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Abstract 

Eating behavior varies greatly between healthy individuals, but the neurobiological basis of these 

trait-like differences in feeding remains unknown. Central µ-opioid receptors (MOR) and 

cannabinoid CB1-receptors (CB1R) regulate energy balance via multiple neural pathways, promoting 

food intake and reward. Because obesity and eating disorders have been associated with alterations 

in brain’s opioid and endocannabinoid signaling, the variation in MOR and CB1R systems could 

potentially underlie distinct eating behavior phenotypes, also in non-obese population. In this 

retrospective positron emission tomography (PET) study, we analyzed [11C]carfentanil PET scans of 

MORs from 92 healthy subjects (70 males and 22 females), and [18F]FMPEP-d2 scans of CB1Rs from 

35 subjects (all males, all also included in the [11C]carfentanil sample). Eating styles were measured 

with the Dutch Eating Behavior Questionnaire (DEBQ). We found that lower cerebral MOR 

availability was associated with increase in external eating – individuals with low MORs reported 

being more likely to eat in response to environment’s palatable food cues. CB1R availability was 

negatively associated with multiple eating behavior traits. We conclude that although MORs and 

CB1Rs overlap anatomically and functionally in the brain, they have distinct roles in mediating 

individual feeding patterns.  
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Introduction 

Obesity is one of the leading public health issues, resulting from individuals’ long-term excessive 

energy intake in relation to energy expenditure (1). Yet, humans vary greatly in their choices and 

habits related to food intake quantity and quality i.e. eating behavior (2, 3). Trait-like eating behaviors 

have been associated with multiple clinical eating disorders in addition to obesity (4-7), but also non-

obese individuals vary in how they control their feeding (8). Interacting with peripheral hormones, 

central nervous system (CNS) integrates hunger and satiety signals with environmental stimuli for 

regulating food intake (1). Large-scale genome-wide association studies have identified limbic 

system, hippocampus and hypothalamus to be key regions in the CNS contributing to individual’s 

body mass index (BMI) and eating behavior (9, 10). Central regulation of feeding is however 

constantly challenged by the modern environment characterized by abundance of palatable and 

energy-dense food products, promoting feeding independently of metabolic needs (11, 12). 

 Palatability and hedonic properties of food are centrally mediated by µ-opioid receptor (MOR) 

system (13, 14). Both endogenous and exogenous opioids stimulate feeding, especially via hedonic 

hotspots of nucleus accumbens, insula and frontal cortex (15-18). Conversely, opioid antagonists 

reduce food intake and related hedonic responses in rodents (18) and humans (19, 20). Human 

positron emission tomography (PET) studies have revealed that obesity associates with decrease of 

MORs in appetite regulating brain areas (21, 22), and insular MORs are lowered in patients with 

bulimia nervosa proportionally to fasting behavior (23). Central MOR system function varies 

considerably also in healthy humans (24), and traits linked with feeding control such as impulsivity 

are associated with MOR availability (25). Nevertheless, the association between the MOR system 

and specific patterns of eating behavior remains elusive.  

 Feeding is also regulated by brain’s endocannabinoid system, which overlaps anatomically 

and functionally with the central MORs (26). The most abundant central cannabinoid receptors are 

the CB1-receptors (CB1Rs), which regulate food intake through circuits of ventral striatum, limbic 
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system and hypothalamus (27, 28). Functional interplay between MOR and CB1R systems is 

highlighted in animal studies, where CB1R-antagonists and MOR-antagonists have synergistic effect 

on reducing food intake (29), and CB1R-antagonist can be used to block MOR-agonist induced food 

intake and vice versa (30). MOR-agonists also directly increase endocannabinoid concentration and 

CB1R-agonists increase opioid concentration in the brain, including nucleus accumbens (31, 32). In 

humans, CB1R-antagonist rimonabant showed promise as an anti-obesity drug, but was withdrawn 

due to psychiatric side effects (33). More nuanced understanding of CB1R system and feeding is 

clearly required to enable further pharmacological advancement. 

