. When we compared the planning- and execution-related activity patterns 158 

as measured with fMRI, a technique that samples neuronal activity at a much coarser spatial 159 

resolution, we found the opposite result. Planning- and movement-related patterns for the 160 

same finger were tightly related. Inspection of the representational dissimilarity matrices 161 

(RDMs) for M1 and S1 (Fig. 4A), clearly shows that the biggest difference was between 162 

planning and execution patterns, which can also be seen in a 3D representation of the 163 

representational geometry (PC1 in Fig. 4B). Within each phase, the pattern for the thumb was 164 

more distinct than those for the other fingers, replicating previous results from execution 165 

alone (28, 29). 166 

 167 
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Figure 4 | Correlated representations of single fingers across planning and execution. A. 
Representational dissimilarity matrices (RDMs) of the activity patterns evoked by the three 
fingers during the preparation (no-go planning, orange) and movement (execution, blue) 
phases, separately for the two main ROIs (M1, left; S1, right). B. Multidimensional scaling 
(MDS) projection of the RDMs in A highlighting the first principal component (PC 1, difference 
between planning and execution). The black cross denotes resting baseline. C. Same as B, 
but rotated view to highlight the representational geometries for PC 2 and PC 3. D. Pattern 
component modelling (PCM) evaluation of models of different correlations between planning- 
and execution-related activity patterns (x-axis). Shown is the group-average of the individual 
log-likelihood (± SEM) curve expressed as a difference from the mean log-likelihood across 
models. Horizontal gray bars indicate models that perform statistically equivalently (p > 0.05) 
to the best fitting model (determined in a cross-validated fashion, see Methods). Red dots 
indicate points of individually best fitting correlations (N = 22). Red dashed lines denote the 
average winning models across participants. Dotted lines show the projections of horizontal 
bars and dashed lines on the respective axes. 
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 168 

Importantly, however, a rotated view of the representational geometry (Fig. 4C) showed that 169 

the finger patterns were arranged in a congruent way, with planning and execution related 170 

activity patterns for the same finger being closer to one another. To more precisely quantify 171 

the correspondence between planning and execution pattern for each finger, we used 172 

Pattern Component Modeling (PCM, 43) to evaluate the likelihood of the data, assuming a 173 

true correlation between 0 and 1. This approach automatically corrects for the biasing effect 174 

of measurement noise, which would lead to simple empirical pattern correlations to be lower 175 

than the true correlation. From the individual fits, we found that the average best correlation 176 

model was at 0.83 (± 0.053 SEM) for M1 and at 0.81 (± 0.061 SEM) for S1 (Fig. 4D, dashed 177 

lines). Using a cross-validated approach (see Methods), we compared the log-likelihoods to 178 

test whether the best fitting model was significantly better than any of the other correlation 179 

models. In both ROIs, the best fitting model was significantly better than the zero-correlation 180 

model (i.e., activity patterns across planning and execution totally uncorrelated, both p < 181 

0.005), but not better than the one-correlation model (i.e., activity patterns are scaled version 182 

of each other, both p > 0.1). By applying this method to every other model, we have evidence 183 

that the true (i.e., noiseless) correlation between planning and execution finger-specific 184 

activity pattern was between 0.41–1.0 in M1 and between 0.54–1.0 in S1 (Fig. 4D, horizontal 185 

bars). In sum, at the resolution of fMRI, the process of movement planning seems to induce 186 

a finger-specific pattern which very similar, and possibly identical, to the pattern activated 187 

during movement execution. 188 

 189 

Discussion 190 

In the present study, we asked participants to produce repeated single finger movements 191 

while undergoing 7T fMRI. We used a variable preparatory delay and no-go trials to cleanly 192 

dissociate the brain responses to the consecutive preparation and movement phases. We 193 

found that information about planned finger movements is present in both S1 and M1 before 194 

movement onset, even though the overall level of activation in these regions was below 195 

resting baseline. Moreover, while execution elicited much higher brain activation, the fine-196 

grained, finger-specific activity patterns were highly similar across planning and execution. 197 
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Control analyses confirmed that the observed results were not caused by pre-movement 198 

finger activity. 199 

Our finding that motor planning activates M1 in a finger-specific fashion was not 200 

