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ABSTRACT

The critical brain hypothesis states that biological neuronal networks, because of their structural and functional architecture,
work near phase transitions for optimal response to internal and external inputs. Criticality thus provides optimal function and
behavioral capabilities. We test this hypothesis by examining the influence of brain injury (strokes) on the criticality of neural
dynamics estimated at the level of single subjects using whole-brain models. Lesions engendered a sub-critical state that
recovered over time in parallel with behavior. Notably, this improvement of criticality depended on the re-modeling of specific
white matter connections. In summary, personalized whole-brain dynamical models poised at criticality track neural dynamics,
alteration post-stroke, and behavior at the level of single subjects.

Introduction
The fundamental mechanisms underlying the dynamics of brain activity are still largely unknown. Interdisciplinary neuroscience
research, inspired by statistical physics, has suggested that healthy brain’s neural dynamics stay close to a critical state1, i.e., in
the vicinity of a critical phase transition between order and disorder2, 3, or between asynchronous or synchronous oscillatory
activity4, 5. In physics, critical phenomena occur at the transition of different states of the systems (also known as phase
transitions) for specific values of the so-called system’s control parameter (e.g., temperature). There is mounting evidence that
biological systems (or parts, aspects, or groups) operate near/at critical points6, 7. Examples include gene expression patterns8,
bacterial clustering9, flock dynamics10, as well as spontaneous brain activity. Indeed, neural systems seem to display features
that are characteristic of systems at criticality. These include i) the scaling invariance of neural avalanches5, 11 reported in
diverse species12, 13, through different imaging techniques14, and electro-physiological signals15; ii) the presence of long-range
spatiotemporal correlations in the amplitude fluctuations of neural oscillations16, 17, including the observation of 1/ f power
spectra from simultaneously recorded MEG/EEG signals15, fMRI18, and cognitive responses19.

Critical brains benefit from these emergent features to promptly react to external stimuli to maximize information transmis-
sion20, hence sensitivity to sensory stimuli, storage of information21, and a coordinated global behavior11, 22. If criticality is
indeed a fundamental property of healthy brains2, then neurological dysfunctions shall alter this optimal dynamical configura-
tion. However, we know little about the effect of brain disorders on criticality23. Some studies have reported disrupted criticality
during epileptic seizures24, 25, slow-wave sleep26, anesthesia27, sustained wakefulness28, states of (un)consciousness29, 30, and
Alzheimer’s disease31. However, a crucial test of the hypothesis requires showing alterations of criticality after focal brain
injuries that cause local alterations of the brain’s structural and functional architecture. If criticality is essential for behavior,
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then its alteration after focal injury shall relate to behavioral dysfunction. Over time as behavior improves in the course of
recovery, so shall criticality. Finally, changes in criticality with recovery will depend on specific plasticity mechanisms or
functional remodeling as shown in previous work32, 33. Here we use stroke as the prototypical pathological model of human
focal brain injury and whole-brain computational models to estimate neural dynamics, related alterations in criticality and
behavior, and the underlying neural mechanisms.

There are several novel aspects of our investigations. First, we employ a stochastic whole-brain model to simulate large-scale
neural dynamics34 using as input the directly measured structural connectivity of a stroke patient or healthy control. Importantly,
we do not fit the resulting dynamics with empirical measured functional connectivity. The structural connectivity, measured at
two time-points: 3 months after stroke (t1) and one year after stroke (t2), or three months apart in healthy controls, was used to
build personalized whole-brain models. This method allows measuring departures from normal criticality at the group level
or in individual subjects, as well as the recovery of criticality over time. This approach contrasts with other studies that used
average or atlas-based structural connectivity models to simulate activity time courses35–43. For example, a recent study by
Haimovici et al. found that lesions push the system out of criticality towards a sub-critical state44. However, these theoretical
results were not validated with real patient data. Other studies found abnormal global metrics of network function, such as
information capacity, integration, and entropy in stroke patients as compared to healthy subjects45, 46. However, these models
were not personalized, i.e., did not use directly measured individual structural connectivity but healthy group average structural
connectomes that were fit with many (hundreds) free model parameters to minimize the distance between the model and the
empirical functional connectivity45.

Secondly, we apply this computation model strategy to a unique cohort of stroke patients studied prospectively and
longitudinally at Washington University in St. Louis. This cohort has been investigated with a large battery of neurobehavioral
tests, as well as structural, structural and functional connectivity magnetic resonance imaging at three months and 12 months
post-stroke. This cohort is representative of the stroke population both in terms of behavioral deficits, their recovery, and
the lesion load location47. In previous work, we have characterized the behavioral, structural, and functional connectivity
abnormalities in this cohort and their relationship to behavioral impairment and recovery32, 33, 48–50 (see Corbetta et al.51 for
a review). In network terminology, strokes cause an acute decrease of modularity that normalizes over time32, 52. Here we
relate alterations of criticality to behavioral deficits, and compare criticality computed on the model with empirical measures of
functional connectivity.

The paper is organized as follows. In the Result section, we first describe our stochastic model embedded in the large-scale
structural brain network. Then we describe the behavior of the system for different values of the (unique) control parameter.
We first compare the dynamical patterns between controls and patients; then, we show a remarkable recovery pattern across
time-points. We then investigate the corresponding functional connectivity and behavioral correlations. Finally, we relate
the individual variability in criticality, as well as changes of criticality overtime to specific anatomical (sub-)networks using
machine learning techniques.

Results
Simulation of large-scale neural dynamics
To simulate neural activity at the individual whole-brain level we employed the homeostatic plasticity model recently developed
in34. Figure 1 illustrates the main ingredients of our modeling strategy. Individual structural connectivity matrices are the key
input of the stochastic model (Fig. 1A). Imaging and behavioral data are taken from a large-scale stroke study described in
previous publications33, 47, 53. Structural connectivity data was available for 77 patients, acquired three months (t1) and one year
(t2) after stroke onset. The same study includes data from 28 healthy controls, acquired twice at a distance of three months (see
Methods sections for details about the stroke dataset, lesion analysis, diffusion weighted imaging (DWI), and resting-state
functional MRI (R-fMRI)).

The system is described as a network of N = 324 nodes (i.e., cortical brain regions), linked with symmetric and weighted
connections obtained from DWI scans and reconstructed with spherical deconvolution54, 55. The weights of the structural
connectivity matrix, Wi j, describes the connection density, i.e, the number of white matter fiber tracts connecting a given pair of
regions of interest (ROIs) normalized by the product of their average surface and average fiber length56. The ROIs are derived
from a functional atlas of the cerebral cortex57. Fig 1A shows the topography of structural connections, the corresponding
network assignment, and the corresponding structural matrix. The matrix is sparse, and contains predominantly short-range
connections. In the control group, inter-hemispheric connections between homotopic regions of the same network are visible
(dorsal view of the brain Fig. 1A). In the stroke patients, inter-hemispheric connectivity is decreased, as shown by Griffis et
al.33 who found that loss of inter-hemispheric connectivity - both structural and functional - is the predominant aberrant pattern
in stroke. The lesion load topography in the stroke cohort is shown in Supplementary Material (Fig. S1) and matches the
topography of larger cohorts47. When the lesion damages a cortical ROI, even partially, those nodes were removed from the
simulation. Therefore, only structurally normal regions were considered in the analysis. The same procedure was adopted for
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controls, but in this case the presence of isolated nodes is rare, due to reconstruction errors/fluctuations of the brain networks
topologies.