The current study 

 Accumulating evidence suggests that variation in central MOR and CB1R function could be 

linked to feeding and pathological eating behavior traits in humans, but it remains unresolved what 

facets of feeding they govern in humans. Individual differences in eating patterns can be 

conceptualized based on the psychological mechanisms that contribute to or attenuate development 

of overweight. In such conceptualization, emotional eating refers to reactive overeating to distress or 

negative emotions, while external eating refers to tendency to overeat in response to attractive food-

cues. Finally, restrained eating refers to the tendency to eat less than desired (34-36). The emotional 

and external overeating are based on psychosomatic and externality theories of eating behavior, while 

restrained eating dimension centers around food intake self-inhibition (37). Such consistent patterns 

contribute to differences in weight gain and maintenance (34, 38), and they can be measured using 

The Dutch Eating Behavior Questionnaire (DEBQ) (37). Here we compiled 92 [11C]carfentanil PET 

scans targeting the MOR system and 35 [18F]FMPEP-d2 PET scans of CB1R system and 

corresponding Dutch Eating Behavior Questionnaire (DEBQ) data in a retrospective PET database 

study. We tested whether the MOR and CB1R availabilities in food-intake-regulating brain areas 

associate with individual eating behavior traits measured with DEBQ. 
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Materials and Methods 

Subjects 

The study subjects were historical controls retrieved from the AIVO neuroinformatics database 

(http://aivo.utu.fi), a large-scale molecular image database hosted by Turku PET Centre. We 

identified all the [11C]carfentanil and [18F]FMPEP-d2 baseline PET studies accompanied with 

completed DEBQ form (37). Exclusion criteria were neurologic and psychiatric disorders, current 

use of medications that could affect CNS or abuse of alcohol or illicit drugs. Subjects were not 

preselected on the basis of weight or eating habits. Final sample consisted of 92 subjects (70 males 

and 22 females) scanned with [11C]carfentanil from five distinct projects with three different PET 

scanners. The [18F]FMPEP-d2 sample consisted of 35 males, all of which were also all included in 

the [11C]carfentanil male sample. All subjects of the [18F]FMPEP-d2 subsample were nonsmoking 

males, while in the [11C]carfentanil sample seven females smoked. All [18F]FMPEP-d2 scans were 

carried out with GE Discovery VCT PET/CT (GE Healthcare). The original data were acquired 

between 2011 and 2019. Characteristics of the study sample are summarized in Table 1, and the 

information of smoking status and PET scanners are detailed in Supplementary Table 1. The study 

was conducted in accordance with the Declaration of Helsinki and approved by the Turku University 

Hospital Clinical Research Services. The subjects had signed written informed consent forms and 

completed the DEBQ forms as a part of the original study protocols.  

 

Table 1. Characteristics of the studied subjects. 	

 [11C]carfentanil scans 
 Males (n = 70) Females (n = 22) 
 mean SD range mean SD range 
Age (years) 27.4 7.5 19−58 47.7 10.0 20−59 
BMI (kg/m2) 24.5 2.8 19−31 23.7 3.1 18−31 
Total DEBQ score 67.0 12.8 40−109 73.4 12.8 46−97 
          Emotional eating score 21.0 6.8 13−40 22.1 5.7 13−32 
          External eating score 24.7 6.5 10−43 25.0 5.4 13−34 
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          Restrained eating score 21.3 5.5 11−39 26.2 5.5 10−33 
Injected activity (MBq) 277.0 77.9 223−508 352.3 125.5 234−519 
       
 [18F]FMPEP-d2 scans    
 Males (n = 35)    
 mean SD range    
Age (years) 25.9 4.3 21−35    
BMI (kg/m2) 24.5 3.1 19−31    
Total DEBQ score 68.6 14.5 43−109    
          Emotional eating score 20.7 7.4 13−40    
          External eating score 27.1 6.0 14−43    
          Restrained eating score 20.8 5.6 12−32    
Injected activity (MBq) 187.9 12.8 147−215    
	
 

Eating behavior assessment with the DEBQ 

The Dutch Eating Behavior Questionnaire (DEBQ) (37) was used to quantify eating behavior. The 

DEBQ is a 33-item questionnaire with Likert-type scoring in each item (response options ranging 

from 1−5, from “Never” to “Very often”). It is divided in three dimensions measuring different 

behavioral traits: Emotional eating, External eating and Restrained eating (34-36). The DEBQ 

subscales have good internal consistency, dimensional validity and test-retest reliability (4, 7, 37, 39). 

 

Image processing and modeling 

PET images were pre-processed similarly using automated processing pipeline, Magia (40). 

[11C]carfentanil data preprocessing has been described previously (24). MOR availability was 

expressed as [11C]carfentanil binding potential (BPND), which is the ratio of specifically bound 

radioligand to that of nondisplaceable radioligand in tissue (41). Occipital cortex served as the 

reference region (42). CB1R availability was expressed as [18F]FMPEP-d2 volume of distribution 

(VT), which was quantified using graphical analysis by Logan (43). The frames starting at 36 minutes 

and later since injection were used in the model fitting, since Logan plots became linear after 36 
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minutes (43). Plasma activities were corrected for plasma metabolites as described previously (44). 

