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Abstract	26 

Environmental microbial diversity is often investigated from a molecular perspective using 16S 27 

ribosomal RNA (rRNA) gene amplicons and shotgun metagenomics. While amplicon methods are 28 

fast, low-cost, and have curated reference databases, they can suffer from amplification bias and are 29 

limited in genomic scope. In contrast, shotgun metagenomic methods sample more genomic regions 30 

with fewer sequence acquisition biases. However, shotgun metagenomic sequencing is much more 31 

expensive (even with moderate sequencing depth) and computationally challenging. Here, we 32 
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develop a set of 16S rRNA sequence capture baits that offer a potential middle ground with the 33 

advantages from both approaches for investigating microbial communities. These baits cover the 34 

diversity of all 16S rRNA sequences available in the Greengenes (v. 13.5) database, with no 35 

sequence having < 80% sequence similarity to at least one bait for all segments of 16S. The use of 36 

our baits provide comparable results to 16S amplicon libraries and shotgun metagenomic libraries 37 

when assigning taxonomic units from 16S sequences within the metagenomic reads. We demonstrate 38 

that 16S rRNA capture baits can be used on a range of microbial samples (i.e., mock communities 39 

and rodent fecal samples) to increase the proportion of 16S rRNA sequences (average >400-fold) and 40 

decrease analysis time to obtain consistent community assessments. Furthermore, our study reveals 41 

that bioinformatic methods used to analyze sequencing data may have a greater influence on 42 

estimates of community composition than library preparation method used, likely in part to the extent 43 

and curation of the reference databases considered.  44 

1 Introduction 45 

The study of microbes is critically important, as they have many essential roles in ecosystem 46 

function, disease pathology, host physiology, and possibly assessing infectious disease outbreaks 47 

(Dueker et al., 2018; Gallardo-Escárate et al., 2020). As microbial communities can often be highly 48 

diverse and complex, it can be challenging to identify rare taxa in complex environmental samples 49 

(e.g., soil, freshwater, etc.) with traditional and modern techniques (i.e., culturing, 16S amplicons, or 50 

metagenomic shotgun libraries). Advances in sequencing technologies have transformed traditional 51 

microbiology. Microbial communities that were previously considered indiscernible or unstudied, 52 

can now be investigated at greater depths than ever before from many different environmental 53 

systems (Gilmour et al., 2010; Kustin et al., 2019). 54 

For decades, the 16S small subunit ribosomal RNA (rRNA) gene has been the gold standard marker 55 

for microbial molecular taxonomic research (Woese and Fox, 1977; Meola et al., 2015), as this 56 

highly conserved gene contains nine rapidly evolving hypervariable regions that aid in species 57 

identification (Yuan et al., 2015). Amplicon sequencing, targeting the 16S rRNA, is a cost-effective 58 

and high-throughput method used to study aquatic, terrestrial, food- and host-associated microbial 59 

communities (Logares et al., 2014; Polka et al., 2015; Jiang et al., 2016; Jousselin et al., 2016; 60 

Jouglin et al., 2019; Suenami et al., 2019; Ziegler et al., 2019). However, studies relying on 16S 61 

rRNA amplicon sequencing have limitations and biases. Relevant biases in 16S rRNA amplicon 62 

sequencing are associated with DNA extraction, amplification via PCR, sequencing, and sequence 63 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.18.423101doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423101


  16S Target Enrichment 

 
3 

analysis (Kennedy et al., 2014; Knight et al., 2018). Specifically, PCR biases include primer bias 64 

(Klindworth et al., 2013; Kelly et al., 2019) and varying GC content (Aird et al., 2011). Additional 65 

limitations associated with amplicon sequencing include challenges in the taxonomic characterization 66 

of microbial communities, as well as accuracy and availability of reference databases (Kennedy et al., 67 

2014; Poretsky et al., 2014; Ritari et al., 2015; Knight et al., 2018). Furthermore, the selection of the 68 

hypervariable region used for the amplicon analysis (i.e., V1-V3; V3-V4; V4; etc) can lead to 69 

differences in bacterial identification (Vetrovsky and Baldrian, 2013; Martinez-Porchas et al., 2016).  70 