Cortical activity is modeled through stochastic dynamics based on a discrete cellular automaton with three states, namely,
active (A), inactive (I), and refractory (R). The state variable of a given node i, si(t), is set to 1 if the node is active and 0
otherwise. The temporal dynamics of the i-th node is governed by the transition probabilities between pair of states: (i) I→ A
either with a fixed small probability r1 ∝ N−1 or with probability 1 if the sum of the connections weights of the active neighbors
j, ∑ j Wi j, is greater than a given threshold T , i.e., ∑ j Wi js j > T , otherwise I → I, (ii) A→ R with probability 1, and (iii)
R→ I with a fixed probability r2

34. The state of each node is overwritten only after the whole network is updated. Therefore,
during the temporal dynamics, a node activation happens (most frequently) when the incoming input excitation from its nearest
active neighbors exceeds a fixed threshold T , i.e, ∑ j Wi js j > T . In other words T plays the role of a threshold parameter that
regulates the propagation of incoming excitatory activity. On the other hand two parameters r1 and r2 controls the time scale of
self-activation and recovery of the excited state34, 58. As we clarify in the methods section, r1 and r2 are set as a function of the
network size, while T is the control parameter of the model.

Following34, 59, we consider homeostatic plasticity principles regulating network excitability by introducing a normalization
of the structural connectivity matrix

W̃i j =Wi j/∑
j

Wi j. (1)

As shown by34, the above normalization facilitates the emergence of functional networks at rest, and increases the correlation
coefficients between model and empirical data. More importantly, it minimizes the variability of the neural activity patterns and
the critical point of the stochastic model for different subjects, allowing the opportunity of statistical comparison among model
outputs for single individuals.

For each individual (time-point) we calculate the following neural state variables (see Methods section): the average activity
(A), the standard deviation of the activity (σA), and the size of the averaged clusters, the largest (S1), and the second largest
(S2), as a function of the activation threshold T . These clusters of activity are defined as the size of the connected components
of the graph defined by the sets of nodes that are both structurally connected to each other and simultaneously active34. In
the numerical experiments, we set the total simulation time-steps ts = 1000, in order to recover the length of typical fMRI
experimental time-series (∼ 15 min).

A typical behavior of the simulated brain activity for different values of T , while keeping r1 and r2 fixed, is illustrated
in Fig. 1C. The brain dynamics displays a phase like transition at critical threshold Tc given by the corresponding value of
T . In fact, at T = Tc brain activity has the largest variability, the maximal second largest cluster size, and a steep change in
the first cluster size34, 60, 61. In contrast, for small values of the activation threshold (T � Tc), the system is characterized by
high levels of excitation, i.e, the signal from an active node will easily spread to its neighbors. In this scenario, we have the
so-called super-critical or disordered phase, which is characterized by sustained spontaneous activity with fast and temporally
uncorrelated fluctuations (Fig. 1D, blue time-series). On the other hand, high values of T (T � Tc) lead to a sub-critical or
ordered phase, which is characterized by regular, short propagating and not self-sustained activity. In this case, only those
nodes with the strongest connections will determine the excitation flow in the network. In the sub-critical phase, simulated
BOLD signals have very small correlations (Fig. 1D, green time-series). The critical phase appears in between of these two
states, when brain activity displays oscillatory behavior and long-range temporal correlations of their envelope34, 44, 60. In this
phase, the simulated BOLD activity shows the highest correlation (Fig. 1D, red time-series)34.

In the next sections, first, we present simulations of the whole brain model with homeostatic plasticity for stroke and control
individuals, as well as at the group level. Next, we study the structural connectivity correlates of neural dynamics alterations
induced by stroke lesions. Third, we identify components of the structural networks that are most strongly related to criticality
and its recovery over time. Fourth, we compare the simulations output with empirical functional networks, and with behavioral
data obtained in multiple domains (e.g., language, motor, memory) from an extensive neuropsychological battery (see Methods
section).

Abnormal neural dynamics in stroke
Figure 2(A-D) shows the model’s neural activity variables for an arbitrary control-patient pair. Results are similar for other
individuals, see Supplementary Material (Figs. S2 to S8). To facilitate the comparison among individual neural patterns of
healthy individuals and stroke patients, we also present the average and standard deviation of the healthy controls (blue dashed
line and shaded area, respectively). In general, neural dynamics in healthy participants are quite distinct from those of a typical
stroke patient. First, let us consider one healthy participant, Fig. 2(A-B) (black/gray dots). The neural patterns follow the
expected behavior, with a critical point T = Tc around the maximum of S2, or equivalently, near the sharp decrease of S1.
Moreover, as expected, the two curves have low variability across the two scanning time-points (t1 and t2), displaying the same
Tc (within one standard deviation), and stable shape as a function of T .
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Figure 1. A) Average structural connectivity (SC) matrices (top) and their corresponding network architecture embedded in a
glass dorsal view of the brain (bottom). SC matrices and brain networks are organized according to regions of interest (ROI)
defined on the cortical parcellation of Gordon et al.57. B) Top. Illustration of the network dynamics with homeostatic plasticity
following the transition probabilities between the three possible states: inactive (I), active (A) and refractory (R). The temporal
evolution of the central inactive node (pink) is as follows: in t1, it is surrounded by three active nodes (green) and one refractory
node (orange); in t2, the incoming excitation is propagated (W̃31 +W̃32 +W̃34 > T ); and finally, in t3, it reaches the refractory
state. Bottom. Procedure used to transform node’s activity, si(t), in functional BOLD signals, xi(t). BOLD time-series are
obtained by convolving instantaneous si(t) with a canonical hemodynamic response function (HRF). C) Behavior of the neural
variables, the largest (S1 , continuous line), and the second largest (S2 , dotted line) cluster size as a function of T . The peak in
S2 (red dot) is identified as the (percolationlike) phase transition61. Blue and green dots correspond to minimal and maximal
values of T , and corresponding activity and BOLD time-series in panel D. D) Left panel: instantaneous network activity,
A(t) = ∑i si(t)/N, for different values of the activation threshold T ; the super-critical phase T � Tc (blue time-series), the
critical phase T = Tc (red) and the sub-critical phase T � Tc (green). Right panel: example of the simulated BOLD signals
between two arbitrary ROIs and their corresponding Pearson correlation ρ . The highest correlation is achieved at the critical
phase, where BOLD fluctuations are long-range correlated.
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Figure 2. Individual based analysis of neural activity patterns, S1 and S2, of a healthy participant (Con. / A-B) and stroke
patient (Pat. / C-D). In blue dashed line we show the corresponding control’s group average; while the shaded area corresponds
to one standard deviation. For the control, t1 and t2 correspond at two different time points 3 months apart. For the patient, t1
and t2 correspond to 3 month and 12 month time points post-stroke. The healthy participant exhibits conserved shape across
time points, with small variability across time points. For the stroke patient under consideration, the flattened shape at t1 of
both, (S1) and (S2), indicates a decreased strength of the critical phase transition, which, however, improves at t2.

