












Figure 4. ​Antigenic evolution is primarily due to changes in the spike’s receptor binding 
domain (RBD). (A) At top is a schematic of the 229E spike. Within the S1 subunit, the schematic 
indicates the N-terminal domain (NTD, also known as S1-A) and the RBD (also known as S1-B). 
The three loops in the RBD that bind the virus’s APN receptor are indicated (Li et al., 2019). 
Below the schematic is a plot of sequence variability across the alignment of 229E spikes in 
Figure 1A. Variability is quantified as the effective number of amino acids at a site (Echave and 
Wilke, 2017), with a value of one indicating complete conservation and larger values indicating 
more sequence variability. (B) Neutralizing titers of sera collected between 1985 and 1990 
against either the full spike of “future” viruses or chimeras consisting of the 1984 spike 
containing the RBD from “future” viruses. The plot format and the black circles (full spike) are 
repeated from Figure 2A with the addition of the orange triangles showing the titers against the 
chimeric spikes. 
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Supplementary Information 

Figure S1. ​The evolution of the 229E spike is clock-like, with the number of substitutions per 
site proportional to time. (A) Phylogenetic tree exactly like that in Figure 1 but with branch 
lengths proportional to divergence (not re-scaled based on tip isolation date). (B) A plot 
produced by TreeTime (Sagulenko et al., 2018) showing the correlation between the distance of 
tip nodes from the root and sampling date. The fact that all points fall on a line indicates that the 
evolution is clock-like. 
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Figure S2. ​Although there is some evidence of recombination among closely related 229E 
spikes, this recombination does not alter the relative phylogenetic relationships among the 
spikes used in the experiments. Specifically, GARD (Kosakovsky Pond et al., 2006; Spielman et 
al., 2019) was used to analyze the same set of 229E spike sequences used in Figure 1 with a 
nucleotide substitution model and three gamma-distributed rate classes. The best-fitting model 
had a single recombination breakpoint at nucleotide 1089 that improved the AIC by 60 units. 
The trees for each partition were then rooted and branch-re-scaled using TreeTime (Sagulenko 
et al., 2018), and the resulting tanglegram was rendered using dendextend (Galili, 2015). As can 
be seen above, the recombination is all between closely related sequences and does not alter the 
relative position of the 1984, 1992, 2001, 2008, and 2016 spikes used in the experiments. See 
https://github.com/jbloomlab/CoV_229E_antigenic_drift/blob/master/results/gard_tanglegram.
md​ for details of the analysis steps described above. 
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Figure S3. ​The 229E spikes with a cytoplasmic tail deletion pseudotype lentiviral particles that 
efficiently infect 293T cells expressing the spike’s receptor aminopeptidase N (APN) and the 
activating protease TMPRSS2. (A) Titer in transduction units per ml as determined using flow 
cytometry of lentiviral particles pseudotyped with the full-length 2016 spike or that spike with a 
deletion of the last 19 residues in spike (the end of the cytoplasmic tail) on 293T cells transfected 
with a plasmid expressing APN. The dotted gray line is the limit of detection, and the titers in 
the absence of spike were below this line (undetectable). (B) Efficient entry by the pseudotyped 
virions depends on expression of APN and to a lesser extent TMPRSS2. Virions pseudotyped 
with the 2016 spike with the C-terminal deletion were infected into 293T cells transfected with 
plasmids expressing one or both of APN and TMPRSS2, and titers were determined by 
luciferase luminescence. Titers are normalized to one. (C) All of the 229E spikes and chimeras 
used in this study mediated efficient viral entry. Lentiviral particles were pseudotyped with the 
indicated spike (in all cases with the C-terminal deletion) and titers were determined using 
luciferase luminescence on 293T cells transfected with plasmids expressing APN and TMPRSS2. 
  

18 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.12.17.423313doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423313
http://creativecommons.org/licenses/by/4.0/


 
Figure S4. ​Neutralization curves for all assays. Each facet is a serum, with titles indicating the 
year the serum was collected. Each point is the fraction infectivity at that serum concentration 
averaged across at least two replicates (error bars are standard error), with colors indicating the 
virus. The fits are 2-parameter Hill curves with baselines fixed to 1 and 0, and were fit using 
neutcurve (​https://jbloomlab.github.io/neutcurve/​). IC50s are in File S3. The curves are also at 
https://github.com/jbloomlab/CoV_229E_antigenic_drift/blob/master/exptl_data/results/all_neut
_by_sera.pdf  
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Figure S5. ​Initial screening of sera to identify samples with neutralizing titers of at least 1:90 
that were then used for the rest of the studies described in the paper. Each sera was tested 
against the most-recent virus isolated prior to the serum collection date: in other words, sera 
collected between 1985–1990 was tested against the 1984 spike, sera collected between 
1992–1995 was tested against the 1992 spike, and sera collected in 2020 was tested against the 
2016 spike. Each point shows the neutralizing titer for a different serum (see Figure S4 for full 
neutralization curves). Sera above the cutoff of 1:90 (blue dashed line) was then used for further 
studies against the full panel of viruses (e.g., Figures 2, 3, and 4). The numbers at the top of the 
plot indicate the number of sera above the cutoff out of the total sera tested in each timeframe. 
The dotted horizontal line at the bottom of the plot is the lower limit of detection of the 
neutralization assay. Quantitative neutralization titers for each sera are in File S3. 
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File S1. ​Codon-level alignment of the 229E spike sequences. This FASTA alignment is at 
https://github.com/jbloomlab/CoV_229E_antigenic_drift/blob/master/results/spikes_aligned_co
don.fasta  
 
File S2.​ A ZIP of GenPept files giving the protein sequences of the spikes used in the 
experiments. There are nine sequences: the five spikes from the 1984, 1992, 2001, 2008, and 2016 
viruses (named by strain as shown in Figure 1A), and the four chimeras that consist of the 1984 
spike with the RBD of each of the other strains. Each GenPept file annotates key domains in the 
spike. Note that the C-terminal 19 amino acids are deleted off each spike. These files are at 
https://github.com/jbloomlab/CoV_229E_antigenic_drift/tree/master/results/seqs_for_expts 
 
File S3. ​A CSV file giving the neutralization titer, collection date, and subject age at time of 
collection date for each serum sample analyzed in this study. This file is at 
https://github.com/jbloomlab/CoV_229E_antigenic_drift/blob/master/exptl_data/results/all_neut
_titers.csv  
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