In more recent years, metagenomic shotgun sequencing has aimed to characterize taxonomic profiles 71 

of unique clade-specific marker genes to provide a balanced view of community composition and 72 

function (Neelakanta and Sultana, 2013; Knight et al., 2018). However, metagenomic sequencing has 73 

its own limitations; genomic DNA may contain non-target DNA (e.g., human DNA), which can 74 

affect downstream analysis (e.g., mis-assemblies of sequence contigs, spurious reads) thus leading to 75 

inaccurate conclusions (Schmieder and Edwards, 2011; Gasc and Peyret, 2018). Also, metagenomic 76 

libraries are more expensive, take longer to prepare, and are much more complex than amplicon 77 

libraries, requiring more computational effort (Sekse et al., 2017). In particular, it is difficult to 78 

identify low abundance genetic traits and rare taxa using metagenomic libraries, and extensive deep 79 

sequencing is often required to do so (Lasa et al., 2019). In summary, shotgun sequencing is less 80 

biased and yields data on many genomic regions, but the main tradeoffs are high costs of library 81 

preparation, sequencing, and analysis. 82 

Mock communities can be used to help establish ground truth in microbial diversity studies, in 83 

particular when comparing different library preparation methods (Costea et al., 2017; Rausch et al., 84 

2019). Rausch et al., 2019 provided a comparison of 16S rRNA amplicon sequencing and 85 

metagenomic sequencing, and revealed similar community makeup (i.e., abundance and taxa 86 

diversity) of their shallow mock community regardless of library type. Conversely, other studies have 87 

found key differences in abundance and taxa of mock communites attributed to wet-laboratory 88 

methods (Costea et al., 2017; Rausch et al., 2019). However, some of these differences may be 89 

attributed to varying bioinformatic tactics.  90 

In terms of bioinformatic analyses, advantages and limitation of methods, reference databases, and 91 

software have been vastly described for both 16S rRNA and metagenomic strategies (Truong et al., 92 

2015; Callahan et al., 2016a; Costea et al., 2017; Escobar-Zepeda et al., 2018; Rausch et al., 2019). 93 

The variation among these can lead to a lack of sensitivity and specificity that may contribute to 94 

wrong classifications and/or no classification at a specific taxonomic level, and erroneous abundance 95 
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assignments (Escobar-Zepeda et al., 2018). In particular, it can be challenging to analyze 96 

environmental samples, as most reference databases are based on human commensals (Dueholm et 97 

al., 2020). 98 

Both strategies (i.e., 16S rRNA amplicon and metagenomic shotgun libraries) present their own 99 

challenges and variations in analyses (Knight et al., 2018), but metagenomic shotgun libraries tend to 100 

perform at a higher sensitivity and specificity than 16S rRNA amplicon data (Escobar-Zepeda et al., 101 

2018). For metagenomic data, programs like MetaPhlAn2 may be used to classify and estimate the 102 

relative abundance of microbial cells by mapping reads against marker sequences to classify the 103 

sequences at the sub-species to higher taxonomic levels (i.e., marker-gene approach) (Segata et al., 104 

2012; Truong et al., 2015). Whereas 16S rRNA amplicon data is commonly analyzed by inferring 105 

representative sequences using a variety of methods, some of which are influenced by fragment size 106 

and 16S region (Edgar, 2013; Callahan et al., 2016a; Callahan et al., 2016b). Furthermore, some 107 

methods used to assign operational taxonomic units may result in limited resolution at lower 108 

taxonomic levels (e.g., genus and species levels), as even organisms that share 98.75% sequences 109 

may be different species (Mysara et al., 2017). Reference databases for 16S rRNA are much more 110 

extensive than those for metagenomic analyses, which is key for superior analysis, particuraly in 111 

environmental samples (Escobar-Zepeda et al., 2018). However, variation in taxonomic classification 112 

and abundance has also been associated with the use of different reference databases (Jovel et al., 113 

2016; Rausch et al., 2019).  114 

Hybridization capture (also known as sequence capture, target capture, or targeted sequence capture) 115 

is an enrichment technique that uses a set of biotinylated DNA or RNA baits that are complementary 116 

to DNA sequences of interest to increase the proportion of DNA fragments of interest within DNA 117 

libraries, subsequently characterizing the DNA by massively parallel sequencing (Lasa et al., 2019). 118 

Hybridization capture assays have been designed previously for the 16S rRNA gene, using 15-1,402 119 

baits (Gasc and Peyret, 2018; Barrett et al., 2020). Additional hybridization capture bait sets have 120 

been designed for a variety of microbial projects, such as sets of defined pathogens or particular 121 

genes, including virulence genes for Vibrio spp. that infect oysters (Lasa et al., 2019), bifidobacterial 122 

in the gut of mammals (Lugli et al., 2019), and antibiotic resistance genes (Guitor et al., 2019). 123 