The pattern is dramatically different in the stroke subject. The strength of the critical transition, as described by the
characteristic peak in S2

34 (or equivalently, the sharp decrease around Tc in S1), is much flatter at three months post-stroke,
but seems to normalize at one year, where the transition is sharper and both, S1 and S2, behave similarly to the control
case. As already observed in34, the homeostatic normalization on the weights of the structural matrix decreases the inter-
subject variability of neural activity patterns. More importantly, it fixes the critical point of all individuals to a universal
value, Tc ∼ 0.125. In other words, thanks to the homeostatic plasticity mechanism, the critical point is independent of the
individual variability in the structural connectivity matrix. However, the strength of the S1 and S2 peaks provides an individual
characterization of differences in criticality. In fact, at the vicinity of the critical point the differences in the stroke patient at
t1 and t2 are pronounced. The most interesting feature, as shown in Figs. 2(C-D), is the recovery-like pattern: the one-year
post-stroke curve resembles, both qualitatively and quantitatively, the pattern of the healthy subject. Similar results are shown
for several examples of individual stroke patients and healthy subjects in the Supplementary Material (Figs. S2 to S8). Euclidean
distance, d(t1, t2), is then used to quantify the similarity between pair of curves corresponding to a given neural activity pattern
(e.g. S2) at the two different time points (see Methods section, (9)). A low d(t1, t2) indicates low variability across time points
either of normal or abnormal dynamics. High d(t1, t2) indicates changes of the neural state variables across times. Figure 3
(A-B) shows the normalized distribution of the Euclidean distances for all individuals in the data set for S1 and S2, respectively.
Confirming our observations, there is much greater variability in stroke patients than in control subjects. The dispersion of
the distribution p(d) measured for the healthy participants provides a benchmark for estimating the intrinsic inter-individual
variability of individual brain criticality. On the other hand, the large spread of p(d) in the stroke population indicates that
differences in criticality between 3 months and one year need to be accounted for by changes in the structural connectivity. In
other words, variability in the patient’s criticality should be related to differences in the underlying structural anatomy. This
interesting biological insight will be examined in more detail in the next section.

We next examined whether these dynamical features were robust at the group level. Figure 3(C-D) summarizes our main
results for S1 and S2 (see Supplementary Material, Fig. S9, for the other variables). The thin solid curves represent each single
individual, while the heavy solid ones represent the group average, i.e., Xav ≡ ∑

n
i X(i)/n, where n is the number of individuals

in each group. The first result is the almost perfect collapse of S2 over the entire range of T between controls and patients at
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one year post-stroke (a perfect collapse is also observed for σA, see Supplementary Material Fig. S9). Even in the vicinity of
the critical point, where the greatest variability is expected, the two curves are very close and statistically equivalent within one
standard deviation. We interpret this dynamical feature as a return of the stroke group at 12 months toward normal criticality
levels. Following the same line of reasoning, we interpret the broader peak of S2 at 3 months as a deviation from the healthy
baseline levels of criticality. In t1, activity clusters are more segregated, as expressed by large S2 (or correspondingly, small
S1, i.e., the first component is broken down into larger second clusters). In t2, this abnormal condition is restored, and S2
decreases toward normal, while S1 increases. These changes in cluster sizes reflect alterations in segregation-integration balance
within/between networks62

In summary, both in single subjects and group level, the models of stroke patients show a significant loss of the normal
critical dynamics at three months that recovers at one year for most patients. This is consistent with the first hypothesis that
criticality is a property of the normal brain structural architecture. Next, we examine the anatomical bases of brain criticality
modifications.

Structural connectivity related to criticality and its recovery
The recovery of criticality from three to twelve months, as unveiled from our modeling studies, must reflect a change in the
underlying structural connectivity. To investigate which connections are more strongly related to the alteration and recovery of
criticality, we used a multivariate machine learning approach, based on cross-validated Ridge Regression63, to relate the model’s
neural activity variables to the structural connectivity matrix. This approach allows to identify edges (and sub-networks) across
the whole brain that are most strongly related to the variable of interest (see Methods for details).

First, we investigate the relationship between structural connectivity and criticality, both in controls (using the t2 matrix) and
in one-year post-stroke patients. Figure 4 shows that the structural connectivity accounts for a large proportion of variance in S1
(controls: R2 = 0.50; patients: R2 = 0.48). Interestingly, the map of predictive edges in controls shows that inter-hemispheric
connections are related to higher criticality values (i.e, positive edges). Indeed, for the 200 most predictive edges shown in
Fig. 4, 9% are inter-hemispheric, 91% intra-hemispheric, summing up to 81% positive edges. In contrast, predictive maps of
patients show a different organization, with most inter-hemispheric edges pointing to the visual network, and a small decrease
in the overall number of inter-hemispheric connections, 7% out of 200 edges. In the Supplementary Material, Fig. S10, we
show a similar connectivity pattern for the second cluster (S2) (controls: R2 = 0.35; patients: R2 = 0.46).

Next, we computed recovery of criticality as the difference of S1 (evaluated at the critical point) between the two time
points, i.e., S1(t2− t1). Large values would index a normalization of criticality toward the control baseline (as illustrated in
Fig. 3C). We used the structural connectivity matrix at t1 as a predictor of S1(t2− t1). In this way, we were able to quantify
the role of the structural damage in constraining or facilitating the patient’s recovery. The results, reported in Fig. 5, show
that criticality (and its recovery) is related to structural links involving the default mode network and the networks subserving
attention and executive control (cingulo-opercular network, dorsal attention network).

Finally, to investigate whether the structural connections predictive of the recovery of criticality were part of the normal
functional architecture, and did not reflect random connections, we correlated the number of predictive edges for each node
(ROI) with the corresponding node’s strength in the healthy controls’ average functional connectivity. The high correlation
(ρ = 0.98 for positive/negative edges vs. node functional connectivity) indicates that the predictive edges are not random, but
consistent with the normal variability of the brain functional architecture.