necessarily surprising given many neurophysiological studies reporting anticipatory activity 201 

of M1 neurons related to movement intentions (37, 44, 45), as well as human neuroimaging 202 

showing shared information between delayed and immediate movement plans (36). In 203 

contrast, the robust activity patterns related to single finger planning in S1 were more 204 

surprising, given that this region is often considered to be mostly concerned with processing 205 

incoming sensory information from tactile and proprioceptive receptors arising after 206 

movement onset (18, 20–22). So, what could then be the role of S1 during movement 207 

planning? 208 

First, it is worth noting that there are substantial projections from S1 (Brodmann area 3a) 209 

that terminate in the ventral horn of the cortico-spinal tract (46, 47). Although stimulation of 210 

area 3a in macaques typically fails to evoke overt movements (48), it has been suggested 211 

that this population of cortico-motoneurons specifically projects to gamma motoneurons that 212 

control the sensitivity of muscle spindle afferents (47). Thus, it is possible that S1 plays an 213 

active role in movement generation by preparing the spindle apparatus in advance of the 214 

movement. 215 

Second, the finger-specific preparatory state in S1 may reflect the anticipation or 216 

prediction of the upcoming sensory stimulation, allowing for a movement-specific sensory 217 

gain control (49). Some sensory stimuli could become attenuated to maintain movement 218 

stability and filter out irrelevant or self-generated signals. Indeed, multiple studies have 219 

shown that both somatosensation and somatosensory-evoked potentials in S1 decrease 220 

during voluntary movement (50–53). Alternatively, sensory processing of the expected salient 221 

signals could be enhanced to improve movement execution and adaptation. 222 

Very recently, a human electrocorticography (ECoG) study suggested a possible role for 223 

S1 in cognitive-motor imagery (54). The authors recorded neural activity from S1 while a 224 

tetraplegic participant imagined reaching movements and found that S1 neurons encoded 225 

movement direction during motor imagery in the absence of actual sensations. While the 226 

authors raise the concern that their results may be unique to individuals who have lost their 227 

main peripheral input, our finding of encoding of movement-related information in S1 before 228 

the onset of a movement suggests that movement-specific information in S1 without actual 229 
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movement is a general phenomenon in the intact human motor system. Our findings are also 230 

consistent with a second recent ECoG study in non-human primates (55). During a delayed 231 

reaching and grasping task, the authors showed movement-specific information in the ECoG 232 

signals from S1 well before movement initiation, and only slightly later than in M1. Together, 233 

these results suggest that the somatosensory system not only passively receives signals from 234 

the external world but also actively processes them via interactions with anticipatory 235 

information from the motor system. 236 

One may wonder why such movement-specific encoding in S1 during planning has not 237 

been reported in previous human fMRI studies. One contributing reason may be that we had 238 

higher sensitivity to detect these signals than previous studies, as we used finger rather than 239 

arm movements (the former having more distinct cortical representation in S1), higher field 240 

strength (7T) and spatial resolution, and a more sensitive multivariate analysis method 241 

(crossnobis dissimilarity vs. pattern classification, Walther et al., 2016). 242 

Our second main finding – the close correspondence between finger-specific activity 243 

patterns across planning and execution – appears to be at odds with the idea that these two 244 

processes occupy orthogonal neural subspaces to avoid overt movement during planning 245 

(42, 56). We think that there are at least two possible explanations for this. First, the 246 

divergence of results could be caused by the difference between spatially directed arm 247 

movements and non-spatial finger movements. If for single finger movements even single-248 

neuron activity patterns are highly correlated between planning and execution, then overt 249 

movement during planning would need to be actively suppressed, for example through the 250 

deactivation that we observed around the central sulcus. An alternative and perhaps more 251 

likely explanation of the discrepancy lies in the different measurement modalities. While the 252 

orthogonality was observed in electrophysiological recordings of individual neurons, the fMRI 253 

measurements we employed here mainly reflect excitatory postsynaptic potentials (57) and 254 

average metabolic activity across hundreds of thousands of cortical neurons. Thus, it is 255 

possible that planning pre-activates the specific cortical columns in M1 and S1 that are also 256 

most active during movement of that finger. Within each of these cortical micro-circuits, 257 