Importantly, unlike other culture independent techniques, hybridization capture provides greater 124 

phylogenetic resolution and increased sensitivity, while requiring fewer sequencing reads (Lasa et al., 125 

2019; Barrett et al., 2020). More specifically, 16S rRNA capture baits provide a cost-effective way to 126 

identify bacteria in diverse environmental samples and identify rare taxa.  127 
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Here, we present a hybridization capture method (i.e., 16S-cap) to enrich metagenomic shotgun 128 

libraries for DNA sequences of 16S rRNA genes. Our protocol improves on the existing methods by 129 

including many more baits that better cover known sequence variation in 16S databases, taking 130 

advantage of the extensive reference databases and ease of analyses of 16S rRNA sequences for 131 

taxonomic classification and decreasing bias introduced from primer affinity, while reducing 132 

sequencing costs per sample compared to unenriched metagenomic libraries. For microbes, targeted 133 

sequence capture techniques for 16S rRNA have shown more accurate representation of microbial 134 

communities compared to traditional methods (i.e., 16S rRNA amplicons, shotgun libraries) (Gasc 135 

and Peyret, 2018). We provide a comparison of traditional methods for assessing composition of 136 

microbial communities (i.e., 16S rRNA amplicons and metagenomic shotgun libraries) with our 16S-137 

cap method to characterize in silico mock, in vitro mock, and real microbial communities from 138 

genomic data.  139 

2. Materials & Methods 140 

2.1 Samples and DNA Extraction 141 

We used two commercial standard genomic DNA mock community collections to characterize 142 

simple communities (HM-276D, BEI Resources, Manassas, VA; D6306, Zymo Research, Irvine, 143 

CA). For complex communities, we used a subset of fecal samples from previous studies that 144 

examined the impacts of environmental xenobiotic agents on the gut microbial communities of 145 

rodent models (Gao et al., 2017; Wang et al., 2018). The first study examined carbamate insecticide 146 

in male C57BL/6 mice (i.e., Mus musculus) (Gao et al., 2017), and the second examined green tea 147 

polyphenols in female Sprague-Dawley rats (i.e., Rattus norvegicus) (Wang et al., 2018). DNA was 148 

extracted using Qiagen Fast DNA Stool Mini Kit (QIAGEN, Valencia, CA, USA) or PowerSoil 149 

DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, CA, USA). Details on experimental design and 150 

extractions are previously described (Gao et al., 2017; Wang et al., 2018). 151 

2.2 16S rRNA Amplicon Metabarcoding 152 

The primer pairs targeting the V3 and V4 16S regions (S-D- Bact-0341-b-S-17 and S-D-Bact-0785-153 

a-A-21 ) (Klindworth et al., 2013) were used for amplification of the 16S rRNA gene in rat fecal 154 

samples and mock communities; and the primer pair targeting the V4 region (515-F and 806-R) 155 

(Caporaso et al., 2012) was used on the mouse fecal samples. We created indexed fusion primers 156 

with TruSeq compatible sequencing oligos as previously described using the Adapterama I and 157 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.18.423101doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423101


  16S Target Enrichment 

 
6 

This is a provisional file, not the final typeset article 

Adapterama II systems (Glenn et al., 2019a; Glenn et al., 2019b) to generate amplicon libraries using 158 

two rounds of PCR (Method 5 of Table 3 from Glenn et al. 2019b). For the first PCR, we prepared 159 

individual 25 µL PCR reactions for each sample using KAPA HiFi reagents (KAPA Biosystems, 160 

Wilmington, MA, USA). Each PCR reaction mix included 5 µL 5x KAPA HiFi buffer, 0.75 µL 10 161 

mM dNTPs, 0.5 µL KAPA HiFi HotStart, 1.5 µL 5 µM forward indexed-fusion primer, 1.5 µL 5 µM 162 

reverse indexed-fusion primer, and 1 µL of 20 ng/µL DNA. PCR conditions were as follows: initial 163 

denaturation at 95°C for 3 min; 15-18 cycles of 95°C for 20 sec, 60°C for 30 sec, and 72°C for 30 164 

sec; final extension at 72°C for 5 min. 165 

In preparation for the second PCR, we normalized individually indexed PCR products with a 166 

SequalPrep Normalization Plate Kit (Invitrogen, Carlsbad, CA, USA) according to manufacturer’s 167 

protocols or by pooling them together based on agarose gel band brightness. These pools served as 168 

the template for a second limited cycle PCR. Each 25 µL PCR reaction mix included: 5 µL 5x KAPA 169 