Relationship between recovery of criticality, functional connectivity, and behavior
Up to this point, our results strongly suggest that post-stroke rehabilitation induces a normalization of the neural activity
patterns that can be quantified by criticality. One important question is whether these dynamical signatures reflect the patients’
recovery as typically seen in behavioral measures53 and in the functional connectivity32. We used the framework described in34

to simulate the functional connectivity from the structural one for each individual patient. Briefly, the time-series of node’s
activity, si(t), is convolved with a canonical hemodynamic response function (HRF). We further applied a band-pass filter
in the range of 0.01−0.1 Hz. Next, we obtain the functional connectivity matrix, FC, through the Pearson correlation, (6),
between each pair of ROIs in the network44. We use the averaged correlation across ROIs FC to characterize the strength of the
functional connections in patients and controls (see (7)). We also compute the entropy, H, of the functional matrices following
the framework of Saenger et. al.46 (see Methods section, (8)). The entropy measures the repertoire diversity and the complexity
of the functional connections, and may serve as a biomarker of stroke recovery as well46. The behavioral performance of
patients and controls was inferred from a neuropsychological battery measuring performance in 8 behavioral domains (motor,
visual, language, verbal and spatial memory, attention visual field, attention average performance, attention shifting)47. Here we
use the average factor score obtained from averaging normalized factor scores for each domain47, 〈B〉= ∑i Bi/8, to characterize
the individual’s overall performance.

In order to quantity the relationship between dynamical, functional connectivity and behavioral features we shall use
the critical point as a biomarker. Indeed, for each simulated quantity (〈X〉) (averaged over 50 samples with initial random
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Figure 3. A) The Euclidean distance, d(t1, t2) of S1 values across time points in individual age-matched-controls (Con.) and
stroke patients (Pat.). B) The same for S2. Patients show greater variability in model neural activity. C-D) Group based analysis
of neural activity patterns, S1 and S2, as a function of T for all patients and controls. Red lines represent patients at t1 (3 months
post-stroke), while green lines at t2 (12 months post-stroke). The thin solid curves represent each individual stroke patient,
while the heavy dotted lines represent the group average. The group analysis reveals that levels of criticality approach normal
levels at t2 while they are significantly abnormal at t1. Thanks to the homeostatic normalization, the critical points are
practically the same for all individuals (black vertical dashed line). E-F) Model entropy H (see Methods section, (8)) and the
average functional connectivty FC averaged across ROIs (see Methods section, (7)) for patients and controls individuals, as a
function of T . Note improvement of H and FC over time and trend toward normalization of these simulated functional
measures.

7/22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.12.17.423349doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423349
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. Structural connectivity related to criticality (first cluster size S1). Structural edges at t2 that predict higher (green
edges) and lower criticality (orange edges) values at t2 (top: Controls; bottom: Patients). The size of each ROI, colored by
network, corresponds to the number of predictive edges converging on it. The scatter plot shows real vs. predicted criticality
values from the Ridge Regression model.

Figure 5. Top: Structural connectivity related to the recovery of criticality (first cluster size S1). Structural edges at t1 that
predict higher and lower criticality changes in S1 from t1 to t2.

8/22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.12.17.423349doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423349
http://creativecommons.org/licenses/by-nc-nd/4.0/


configurations), we define the recovery index as X(t2− t1) = 〈X〉t2 −〈X〉t1 , where both time points are computed at the critical
point. We choose the critical point because at this state we have the best matching between empirical and model data, although
no fitting is performed34. For the empirical data, the recovery index is obtained in the same way, as a difference between the
averages of two given behavioral/functional features at time t1 and t2. In what follows, the subscript “m” stands for model,
while “e” stands for empirical.

In Supplementary Material, Figs. S3 and S4, we show the simulated H and FC, for the same pair of individuals considered
in Fig. 2 (ID AMC: 19, ID PAT: 12), as a function of T . Far from the critical dynamics, i.e., T � Tc and T � Tc, both variables
are vanishingly small, while a maximum happens very close to the critical state (T = Tc). We find that the values of both H and
FC from t1 to t2 evolve towards the control’s baseline, suggesting a functional recovery of the analyzed patients.

The group analyses are illustrated in Fig. 3 (E-F). Normalization of H and FC across time-points is very robust, and patients
at t2 are likely to display functional attributes (i.e., mean values) similar to controls. Interestingly, a recovery of the dynamical
activity patterns, (S1) and (S2), leads to an increase in functional complexity, (H), and in the average correlation, (FC), being
consistent with a return of critical dynamics.

We find a significant correlation (R2 = 0.8 and ρ = 0.9) on the time dependence of the averaged behavioral factors,
computed at t1 and t2 (Fig. 6A). This result reveals that B is indeed a robust feature of individuals across time, otherwise
we would have found a scrambled scatter plot with negligible correlation. Notably, S2(t2− t1) was correlated with B(t2− t1)
(R2 = 0.31 and ρ = 0.58; Fig. 6B), but not separately at each time-point (see Supplementary Material, Fig. S11 A-B). This
result shows that it is the change in the dynamic state of the brain (S2) from t1 to t2 that is sensitive to behavioral changes. The
correlation is negative as a large difference in S2 value - with bigger S2 clusters at 3 months vs. 12 months - correlates with a
strong change in behavioral scores. These findings are consistent with the second prediction that variations in neural dynamics
are behaviorally relevant.

Next, we considered the relationship between neural dynamics and functional connectivity, a well studied biomarker of
stroke / behavior relationships32, 33. As a whole brain marker of functional connectivity, we employed the average FC across all
ROIs. We found that variations in neural variability, as described by S2(t2− t1), was significantly correlated with the model
average functional connectivity FCm (R2 = 0.45 and ρ = 0.68; Fig. 6C). The correlation was negative: large decreases of
S2 over time, i.e. smaller S2 clusters hence more segregated networks, correlated with large longitudinal changes in average
functional connectivity (Fig. 6C). The negative relationship between S2 and FCm was present both at t1 and t2 (Supplementary
Material, Fig. S11 C-D), which is consistent with a robust relationship between dynamic measures and functional connectivity.

In addition, since studies on stroke have highlighted the specific behavioral importance of homotopic functional connectivity,
i.e. inter-hemispheric connections between symmetrical regions belonging to the same network50, 64, 65, we examined the
relationship of average FC vs. homotopic FC, both empirical - measured directly - and model, with behavioral performance.
Empirical FCe(t2− t1) correlated with homo-FCe(t2− t1) (R2 = 0.58, ρ = 0.77 and p-value < 0.05); in addition, both measures
predicted a significant amount of behavioral variability B(t2− t1) (p-value < 0.05), with homo-FCe providing slightly higher
prediction than the average FCe (see Fig. 6 D-F). We repeated the same analysis, but for the model generated data (Fig. 6 G-I).
The stochastic whole-brain model poised at the critical point was capable of reproducing all behaviors observed empirically (Fig.
6 D-F). Interestingly, it predicted more variability than the empirical data for the relationship among FC(t2− t1) and homo-
FC(t2− t1) with B(t2− t1). As the critical signatures restore over time, patients exhibit increased functional and behavioral
performance. Similar results were obtained for entropy (Supplementary Material Fig. S12).

On the other side, we did not find any relationship between S2 and FCm with FCe (results not shown). This is expected since
we have not optimize the model inputs to reproduce the empirical FC; in other words, we do not employ a fitting procedure to
generate the model FC data as done for example in45.