The code for PET data processing pipeline (Magia) is available at https://github.com/tkkarjal/magia. 

 

Statistical analysis 

The primary study question was whether the DEBQ subscales (Emotional eating, External eating, 

Restrained eating) or Total DEBQ scores are associated with [11C]carfentanil BPND or [18F]FMPEP-

d2 VT values. First, we used nonparametric approach with SnPM13 

(http://nisox.org/Software/SnPM13/) to create full-volume linear regression models for BPND and VT 

values. We used p < 0.05 as the cluster-defining threshold, and only report clusters large enough to 

be statistically significant at FWE p < 0.05. 5000 permutations were used to estimate the null 

distribution. We created distinct models for Total DEBQ score and all the subscale scores. Because 

age influences [11C]carfentanil binding (24, 45) and different PET scanners may yield slightly 

different BPND estimates (46), both age and PET scanner were added as nuisance covariates to 

[11C]carfentanil models. Only age was added as a covariate in [18F]FMPEP-d2 VT models, since all 

[18F]FMPEP-d2 scans were acquired with the same PET scanner. To rule out the possible effects of 

sex, smoking and BMI, we replicated the [11C]carfentanil full volume analysis with these additional 

covariates. The [18F]FMPEP-d2 models were also replicated with BMI as additional covariate (there 

were no smokers or females in the [18F]FMPEP-d2 data).  

We used Bayesian hierarchical modeling to analyze effects of eating styles on MOR and CB1R 

availability in a priori regions of interest (ROIs). FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) was 

used to extract 10 bilateral ROIs based on known regions with high density of MORs (24) and CB1Rs 

(47): amygdala, caudatus, cerebellum, dorsal anterior cingulate cortex, insula, middle temporal 

cortex, nucleus accumbens, orbitofrontal cortex, putamen, and thalamus.	The Bayesian models were 

estimated using the R package brms (https://cran.r-project.org/web/packages/brms/index.html) that 

utilizes the Markov chain Monte Carlo sampling of RStan (https://mc-stan.org/users/interfaces/rstan). 
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For both tracers, we created models separately for the Total DEBQ score as well as its subscales, 

adjusting for age. [11C]carfentanil BPND and [18F]FMPEP-d2 VT were log-transformed to improve 

model fit (24). For both tracers, we estimated varying (random) intercepts for the subjects and ROIs, 

and varying (random) slopes across ROIs for the predictor of interest (e.g. Total DEBQ score) and 

age. Compared to a model where the regionally specific effects would be estimated using interaction 

term for ROI, the hierarchical model produces results that are partially pooled towards each other, 

thus accounting for the multiple comparisons performed (48). For both tracers, we also estimated 

regionally varying (random) residual variances. For [11C]carfentanil data, we also estimated 

regionally varying (random) intercepts for the scanners. For [18F]FMPEP-d2 data, the scanner-

adjustment was not needed because the data were acquired using a single scanner. We used the 

standard normal distribution as a prior distribution for the regression coefficients of the predictors to 

provide regularization. The standard normal distribution was also used as the prior distribution for 

the standard deviation of the group-level (random) effects. Otherwise we used the default priors of 

brms. We used 1000 warmup samples, 1000 post-warmup samples and 10 chains, thus totaling 10 

000 post-warmup samples. The sampling parameters were slightly modified to facilitate convergence 

(adapt_delta = 0.999; max_treedepth = 20). The samplings produced no divergent iterations and the 

Rhats were all 1.0, suggesting that the chains converged successfully.  
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Results 

Mean distribution of MORs and CB1Rs is shown in Figure 1. Total DEBQ score correlated with all 

the subscales of DEBQ (r = 0.76−0.62). Correlations between the DEBQ subscales were positive but 

only modest, strongest being between Emotional and External eating (r = +0.33). BMI had a 

significant correlation only with Restrained eating (r = +0.27). Correlations with p-values are 

presented in Supplementary Figure 1 and Supplementary Table 2. 

 

Figure 1. Mean distribution of central µ-opioid and CB1-receptors. a) Mean binding potential 

(BPND) of the 92 subjects (70 males and 22 females) studied with [11C]carfentanil. b) Mean volume 

of distribution (VT) of the 35 males studied with [18F]FMPEP-d2. 