HiFi buffer, 0.75 µL 10 mM dNTPs, 0.5 µL KAPA HiFi HotStart, 2.5 µL of 5 µM forward iTru5 170 

primer, 2.5 µL of 5 µM reverse iTru7 primer, and 5 µL of product from the first PCR. The following 171 

were used as PCR conditions: initial denaturation at 95°C for 2 min; 10 cycles of 95°C for 20 sec, 172 

60°C for 15 sec, and 72°C for 30 sec; final extension at 72°C for 5 min. These PCR products were 173 

purified with Sera-Mag magnetic beads (Thermo-Scientific, Waltham, MA, USA). We quantified the 174 

final products with a Qubit 2.0 Fluorometer (Thermo-Scientific, Waltham, MA, USA) and pooled 175 

them in equal molar ratios for sequencing. Samples were sequenced using an Illumina MiSeq v2 600 176 

cycle kit (Illumina, San Diego, CA, USA) at the Georgia Genomics and Bioinformatics Core 177 

(Athens, GA, USA).    178 

2.3 Metagenomic Libraries  179 

Extracted DNA was sheared on a Bioruptor UCD-300 (Diagenode, Denville, NJ, USA) to an average 180 

size of about 500 bp. We input ~100 ng of fragmented DNA into each reaction of a KAPA 181 

HyperPrep Kit (KAPA Biosystems, Wilmington, MA, USA) following manufacturer’s protocol at 182 

half volume reaction size with 14 PCR cycles using iTru adaptors and indexed primers (Glenn et al., 183 

2019b). Samples were sequenced on an Illumina HiSeq 3000 with PE150 reads (Oklahoma Medical 184 

Research Foundation, Oklahoma City, OK, USA). 185 

2.4 16S rRNA Bait Design 186 
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We used Prokka v1.11 with default settings, to annotate and extract all 16S rRNA sequences in 187 

GreenGenes v13.5 to ensure that only 16S rRNA regions were represented in the final bait set 188 

(Seemann, 2014). Stretches of up to 25 Ns were replaced with T bases to facilitate probe design 189 

across short unknown regions. We then used USEARCH v8.1 (Edgar, 2010) to sort by length (large 190 

to short) and cluster (query coverage 90%, identity 90%) sequences, retaining one centroid from each 191 

cluster. We then designed 120mer baits with flexible ~50% overlap. These baits were then clustered 192 

using USEARCH (query coverage 75%, identity 78%), and one centroid per cluster retained. 193 

2.5 16S rRNA Hybridization Capture Enrichments  194 

Metagenomic libraries were combined into 500 ng pools of eight samples for rodents or two samples 195 

for mock communities. Target enrichments of each pool were performed using myBaits kit (Arbor 196 

Biosciences CAT # 308616, Ann Arbor, MI, USA) using the designed 16S rRNA Capture Baits 197 

following manufacturer's protocol (v3.01) with a 24-hour 65°C hybridization. Following 198 

hybridization, we used Dynabeads M-280 Streptavidin magnetic beads (Life Technologies, Carlsbad, 199 

CA, US) for capturing and washing each biotinyalted bait library. We then performed a post-200 

enrichment amplification using Illumina P5/P7 primers (Illumina, San Diego, CA, USA) and KAPA 201 

HiFi HotStart reagents (KAPA Biosystems, Wilmington, MA, USA) using 98°C for 45 seconds, 202 

followed by 16-22 cycles of 98°C for 20 seconds, 60°C for 30 seconds, and 72°C for 60 seconds, 203 

ending with a final extension of 72°C for five minutes. PCR products were cleaned 1:1 with Sera-204 

Mag beads (Glenn et al., 2019a), quantified on Qubit and pooled in equimolar ratios for sequencing 205 

paired-end 150 bp and 300 bp reads on Illumina HiSeq 3000 (Oklahoma Medical Research 206 

Foundation, Oklahoma City, OK, USA) and MiSeq (Georgia Genomics Bioinformatics Core, Athens, 207 

GA, USA), respectively.  208 

2.6 Simulating 16S rRNA Target Enrichment Data  209 

Three metagenomes (i.e., Lindgreen synthetic metagenome (Lindgreen et al., 2016); Zymo Mock 210 

Community DS6306 genomes; and BEI Mock Community HM-276D) were used to simulate 16S 211 

rRNA capture data. In summary, a fasta file containing our 120mer bait set was mapped to each 212 

metagenome fasta file (Supplementary Data 1-3) using Burrows-Wheeler aligner (bwa) v.0.7.17 (Li 213 

and Durbin, 2009). Samtools v1.9 (Li et al., 2009) was used to convert the obtained sam file into a 214 

bam file. This mapping process is meant to simulate what would be an error- and bias-free 215 

hybridization process. Following this, we obtained the mapping coordinates of the baits on the 216 

reference metagenomes and extracted the sequences + 200 bp to the upstream and downstream of the 217 
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first position, if possible. Here, we sought to simulate a hybridization of the bait to the core of an 218 