Discussion
We set out to examine whether criticality is affected by lesions, and whether alterations of criticality are behaviorally relevant.
We use lesions as a causal manipulation to test the theory that criticality is a fundamental property of healthy brains that
provides optimal functional and behavioral capabilities. Several interesting results are worth of discussion.

First, our stochastic model is personalized since it used as input direct estimates of structural connectivity at the individual
level. The model provides measures of activity, functional connectivity, and criticality that tracked individual variability in
healthy and stroke participants. Importantly, alterations in stroke patients were evident both at the group and individual level,
and easily separated stroke from healthy subjects. Second, these criticality alterations normalized over time. This normalization
reflect changes of the underlying structural connectivity. We describe which connections are most predictive of the final level
of criticality, and which predict improvements in criticality. The distribution of predictive connections was not random but
matched the normal functional architecture of the healthy brain. Third, we show that alterations of criticality were behaviorally
relevant as they correlate with improvements in performance. Alterations of criticality correlated with variations of activity,
entropy, and performance improvements, that are also captured in the model.
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Figure 6. Statistical correlates between dynamical, functional and behavioral patterns at criticality. In the legend we show the
(linear) correlation, ρ and the R2. All linear regressions have p-value < 0.05. Agreement between empirical and model data is
clear.
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Methodological considerations
The whole-brain mesoscopic model, a variant of the Greenberg-Hastings cellular automata66, was proposed by Haimovici
et al.58. When poised at the critical point, the model is able to capture, at the group level, the emergence of experimental
spatiotemporal patterns, the temporal correlation between regions (functional connectivity, FC), the organization of brain wide
patterns in so called resting state networks (RSNs), and the scaling law of the correlation length, among others.

We improved the Haimovici model by adding a normalization to each node’s excitatory input, a mechanism of homeostatic
plasticity67–69. This simple adjustment balanced the macroscopic dynamics increasing the strength of critical transitions.
The clusters of activity became more heterogeneous spreading along the whole network and not mainly in the hubs, as in
the not-normalized model. In the normalized model, the cluster size distribution in proximity to the critical point follows a
truncated power-law with a critical exponent α close to the hallmark exponent of avalanches sizes, α = 3/2. In contrast scaling
invariance in the cluster size distribution is not visible in the absence of normalization. Finally, the homeostatic normalization
mechanism significantly improves the correspondence between simulated and empirical functional networks based on fMRI.

An important feature of the normalized model is that it minimizes the variability of the critical points and neuronal activity
patterns among healthy subjects. The normalization collapses the model state variables of healthy subjects into universal curves,
which allows to compare critical points between patients and stroke, and stroke patients at different time points.

Another important innovation is that the input to the model were individually measured structural connectomes, both healthy
and stroke individuals at two time points. The repeated measures allowed the estimation of the stability of the criticality values,
which were quite narrow in healthy subjects, thus supporting that changes of criticality were related to the effect of the lesions.

The availability of individual structural connectomes is not common, and most whole-brain studies have used population
atlases of white matter connections45, 70. Also, fMRI connectivity is often used to enhance the accuracy of structural connectivity
due to its low sensitivity or incomplete coverage45, 46. Our structural connectivity data were sparse, with a negative exponential
small world distribution, and weaker inter-hemispheric connections in stroke patients consistently with recent work48, 49.
However, the model can be certainly improved. The DWI data were not state-of-the-art. The sequence was 10-year old with 60
directions and a single b-value of 1000 s/mm2. This group of healthy and stroke subjects began enrollment in a prospective
stroke study at Washington University in 2010 with completion in 2015. In future work, we will have access to subjects studied
with multi-shell, multi-directional and multi-weighted diffusion weighted images. Another limitation is that data is available
only at 3 months and 12 months for fear that diffusion imaging at 2 weeks, the first time point in the study, was too noisy. In the
new cohort we will have access to 2-week data. This is important as most recovery occurs between 2 weeks and 3 months.

We simulated fMRI functional connectivity by augmenting the stochastic whole brain personalised model with a standard
hemodynamic pipeline. We used the average (across ROIs) and inter-hemispheric homotopic functional connectivity (FC) and
entropy (H, which measures the functional weight diversity) to characterize stroke-related changes. The model reproduced
changes of functional connectivity observed empirically in stroke, such as a decrease of inter-hemispheric FC33, 49, 50, 64, 65

and entropy46, subsequent normalization32, and correlation with behavioral performance33. However, the model’s fit with
empirically measured FC was low (results not shown). We elected not to optimize the input through functional connectivity
because it would have hidden the role of structural connectivity in supporting a critical phase transition in stroke patients and
its progression following treatment. Fitting the model with free parameters has its own issues including sloppy parameter
sensitivities71, identifiability problem72 and overfitting issues73. More importantly, this work aims at unveiling robust and
universal features of brain criticality in relation to the anatomical brain connectivity structure and focal lesions, and therefore it
is crucial that the model dynamics has the smallest possible degrees of freedom74.

Stroke lesions cause changes in activity, entropy, and criticality
Whole-brain models of healthy controls showed stable patterns of neural activity, both across time-points and individuals. It
is important to understand the model dynamics in healthy subjects before considering changes in stroke. For low thresholds
of activation, the system is super-critical with high levels of activity, low entropy, low levels of functional connectivity, and
a single giant first cluster (S1) (Fig. 3, Suppl. Material, Figs S2-S8). This is akin to a brain in status epilepticus with very
high level of activity but low entropy, hence no efficient processing of information and lack of consciousness. For very high
thresholds of activation, the system is sub-critical with low levels of activity, low functional connectivity, and entropy. Activity
is mostly local with small clusters (S1). For intermediate thresholds, the neural patterns followed the expected behavior, with a
phase transition peaking around the maximum of S2 (Fig. 3, Suppl. Material, Figs. S2-S8). In contrast, simulations of the
patients’ brains at three months post-stroke show striking attenuation in the signatures of brain criticality. While the curves of
overall activity are just slightly decreased as compared to controls, the variability of activity, functional connectivity (FC), and
entropy (H) are significantly decreased (Suppl. Material, Figs. S4-S8). The first cluster is significantly decreased in size, while
the second cluster is significantly larger as compared to controls at multiple thresholds of activation (Fig. 3; Suppl. Material,
Figs. S4-S8).

Crucially, the same criticality signatures reveal the recovery at one-year post-stroke. Indeed, the neural patterns in t2
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approach the corresponding controls’ average, especially for S2 and σA. Hence clusters of activity provide a dynamic estimate of
the spread of neural activity, and a measure of integration-segregation in terms of coherent groups of active regions. Criticality
alterations and their recovery were related to functional connectivity measures. There was a negative correlation between the
decrease of the size of S2 (towards the control’s average) and the increase in whole-brain model FC (Fig. 6). Stroke-specific
measures of disrupted FC, e.g. inter-hemispheric FC, were also related to S2 size (Fig. 6).