however, planning-related activity could still be orthogonal to the activity observed during 258 

execution at the single neuron level (e.g., see Arbuckle et al., 2020, for a similar observation 259 

for cortical representations of flexion and extension finger movements). This would suggest 260 

a new hypothesis for the architecture of the sensory-motor system where movement planning 261 
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pre-activates the movement-specific circuits in M1 and S1. However, it does so in a fashion 262 

that the induced planning-related activity is, in terms of the firing output of neurons, 263 

orthogonal to the patterns during movement execution. 264 

 265 

Methods 266 

Participants 267 

Twenty-three right-handed neurologically healthy participants volunteered to take part in the 268 

experiment (13 F, 10 M; age 20–31 years, mean 23.43 years, SD 4.08 years). Criteria for 269 

inclusion were right-handedness and no prior history of psychiatric or neurological disorders. 270 

Handedness was assessed with the Edinburgh Handedness Inventory (mean 82.83, SD 271 

9.75). All experimental procedures were approved by the Research Ethics Committee at 272 

Western University. Participants provided written informed consent to procedures and data 273 

usage and received monetary compensation for their participation. One participant withdrew 274 

before study completion and was excluded from data analysis (final N = 22). 275 

 276 

Apparatus 277 

Repeated presses of right-hand finger movements were performed on a custom-made MRI-278 

compatible keyboard device (Fig. 1A). The keys of the device did not move but force 279 

transducers underneath each key measured isometric force production at an update rate of 280 

2 ms (Honeywell FS series; dynamic range 0-25 N; sampling 200 Hz). A keypress/release 281 

was detected when the force crossed a threshold of 1 N. The forces measured from the 282 

keyboard were low-pass filtered to reduce noise induced by the MRI environment, amplified, 283 

and sent to PC for online task control and data recording. 284 

 285 

Task 286 

We used a task in which participants produced repeated keypresses with their right-hand 287 

fingers in response to numerical cues appearing on the screen (white outline, Fig. 1A). On 288 

each trial, a string of 6 numbers (instruction) instructed which fingers to plan (1 = thumb, 3 = 289 

middle, 5 = little). After a variable delay (4, 6, or 8 s randomly sampled from a geometric 290 

distribution with p = 0.5; preparation phase, yellow background), participants received a 291 

color cue (go/no-go cue) indicating whether to perform the planned finger movements (blue 292 
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outline = go, p = 0.6), or not (orange outline = no-go, p = 0.4). The role of no-go trials was to 293 

de-couple the hemodynamic response to the successive planning and execution events. To 294 

encourage planning during the delay period, at the go/no-go cue the digits were masked 295 

with asterisks, and participants had to perform the movements from memory (movement 296 

phase, green background). Participants had 2.5 seconds to complete the movement phase, 297 

and a vanishing white bar under the asterisks indicated how much time was left to complete 298 

all of the keypresses. To limit and monitor unwanted movements during the preparation 299 

phase, we required participants to pre-activate their fingers by maintaining a steady force of 300 

around 0.2-0.3 N on all of the keys during the Preparation phase. As a visual aid, we 301 

displayed a red area (between 0 and 0.5 N) and asked participants to remain within the 302 

middle of that range with all the fingers (touching either boundary of the red area would incur 303 

an error, counting as unwanted movement). In the case of a no-go trial, participants were 304 

instructed to remain as still as possible maintaining the finger pre-activation until the end of 305 

the movement phase (i.e., releasing any of the keys would incur an error). During the 306 

movement phase participants also received online feedback on the correctness of each 307 

press with asterisks turning either green, for a correct press, or red, for incorrect presses. 308 

After the movement phase, participants received points based on their performance (reward 309 

phase, 0.5 s, purple background). Participants were instructed to perform the movements as 310 

accurately as possible. As long as they remained within task constraints (i.e., 6 keypresses 311 

in less than 2.5 seconds), an exact movement speed was not enforced. On a trial-by-trial 312 

basis, during the reward phase participants received points for their performance according 313 

to the following scheme: -1 point in case of no-go error or go cue anticipation (timing errors); 314 

0 points for pressing any wrong key (press error); 1 point in case of a correct no-go trial; and 315 