 

Associations between µ-opioid receptor availability and eating behavior 
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Higher External eating score was associated with lower [11C]carfentanil BPND bilaterally in multiple 

brain areas (Figure 2). Cortical associations were found in cingulate and frontotemporal areas, while 

subcortical effects were prominent in nucleus accumbens, caudate, putamen, insula, hippocampus 

and amygdala. Associations with Total DEBQ or other subscale scores were not statistically 

significant. Results were essentially similar when controlling for sex, smoking and BMI. We also 

checked the association of External eating and BPND in subsamples of 70 males and 22 females. In 

males, the association was similar to that of the full sample (Supplementary Figure 2), while in the 

female subsample there were no significant associations, likely due to limited statistical power. 

 

Figure 2. Association between External eating and decreased µ-opioid receptor availability. Brain 

regions where lower [11C]carfentanil binding potential (BPND) associated with higher External 

eating score, age and PET scanner as nuisance covariates. Shown are clusters where p < 0.05, FWE 

corrected at cluster level. 
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Associations between CB1-receptor availability and eating behavior 

Total DEBQ score was associated with lower [18F]FMPEP-d2 VT in multiple brain regions including 

bilateral anterior cingulate cortex, nucleus accumbens, caudate, putamen, insula, hippocampus, 

amygdala and thalamus (Figure 3). Full-volume associations with distinct DEBQ subscales and VT 

were not statistically significant. Controlling for BMI did not alter the results. 

 

Figure 3. Total Dutch Eating Behavior Questionnaire (DEBQ) score associated with decreased 

CB1-receptor availability. Brain regions where lower [18F]FMPEP-d2 volume of distribution (VT) 

associated with higher Total DEBQ score, age as a nuisance covariate. Shown are clusters where p 

< 0.05, FWE corrected at cluster level.  

 

Regional analysis of central receptor availability and eating behavior 
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Results of the ROI-analysis were consistent with the full volume results for both tracers (Figure 4). 

For [18F]FMPEP-d2, the association directions of all DEBQ subscales were negative, but the 95% 

confidence intervals overlapped with zero. Visualization of the regional relationships in 

representative ROIs is presented in Figure 5. 

 

 

Figure 4. Regional associations between Total DEBQ and subscale scores with µ-opioid and CB1-

receptor availabilities. The figure shows posterior distributions of the regression coefficients for 

Total DEBQ and subscale scores on log-transformed [11C]carfentanil binding potential (BPND) and 
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[18F]FMPEP-d2 volume of distribution (VT) in 10 regions of interest. Age (and PET scanner for 

[11C]carfentanil data) are controlled as covariates. The colored circles represent posterior means, the 

thick horizontal bars 80% posterior intervals, and the thin horizontal bars 95% posterior intervals. 

 

 

 

Figure 5. Visualization of regional associations in three representative regions of interest. Upper 

row: Scatterplots show the associations of External eating score and [11C]carfentanil binding 

potential (BPND) in putamen, nucleus accumbens (nAcc) and caudate (92 subjects, LS-regression 

line with 95% CI). Lower row: Scatterplots show the associations of Total DEBQ score and 

[18F]FMPEP-d2 volume of distribution (VT) in putamen, nucleus accumbens (nAcc) and caudate (35 

subjects, LS-regression line with 95% CI). 
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Discussion 

Our main finding was that higher DEBQ scores were associated with lower central availability of µ-

opioid and CB1-receptors in healthy, non-obese humans. MOR and CB1R systems however showed 

distinct patterns of associations with specific dimensions of self-reported eating:   While CB1Rs were 

associated in general negatively with different DEBQ subscale scores (and most saliently with the 

Total DEBQ score), MORs were specifically and negatively associated with externally driven eating 

only. Our results add support to the view that endogenous opioid and endocannabinoid systems 

underlie interindividual variation in feeding, with distinct effects on eating behavior measured with 

DEBQ. 

 

Central µ-opioid receptors and external eating behavior 

External eating – the tendency to feed when encountering palatable food cues such as advertisements 

– was associated with lowered MOR availability in cortico-limbic and striatal regions, which are 

major brain areas processing environmental food cues and mediating reward (49). A bulk of studies 

have shown that these regions are activated by mere perception of food cues or anticipation of feeding 

(50-52), and our recent work shows that lowered MOR availability is associated with amplified 

hemodynamic responses to food images in the same regions (14). Higher score on external eating is 

associated with increased food craving (53) and cue-induced palatable food intake (35, 54), and may 

also contribute to short-term weight gain (38). Altogether these results suggest that central MOR 

system has an important role in modulating particularly this kind of impulsive feeding that may lead 

to overweight. 