Correlation between criticality and behavior
The role of criticality in behavior has been discussed in prior studies75, 76. For instance, Palva et. al.77 reported a strong
correlation between scale-free neuronal avalanches and behavioral time-series in MEG/EEG data. The connection between
human cognitive performance and criticality has also been investigated. Ezaki et. al provided empirical support that subjects
with higher-IQ have neural dynamics closer to criticality than subjects with lower-IQ participants78. Our findings show for
the first time that causal manipulations of brain activity, through lesions and recovery, modifies criticality in a significant
behavioral manner. To measure behavioral impairment, we aggregated scores across multiple domains as computed in47. This
index captures global disability and correlated with empirical measures of functional connectivity (Fig. 6). A normalization of
criticality in terms of the size of the second cluster (S2(t2− t1)) also correlated with the degree of behavioral recovery (B(t2t1),
Fig. 6). Patients with greater recovery showed greater changes in S2. Interestingly, the second-largest cluster of activity proved
a better predictor of recovery than changes in model FCm(t2− t1) (Fig. 6) or entropy Hm(t2− t1) (Suppl. Material, Fig. S12).

Anatomical connections supporting criticality and prediction of recovery
Specific connections in the brain at t2 predicted with high accuracy, in a ridge regression model, criticality values (S1 and
S2 size) at t2. Moreover, surprisingly, connections at t1 predicted changes of criticality between t1 and t2. Higher values and
stronger criticality recovery were associated with visual connections, while lower values and weaker recovery were associated
with DMN connections. Importantly, connections related to the recovery of criticality were not random but followed the normal
topology of healthy functional connections. Accumulating evidence suggests that brain regions comprising the default-mode
network (DMN) have a prominent role in maintaining resting-state networks79 and in facilitating the spread of neural avalanches
through the large-scale structural network80.

In a recent review, Gollo et. al.23 hypothesized that hub regions within the DMN represent a structural signature of
near-critical dynamics. Our findings provide some support for this idea. Edges to/from DMN regions as well as networks
sub-serving attention and executive control (cingulo-opercular and dorsal attention networks) predicted higher criticality values
at t2. And, regions comprising the visual and the DMN networks were clearly involved in the patients’ criticality recovery from
t1 to t2.

An increase in critical signatures from t1 to t2 must correspond to the recovery of structural (anatomical) connections, which
is captured by diffusion-weighted imaging (DWI) and tractography. Changes in DWI and tractography may reflect a number of
different homeostatic plasticity mechanisms, including structural plasticity in gray and white matter tracts, recovery of neural
cells, remyelination, and rewiring. Whether long-range anatomical connectional changes support the recovery of function
in stroke is not a well-explored issue. Longitudinal changes in micro- and macro-scale structural anatomy and physiology
following experimentally induced strokes have been tracked in animals, mostly in the perilesional area81. However, there
are also observations of long-range plasticity82–84. In humans, structural plasticity can be measured at the macro-scale level
with diffusion MRI85. There is now convincing evidence in both humans and animals that learning through activity-dependent
plasticity can modify white matter in healthy adults86, 87, and possibly in stroke patients88–90.

Conclusions
In summary, our theoretical framework to model individual brain dynamics based on real structural connectivity networks
suggests that patients affected by stroke present decreased levels of neural activity, decreased entropy, and decreased strength of
the functional connections. All these factors contribute to an overall loss of criticality at three months post-stroke that recovers
at twelve months, driven by white matter connections remodeling. Notably, our model contains only three parameters (r1, r2,
and T ), all set apriori without any fitting procedures. In conclusion, personalized whole-brain dynamical models poised at
criticality track and predict stroke recovery at the level of the single patient, thereby opening promising paths for computational
and translational neuroscience.

Methods

Stroke dataset
All data came from a large prospective longitudinal stroke study described in previous publications33, 47, 53. We provide here a
brief description of the dataset and refer the reader to those articles for a more comprehensive description.
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Clinical sample: The dataset includes 132 stroke patients at the sub-acute stage (2 weeks post-stroke). The inclu-
sion/exclusion criteria were as follows: first symptomatic stroke, ischemic or hemorrhagic, and clinical evidence of any
neurological deficit. We used data from the subset of 103 patients who returned for clinical and imaging assessments at three
months post-stroke, as well as the data from the 88 patients who returned for 1 year post-stroke assessment (for details see
Corbetta et al.47). The control group, formed by 28 individuals, was matched with the stroke sample for age, gender, and years
of education. Data was collected twice in the healthy controls, 3 months apart. Stroke patients and healthy controls provided
informed consent as approved by the Washington University Institutional Review Board Behavioral assessment.

The neuropsychological battery included 44 behavioral scores across five behavioral domains: language, memory, motor,
attention, and visual function. These domains were chosen to represent a wide range of the most commonly identified deficits
in people after a stroke.

MRI Acquisition
Patients were studied 2 weeks (mean = 13.4 d, SD = 4.8 d), 3 months (mean = 112.5 d, SD = 18.4 d), and 1 year (mean =
393.5 d, SD = 55.1 d) post-stroke. Diffusion data were obtained only at 3 months and 1 year. Controls were studied twice
with an interval of 3 months. All imaging was performed using a Siemens 3T Tim-Trio scanner at WUSM and the standard
12-channel head coil. The MRI protocol included structural, functional, pulsed arterial spin labeling (PASL) and diffusion
tensor scans. Structural scans included: (i) a sagittal T1-weighted MPRAGE (TR=1,950 ms, TE=2.26 ms, flip angle=90°,
voxel size= 1.0×1.0×1.0 mm); (ii) a transverse T2-weighted turbo spin echo (TR = 2,500 ms, TE = 435 ms, voxel size =
1.0×1.0×1.0 mm); and (iii) sagittal fluid attenuated inversion recovery (FLAIR) (TR = 7,500 ms, TE = 326 ms, voxel size
= 1.5×1.5×1.5 mm). PASL acquisition parameters were: TR = 2,600 ms, TE = 13 ms, flip angle = 90°, bandwidth 2.232
kHz/Px, and FoV 220 mm; 120 volumes were acquired (322 s total), each containing 15 slices with slice thickness 6- and
23.7-mm gap. Resting state functional scans were acquired with a gradient echo EPI sequence (TR = 2,000 ms, TE = 27
ms, 32 contiguous 4-mm slices, 4×4 mm in-plane resolution) during which participants were instructed to fixate on a small
cross in a low luminance environment. Six to eight resting state fMRI runs, each including 128 volumes (30 min total), were
acquired. fMRI Data Preprocessing of fMRI data included: (i) compensation for asynchronous slice acquisition using sinc
interpolation; (ii) elimination of odd/even slice intensity differences resulting from interleaved acquisition; (iii) whole brain
intensity normalization to achieve a mode value of 1,000; (iv) removal of distortion using synthetic field map estimation and
spatial realignment within and across fMRI runs; and (v) resampling to 3-mm cubic voxels in atlas space including realignment
and atlas transformation in one resampling step. Cross-modal (e.g., T2 weighted to T1 weighted) image registration was
accomplished by aligning image gradients. Cross-model image registration in patients was checked by comparing the optimized
voxel similarity measure to the 97.5 percentile obtained in the control group. In some cases, structural images were substituted
across sessions to improve the quality of registration.