2 points in case of a correct go trial. Inter-trial-intervals (ITIs) varied between 1 and 16 316 

seconds within the domain ITI = {1, 2, 4, 8, 16}. To reduce the overlap in brain responses 317 

from one trial to the next, actual ITIs were randomly picked from a geometric distribution with 318 

p = 0.5. This meant a higher probability of shorter intervals (1 and 2 s) and occasional very 319 

long intervals (8 and 16 s). The design was optimized to minimize the variance inflation factor 320 

(VIF): 321 

VIF = var(E) / var(X), 322 

 323 
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the ratio of the mean estimation variance of all the regression weights (planning- and 324 

execution-related regressors for each finger), and the mean estimation variance had these 325 

regressors been estimated in isolation. For our design, the average VIF was quite low, on 326 

average between 1 and 1.2, indicating that we could separate planning and execution 327 

related activity without a large loss of experimental power. 328 

 329 

Design 330 

Participants underwent one fMRI session consisting of 10 functional runs and 1 anatomical 331 

scan. In an event-related design, we randomly interleaved 3 types of repeated single finger 332 

movements involving the thumb (1), the middle (3), and the little (5) fingers (e.g., 111111 for 333 

thumb movement, Fig. 1A) and 3 types of multi finger sequences (e.g., 135315). The day 334 

before the fMRI scan, participants familiarized themselves with the experimental apparatus 335 

and the go/no-go paradigm in a short behavioral session of practice outside the scanner (5 336 

blocks, about 15-30 min in total). For the behavioral practice, inter-trial intervals were kept to 337 

a fixed 1 s to speed up the task, and participants were presented with different sequences 338 

from what they would see while in the scanner. These 6-item sequences were randomly 339 

selected from a pool of all possible permutations of the numbers 1, 3, and 5, with the 340 

exclusion of sequences that contained consecutive repetitions of the same number. Given 341 

that the current paper is concerned with the relationship between representations of simple 342 

planning and execution, here we will focus only on the results for single finger movements. 343 

The results for multi finger sequences will be reported in a future paper. Each single finger 344 

trial type (e.g., 111111) was repeated 5 times (2 no-go and 3 go trials), totalling 30 trials per 345 

functional run. Two periods of 10 s rests were added at the beginning and at the end of each 346 

functional run to allow for signal relaxation and provide a better estimate of baseline 347 

activation. Each functional run took about 5.5 minutes and the entire scanning session 348 

(including the anatomical scan and setup time) lasted for about 75 minutes. 349 

 350 

Imaging data acquisition 351 

High-field functional magnetic resonance imaging (fMRI) data were acquired on a 7T 352 

Siemens Magnetom scanner with a 32-channel head coil at Western University (London 353 

Ontario, Canada). The anatomical T1-weighted scan of each participant was acquired 354 

halfway through the scanning session (after the first 5 functional runs) using a Magnetization-355 
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Prepared Rapid Gradient Echo sequence (MPRAGE) with voxel size of 0.75x0.75x0.75 mm 356 

isotropic (field of view = 208 x 157 x 110 mm [A-P; R-L; F-H], encoding direction coronal). To 357 

measure the blood-oxygen-level dependent (BOLD) responses in human participants, each 358 

functional scan (330 volumes) used the following sequence parameters: GRAPPA 3, multi-359 

band acceleration factor 2, repetition time [TR] = 1.0 s, echo time [TE] = 20 ms, flip angle 360 

[FA] = 30 deg, slice number: 44, voxel size: 2x2x2 mm isotropic. To estimate and correct for 361 

magnetic field inhomogeneities, we also acquired a gradient echo field map with the following 362 

parameters: transversal orientation, field of view: 210 x 210 x 160 mm, 64 slices, 2.5 mm 363 

thickness, TR = 475 ms, TE = 4.08 ms, FA = 35 deg. 364 

 365 

Preprocessing and univariate analysis 366 

Preprocessing of the functional data was performed using SPM12 (fil.ion.ucl.ac.uk/spm) and 367 

custom MATLAB code. This included correction for geometric distortions using the gradient 368 

echo field map (58), and motion realignment to the first scan in the first run (3 translations: x, 369 

y, z; 3 rotations: pitch, roll yaw). Due to the short TR, no slice timing corrections were applied. 370 