Previous PET studies have established that feeding triggers endogenous opioid release in 

humans (21, 55). Binge eating disorder (BED) is accompanied with downregulated central MORs 

and high External and Emotional eating scores (56). Morbid obesity is also associated with lowered 

central MOR availability (21, 22), possibly reflecting receptor downregulation due to repeated 
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overstimulation following feeding. In minipigs, already 12 days of high sucrose intake and following 

central endogenous neurotransmitter release downregulates MORs in cingulate and prefrontal 

cortices, nucleus accumbens and elsewhere in striatum (57). The present findings extend the role of 

MORs in obesity and eating disorders to different feeding patterns in healthy subjects. 

Healthy humans vary considerably in central MOR availability (24), and it is also possible 

that lowered MOR availability constitutes a genetically determined (58) risk factor for externally 

driven eating behavior. In healthy humans, trait impulsivity is associated with central MOR 

availability (25). Increased cue-reactivity is prevalent feature of behavioral addictions (59), and 

patients with BED and pathological gambling have reduced availability of central MORs as measured 

with in vivo PET (60). It is thus possible that subjects with lower MOR availability are susceptible 

for increased external eating in modern environment where they are consistently bombarded with 

feeding cues in advertisements and food shelves in supermarkets (11). However, the present data are 

purely cross-sectional and longitudinal human studies are needed to further disentangle the causes 

and the effects between the decrease of MORs in relation to external eating. 

 

Central CB1-receptors and eating behavior 

Higher Total DEBQ score associated with lower availability of central CB1Rs, and ROI-level 

modeling suggested a consistent negative association with all DEBQ subscales. Compared with the 

[11C]carfentanil model, wider posterior distributions reflect the uncertainty arising from smaller 

[18F]FMPEP-d2 sample size. Brain’s endocannabinoid system is a major homeostatic signaling 

system, with CB1Rs abundant in all known food intake regulating central regions (61). In previous 

brain PET studies, lowered CB1R availability has been associated with increased BMI (62), while 

globally upregulated CB1Rs have been found in anorexia nervosa (63). These opposite phenotypes 

on body adiposity spectrum could potentially result from corresponding alterations from CB1R-

regulated food intake behaviors. Indeed, stimulation of CB1Rs by pharmacological agonists or 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.17.423284doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423284


Eating behavior and central opioid and cannabinoid receptors	

	
16	

endocannabinoids promotes food intake and amplifies the rewarding properties of feeding (64). In 

contrast, antagonism of the CB1Rs by rimonabant (withdrawn anti-obesity drug, Acomplia) 

effectively reduces food intake and increases energy expenditure, but in many patients with the cost 

of psychiatric symptoms (e.g. depressive mood, suicidality, anxiety) (61). Accordingly, the 

endocannabinoid system function has been connected to several other essential behavioral processes 

in addition to feeding (e.g. stress-coping, emotion regulation, pain perception) (65, 66). Being this 

diverse and complex regulatory system, it may not be possible to pinpoint single distinct aspect of 

food intake behavior mediated by CB1Rs. Rather, our results add support to central CB1Rs role in 

regulation of multiple eating behavior traits, with implications on both homeostatic and hedonic 

feeding (67). 

 

Limitations and methodological considerations 

The [11C]carfentanil data were pooled from three PET scanners, which may produce minor variance 

in outcome measures (46). However, this was accounted for in the analyses by adding the PET 

scanner as a nuisance covariate to all full-volume and regional analyses. The sample studied with 

[11C]carfentanil consisted predominantly of males, and our statistical power was compromised for 

detecting potential sex differences. Also all subjects of the [18F]FMPEP-d2 subsample were males, 

and thus conclusions regarding CB1Rs might not be generalizable to females. Eating behavior was 

assessed by self-reports, rather than by direct observations. DEBQ has however been found to 

successfully identify clinically relevant eating styles (4, 5). Our study had a cross-sectional design, 

and although we found evidence of eating behavior’s association with MOR and CB1R systems, 

whether these receptor systems’ alterations directly promote future weight gain is to be examined in 

longitudinal studies. Finally, in a single PET scan it is not possible to determine the exact proportions 

for causal factors to the altered receptor availability, which could potentially be affected by changes 

in receptor density, affinity or endogenous ligand binding.  
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Conclusions 

Low cerebral MOR availability is associated with increased externally triggered eating behavior. 

Modern obesogenic environment may promote food consumption via engaging the opioidergic link 

of the reward circuit whose tone is linked with this kind of impulsive eating. Central CB1Rs are in 

turn associated with multiple eating behavioral traits measured with DEBQ, consistent with 

endocannabinoid system’s role as a major homeostatic regulatory system at the intersection of 

feeding, emotion and behavior.  
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