Diffusion weighted imaging (DWI) included a total of 64 near-axial slices. We used a fully optimized acquisition sequence
for tractography that provided isotropic (2×2×2 mm) resolution and coverage of the whole head with a posterior-anterior phase
of acquisition. We set the echo time (TE) and the repetition time (TR) to 9.2 milliseconds and 9200 milliseconds, respectively.
At each slice location, 4 images were acquired with no diffusion gradient applied. Additionally, 60 diffusion-weighted images
were acquired, in which gradient directions were uniformly distributed on the hemisphere with electrostatic repulsion. The
diffusion weighting was equal to a b-value of 1000 sec mm2. In order to optimize the contrast of acquisition, this sequence was
repeated twice.

MRI and Lesion Analysis
Individual T1 MRI images were registered to the Montreal Neurological Institute brain using FSL (FMRIB Software Library)
FNIRT (FMRIB nonlinear imaging registration tool). Lesions were manually segmented on individual structural MRI images
(T1-weighted MPRAGE, T2-weighted spin echo images, and FLAIR images obtained 1–3 wk post-stroke) using the Analyze
biomedical imaging software system (www.mayoclinic.org). Two board-certified neurologists (M.C. and Alexandre Carter)
reviewed all segmentations. Special attention was given to distinguish lesion from cerebral spinal fluid (CSF), hemorrhage from
surrounding edema, and to identify the degree of periventricular white matter damage present. In hemorrhagic strokes, edema
was included in the lesion. A neurologist (M.C.) reviewed all segmentations a second time, paying special attention to the
borders of the lesions and degree of white matter disease. The staff that was involved in segmenting or in reviewing the lesions
was blind to the individual behavioral data. Atlas-registered segmented lesions ranged from 0.02 to 82.97 cm3 with a mean of
10.15 cm3 (SD = 13.94 cm3). Lesions were summed to display the number of patients with structural damage for each voxel.

Functional Connectivity (FC) Processing
FC processing followed previous work from the laboratory (see32), with the addition of surface projection and processing
steps developed by the Human Connectome Project. First, data were passed through several additional preprocessing steps: (i)
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regressors were computed based on Freesurfer segmentation; (ii) removal by regression of the following sources of spurious
variance: (a) six parameters obtained by rigid body correction of head motion, (b) the signal averaged over the whole brain,
signal from ventricles and CSF, and (d) signal from white matter; (ii) temporal filtering retaining frequencies in the 0.009–0.08Hz
band; and (iii) frame censoring. The first four frames of each BOLD run were excluded. Frame censoring was computed using
framewise displacement with a threshold of 0.5 mm. This frame-censoring criterion was uniformly applied to all R-fMRI data
(patients and controls) before functional connectivity computations. Subjects with less than 120 usable BOLD frames were
excluded (13 patients, 3 controls).

Surface generation and processing of functional data followed procedures similar to Glasser et al.91, with additional
consideration for cortical segmentation in stroke patients. First, anatomical surfaces were generated for each subject’s T1 MRI
using FreeSurfer automated segmentation92. This included brain extraction, segmentation, generation of white matter and pial
surface, inflation of the surfaces to a sphere, and surface shape-based spherical registration to the subjects “native” surface
to the fs average surface. Segmentations were manually checked for accuracy. For patients in whom the stroke disrupted
automated segmentation, or registration, values within lesioned voxels were filled with normal atlas values before segmentation,
and then masked immediately after (seven patients). The left and right hemispheres were then resampled to 164,000 vertices
and registered to each other, and finally downsampled to 10,242 vertices each for projection of functional data. Following
preprocessing of BOLD data, volumes were sampled to each subject’s individual surface (between white matter and pial surface)
using a ribbon-constrained sampling available in Connectome Workbench. Voxels with a high coefficient of variation (0.5 SDs
above the mean coefficient of variation of all voxels in a 5-mm sigma Gaussian neighborhood) were excluded from volume to
surface mapping91. Time courses were then smoothed along the 10,242 vertex surface using a 6-mm FWHM Gaussian kernel.
Finally, time courses of all vertices within a parcel are averaged to make a parcelwise time series. We used a cortical surface
parcellation generated by Gordon et al.57. The parcellation is based on R-fMRI boundary mapping and achieves full cortical
coverage and optimal region homogeneity. The parcellation includes 324 regions of interest (159 left hemisphere, 165 right
hemisphere). The original parcellation includes 333 regions, and all regions less than 20 vertices (approximately 50 mm2 )
were excluded. Notably, the parcellation was generated on young adults age 18–33 and is applied here to adults age 21–83.

Diffusion weighted imaging (DWI) processing
For each slice, diffusion-weighted data were simultaneously registered and corrected for subject motion and geometrical
distortion adjusting the diffusion directions accordingly93 (ExploreDTI http://www.exploredti.com). Spherical deconvolution
was chosen to estimate multiple orientations in voxels containing different populations of crossing fibres94–96. The damped
version of the Richardson-Lucy algorithm for spherical deconvolution55 was calculated using Startrack (https://www.mr-
startrack.com).

Algorithm parameters were chosen as previously described54. A fixed fibre response corresponding to a shape factor of
α = 1.5×10−3mm2/s was chosen54. Fibre orientation estimates were obtained by selecting the orientation corresponding to
the peaks (local maxima) of the fibre orientation distribution (FOD) profiles. To exclude spurious local maxima, we applied
both an absolute and a relative threshold on the FOD amplitude. A first “absolute” threshold was used to exclude intrinsically
small local maxima due to noise or isotropic tissue. This threshold was set to 3 times the mean amplitude of a spherical FOD
obtained from a grey matter isotropic voxel (and therefore also higher than an isotropic voxel in the cerebrospinal fluid). A
second “relative” threshold of 10% of the maximum amplitude of the FOD was applied to remove the remaining local maxima
with values higher than the absolute threshold97.

Whole-brain tractography was performed selecting every brain voxel with at least one fibre orientation as a seed voxel.
From these voxels, and for each fibre orientation, streamlines were propagated using Euler integration with a step size of 1 mm
(as described in54). When entering a region with crossing white matter bundles, the algorithm followed the orientation vector of
least curvature (as described in Schmahmann and Pandya98). Streamlines were halted when a voxel without fibre orientation
was reached or when the curvature between two steps exceeded a threshold of 60°.

The whole-brain streamlines were registered to the standard MNI. For each patient, whole-brain streamline tractography
was converted into streamline density volumes where the intensities corresponded to the number of streamlines crossing each
voxel. A study-specific template of streamline density volumes was generated using the Greedy symmetric diffeomorphic
normalization (GreedySyN) pipeline distributed with Advanced Normalization Tools99 (ANTs, http://stnava.github.io/ANTs/).
This provided an average template of the streamline density volumes for all subjects. The template was then co-registered with
a standard 2 mm MNI152 template using flirt tool implemented in FSL to obtain a streamline density template in the MNI152
space. Finally, individual streamline density volumes were registered to the streamline density template in the MNI152 space
template using ANTs GreedySyn. The same registration parameters were applied to the individual whole-brain streamline
tractography using the trackmath tool distributed with the software package Tract Querier100 using ANTs GreedySyn. This step
produced a whole-brain streamline tractography in the standard MNI152 space.