The functional data were co-registered to the anatomical scan, but no normalization to a 371 

standard template or smoothing was applied. To allow magnetization to reach equilibrium, 372 

the first four volumes of each functional run were discarded. The pre-processed images were 373 

analyzed with a general linear model (GLM). We defined separate regressors for each 374 

combination of the 6 finger movements (single, multi) x 2 phases (preparation, movement). 375 

To control for the effect of potential spill-over of movement execution activity on the preceding 376 

planning activity, we also estimated a separate GLM with separate regressors for the 377 

preparation phases of go and no-go trials, resulting in a total of 18 regressors (12 go + 6 no-378 

go), plus the intercept, for each run. Each regressor consisted of a boxcar function (on for 2 379 

s of each phase duration and off otherwise) convolved with a two-gamma canonical 380 

hemodynamic response function with a peak onset at 5 s and a post-stimulus undershoot 381 

minimum at 10 s (Fig. 1B). Given the relatively low error rates (single: 8.51 ± 1.52 %, multi: 382 

17.21 ± 3.38 %; timing errors, single: 7.58 ± 0. 62 %, multi: 10.23 ± 0.85 %; press errors, 383 

single: 1.18 ± 0.26 %, multi: 9.04 ± 1.03 %), all trials were included to estimate the regression 384 

coefficients, regardless of whether the execution was correct or erroneous. Ultimately, the 385 

first-level analysis resulted in activation images (beta maps) for each of the 18 conditions per 386 

run, for each of the participants. 387 
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 388 

Surface reconstruction and ROI definition 389 

Individual subject’s cortical surfaces were reconstructed using Freesurfer (59). First, we 390 

extracted the white-gray matter and pial surfaces from each participant's anatomical image. 391 

Next, we inflated each surface into a sphere and aligned it using sulcal depth and curvature 392 

information to the Freesurfer average atlas (Fischl et al., 1999). Both hemispheres in each 393 

participant were then resampled into Workbench’s 164k vertex grid. This allowed us to 394 

compare similar areas of the cortical surface in each participant by selecting the 395 

corresponding vertices on the group atlas. Anatomical regions of interest (ROIs) were 396 

defined using a probabilistic cytoarchitectonic atlas (61) projected onto the common group 397 

surface. Our main ROIs were defined bilaterally as follows: primary motor cortex (M1) was 398 

defined by including nodes with the highest probability of belonging to Brodmann area (BA) 399 

4 within 2 cm above and below the hand knob anatomical landmark (62); primary 400 

somatosensory cortex (S1) was defined by the nodes related to BA 1, 2 and 3; dorsal 401 

premotor cortex (PMd) was defined as the lateral part of the middle frontal gyrus; finally, the 402 

anterior part of the superior parietal lobule (aSPL) included areas anterior, superior and 403 

ventral to the intraparietal sulcus (IPS). ROI definition was carried out separately in each 404 

subject using FSL’s subcortical segmentation. When resampling functional onto the surface, 405 

to avoid contamination between M1 and S1 activities, we excluded voxels with more than 406 

25% of their volume in the grey matter on the opposite side of the central sulcus. 407 

 408 

Multivariate distance analysis 409 

To detect single finger representations across the cortical surface, we used representational 410 

similarity analysis (RSA; Diedrichsen and Kriegeskorte, 2017; Walther et al., 2016) with a 411 

surface-based searchlight approach (64). For each node, we selected a region (the 412 

searchlight) corresponding to 100 voxels (12 mm disc radius) in the gray matter and 413 

computed cross-validated Mahalanobis (crossnobis, Walther et al., 2016) dissimilarities 414 

between pairs of evoked activity patterns (beta estimates from first level GLM) of single finger 415 

sequences, during both preparation and movement phases. Prior to calculating the 416 

dissimilarities, beta weights for each condition were spatially pre-whitened (i.e., weighted by 417 

the matrix square root of the noise covariance matrix, as estimated from the residuals of the 418 

GLM. The noise covariance matrix was slightly regularized towards a diagonal matrix (65). 419 
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Multivariate pre-whitening has been shown to increase the reliability of dissimilarity estimates 420 

(39). The resulting analyses (one RDM per participant containing the dissimilarities between 421 

the three single fingers during planning and execution: 6 conditions, 15 dissimilarity pairs) 422 

were then assigned to the central node and the searchlight was moved across all nodes 423 

across the surface sheet obtaining a cortical map (Fig. 2B-2D). Cross-validation ensures the 424 

distances estimates are unbiased, such that if two patterns differ only by measurement noise, 425 

the mean of the estimated value would be zero. This also means that estimates can 426 

sometimes become negative. Therefore, dissimilarities significantly larger than zero indicate 427 

that two patterns are reliably distinct, similar to an above-chance performance in a cross-428 

validated pattern-classification analysis. Additionally, to the searchlight analysis, the 429 

multivariate analysis was conducted separately for each anatomically defined ROI (e.g., Fig. 430 

4A). 431 

 432 

Correlation between behavioral and neural distances 433 

To ensure that our planning results were not contaminated by unwanted micro-movements 434 

during the preparation phase, we calculated the behavioral distance between sequences on 435 

the basis of keyboard force data and correlated behavioral and neural distances. For 436 

behavioral distances, we first extracted force data (2 ms temporal resolution, smoothed with 437 

a gaussian kernel of 9.42 full width at half maximum, FWHM) and binned it in 10 ms steps 438 

(down sampling largely due to memory constraints) for both the preparation and movement 439 

phases (Fig. 3A). Next, for each subject, we calculated the mean (5) and the standard 440 

deviation (5) of the time-averaged force of each finger for each condition (3 sequences x 2 441 

phases = 6) and block (10). These subject-specific finger force patterns (60 x 10) were 442 

multivariately pre-whitened using their covariance matrix. Finally, we calculated the cross-443 

validated squared Euclidean distances for each condition (6 x 6 RDM) and averaged 444 

distances between the 3 finger movements for each phase (preparation, movement). These 445 

mean finger force distances for each subject were correlated with the mean voxel activity 446 

distances from the two phases for 2 ROIs (M1 and S1, Fig. 3C-3D). 447 

 448 

Pattern component modelling correlation models 449 

We used pattern component modelling (PCM) to quantify the correspondence of sequence-450 

specific activity patterns across planning and execution (43). This method has been shown 451 
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to be advantageous in estimating correlations. In contrast to simple Pearson’s or cross-452 

validated correlation estimated from raw activity patterns, PCM separately models the noise 453 

and signal components. We created 100 correlation models with correlations in the range [0–454 

1] in equal step sizes and assessed the likelihood of the observed data from each participant 455 

under each model. Fig. 4D shows average log-likelihoods for each model, relative to the 456 

mean log-likelihood across models. Differences between the log-likelihoods can be 457 

interpreted as log-Bayes factors. Group inferences were performed using a simple t-test on 458 

log-likelihoods. To compare each model to the best fitting model, we had to correct for the 459 

bias arising from picking the best model and testing it on the same data: We used n-1 460 

subjects to determine the group winning model, and then chose the log-likelihood of this 461 

model for the left-out subject (for whom this model may not be the best one) as the likelihood 462 

for the “best” model. This was repeated across all subjects and a one-sided paired-sample 463 

t-test was performed on the recorded log-likelihood and every other model. This test revealed 464 

which of the correlation models were significantly worse (i.e., associated with a lower log-465 

likelihood) than the winning model that was independently estimated via cross-validation. 466 

  467 
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Supplementary figures 639 

 640 

 
Figure S1 | Activation and distance analyses using planning of both go and no-go trials. A. Activation 
map (percent signal change) for the contrast planning>baseline. The selected area of interest is the 
same as shown in purple in the inset of Fig. 2A. B. Crossnobis distance searchlight map for 
movement planning. C. Same as A, but for the contrast execution>baseline. D. Same as B, but for 
movement execution. E-F. Cross-section analysis corresponding to the same area shown in white in 
the inset of Fig. 2A. E. Mean percent signal change (± SEM) during planning (orange) and execution 
(blue). F. mean crossnobis distance (± SEM). Horizontal bars indicate significance (p < 0.05) in a 2-
sided one-sample t-test against zero. All other figure conventions are the same as in Fig. 2. 
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