Dissections were performed using trackvis101 (http://trackvis.org). Regions of interest were derived from57 and arranged 2
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by 2 in order to select streamlines and build a connectivity matrix for each patient. We considered the number of streamlines
existing between two regions as a surrogate of the strength of the connection. Although the number of streamlines is not precise
enough for an accurate estimate of fibre strength102, it is acceptable in the context of brain disconnection after a stroke103, 104.

Characterization of simulated brain activity
We have considered the following standard quantities to characterize the simulated brain activity:

• the mean network activity,

〈A〉= 1
ts

ts

∑
t=1

A(t), (2)

where A(t) = ∑
N
i=1 si(t)/N is the instantaneous activity, N is the total number of nodes and ts is the simulated total time;

• the standard deviation of A(t),

σA =

√
1
ts

ts

∑
t=1

(
A(t)−〈A〉

)2
, (3)

• the sizes of the averaged clusters, the largest 〈S1〉 and the second largest 〈S2〉. Clusters were defined as ensembles of
nodes that are structurally connected to each other and simultaneously active.

Following our previous work34, we set the model parameters to the following values, r1 = 2/N (with N = 324), r2 = r1/5
1 ,

and we vary the activation threshold T ∈ [0,0.2]. We updated the network states, starting from random configurations of A, I
and R states, for a total of ts time-steps. For each value of the threshold T we computed the state variables, 〈S1〉, 〈S2〉, 〈A〉 and
σA. Throughout this study, unless stated otherwise, the final numerical results presented were averages over 50 initial random
configurations. For computation of model data, we discarded the initial transient dynamics (first 100 time steps).

From the model output to BOLD signal
We have employed a standard procedure to transform model output in BOLD functional signals34, 60. Accordingly, the node’s
activity, si(t), is convolved with a canonical double-gamma hemodynamic response function (HRF),

xi(t) =
∫

∞

0
si(t− τ)h(τ)dτ, (4)

with,

h(τ) =
(

τ

d1

)a1
e−

τ−d1
b1 − c

(
τ

d2

)a2
e−

τ−d2
b2 , (5)

where xi(t) is the BOLD signal of the i-th node. The free parameters in (5) were fixed according to values found in105, i.e.,
di = aibi, a1 = 6, a2 = 12, bi = 0.9, and c = 0.35. Finally, the BOLD time-series, x(t), were filtered with a zero lag finite
impulse response band pass filter in the frequency range of 0.01−0.1 Hz.

From the generated BOLD signal we can finally extract the following quantities:

• the functional connectivity network (FC). In fact, the FC matrix FCi j is defined through Pearson correlation:

FCi j =
〈xix j〉−〈xi〉〈x j〉

σiσ j
, (6)

where σi =
√
〈x2

i 〉−〈xi〉2 is the standard deviation and 〈·〉 is the temporal average of the BOLD time series.

• the average of the functional connectivity:

〈FC〉= 2
N(N−1)

N

∑
i

N

∑
j>i
|FCi j|. (7)

From the above expression we observe that only the upper triangular elements of |FC| are considered in the average.
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• the Shannon entropy:

H =−
m

∑
i=1

pi log pi/ logm, (8)

where m is the number of bins used to construct the probability distribution function of the upper triangular elements of
|FC|. The normalization factor in the denominator, i.e., logm, is the entropy of a uniform distribution, and it ensures that
H is normalized between 0 and 1. Following46, we partitioned our distributions, both for empirical and model generated
data, with m = 10 bins. The higher the diversity of the functional connectivity matrix, the higher the entropy of that
functional connectivity matrix.

• finally, we characterize the distance between any two given simulated neural quantities at t1 and t2 through the Euclidean
distance:

d(t1, t2) =
√

∑
T
(Xt2(T )−Xt1(T ))2, (9)

where Xt(T ) is a given neural pattern at time-point t and threshold T .

Mapping criticality to structural connectivity
The main aim of these analyses was to identify topographical patterns of the structural connectivity matrix (SC) that are related
to criticality indexes through multivariate (machine learning) analyses. In our multivariate approach (also see Siegel et al.33

and Salvalaggio et al.63), features of the individual SC matrices extracted by Principal Component Analysis (PCA) were used
as multivariate predictors for a Ridge Regression (RR) model trained to predict patients’ criticality values. RR differs from
multiple linear regression because it uses L2-normalization to regularize model coefficients, so that unimportant features are
automatically down weighted or eliminated, thereby preventing overfitting and improving generalization on test data106. The
model weights W are computed as:

W = (XT X +λ I)−1XTY (10)

where X is the set of predictors and Y is the outcome variable. The regularization term provides a constraint on the size of
weights and it is controlled by parameter λ . A tuning procedure is necessary to find the appropriate value of λ . Importantly, this
approach also allows to project predictive weights back to brain data in a very simple way33, 107. Before applying RR, principal
component analysis (PCA) was performed on the SC matrix to reduce the input dimensionality. The latter included 52,326
edges, corresponding to all non-diagonal elements of one half of the symmetric SC matrix of 324 nodes/parcels. Principal
Components (PCs) that explained 95% of the variance were retained and used as input for the RR model. All predictors (PC
scores) and the outcome variable (criticality value) were z-normalized before applying RR. All RR models were trained and
tested using a leave-one-(patient)-out cross validation (LOOCV) loop108. In each loop, the regularization coefficient λ was
optimized by identifying a value between λ = 10−5 and 105 (logarithmic steps) that minimized leave-one-out prediction error
over the training set. Optimal weights were solved across the entire training set using gradient descent to minimize error
for the ridge regression equation by varying λ . These model weights were then applied to the left-out patient to predict the
criticality value. A prediction was generated for all patients in this way. Model accuracy was assessed using the coefficient of
determination

R2 = 1− ∑(Y −Y ′)2

∑(Y − Ȳ )2 (11)

where Y are the measured criticality values, Y ′ are the predicted criticality values and Ȳ is the mean of predicted criticality
indexes. The statistical significance of all LOOCV results was assessed using permutation test. For each regression model,
criticality scores were randomly permuted across subjects 10000 times, and the entire regression was carried out with each
set of randomized labels. A P-value was calculated as the probability of observing the reported R2 values by chance (number
of permutation R2 > observed R2)/(number of permutation). Finally, the RR weight matrix was averaged across all LOOCV
loops to generate a single set of consensus weights. Statistical reliability of each consensus weight was assessed by comparing
its distribution of values (throughout the LOOCV loops) to a null distribution (obtained from the null models generated for
permutation testing) using a FDR corrected t-test. The final set of (statistically reliable) consensus weights was back projected
to the brain to display a map of the most predictive structural connections.
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