~500 bp fragment while obtaining the flanking regions typically captured from use of biotinylated 219 

baits.  220 

The software ART 2016.06.05 (Huang et al., 2012) was then used to simulate > 200,000 paired-end 221 

150 bp fastq reads from these extended reference sequences from each metagenome. These fastq files 222 

were mapped to Greengenes 97% similarity database v.13.8 using BBmap v. 38.50 (Bushnell, 2014). 223 

For each metagenome, we recorded the number of paired reads mapped to Greengenes, number of 224 

forward reads, number of reverse reads and percentage average total mapped, and compared these 225 

results with those from real samples also mapped to the Greengenes database (see below) (Altschul et 226 

al., 1990).    227 

2.7 Data Processing and Analysis  228 

After obtaining demultiplexed Illumina pair-end raw sequences, we used library specific pipelines to 229 

process the data (Figure 1). For 16S rRNA amplicon libraries, primers were removed using cutadapt 230 

v1.15 (Martin, 2011). Following this, DADA2 (v1.8) was used for quality trimming and filtering, de-231 

replication and sequence-variant inference, merging paired-end reads, construction of feature tables, 232 

low relative abundance filtering of 0.5%, removal of chimeras, and taxonomy assignment (Callahan 233 

et al., 2016a). The taxonomy assignment was based on 97% clustered OUT based on Greengenes 234 

v13.8 database in the DADA2 pipeline.  235 

[Insert Figure 1] 236 

For 16S-cap libraries, the resulting quality filtered reads were mapped to the 97% clustered OTU 237 

based on Greengenes v13.8 database using BBmap v37.78 (Bushnell, 2014). The resulting mapping 238 

information was filtered, and a hit was recorded if both ends of paired read hit the same reference, or 239 

only one end of the paired read hit a reference. A low relative abundance filter of 0.5% was applied. 240 

Also, we assessed the presence of non-target reads in the quality-filtered dataset by 1) running 241 

MetaPhlAn2 v2.7.8 (Segata et al., 2012; Truong et al., 2015), and 2) mapping to the rat and mice 242 

genomes using Burrows-Wheeler aligner (bwa) v.0.7.17 (Li and Durbin, 2009).  243 

For unenriched metagenomic libraries, Trimmomatic v0.36 (Bolger et al., 2014) was used for quality 244 

trimming using a sliding window of three nucleotides with an average Q > 20, and minimum length 245 

of 75 nucleotides. Reads that passed initial quality filtering (including both paired reads and orphan 246 

reads) were fed to MetaPhlAn2 v2.7.14 for taxonomy assignment (Segata et al., 2012; Truong et al., 247 

2015). A low relative abundance filter of 0.5% was applied. To further compare to the results from 248 
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16S-cap analysis, we performed the same 16S mapping steps to the GreenGenes database as 249 

described for 16S-cap libraries for the unenriched libraries. 250 

Data was analyzed using R statistical software (R Development Core Team, 2010). Duncan’s 251 

multiple range test was used to compare abundance estimates between library types. Additionally, for 252 

all samples, abundance estimates were used to construct a Bray-Curtis dissimiarilty matrix, which 253 

was then used to generate a prinicle coordinate analysis (PCoA).  254 

3 Results 255 

3.1 16S rRNA Capture Bait Design  256 

The 1,262,986 sequences comprising Greengenes v13.5 were annotated and 1,261,075 16S rRNA 257 

sequences were retained. A total of 117 sequences containing consecutive runs of 25 or more 258 

ambiguous bases (Ns) were removed. A total of 18,649 centroidal sequences were obtained from 259 

USEARCH clustering. From these sequences, 413,480 120mer baits were designed. These baits were 260 

then clustered using USEARCH, retaining one centroid per cluster, for a total of 37,745 baits.  261 

3.2 Sequencing Summary Statistics 262 

A summary of average sequence statistics for each sample and library preparation type is given in 263 

Table 1. For the 16S rRNA amplicon data, the number of total raw read pairs per sample ranged from 264 

49,828 for the Zymo mock community to 136,184 for the BEI mock community, with rodent fecal 265 

samples having intermediate depth. More reads (~77%) remained from the rodent fecal samples after 266 

the denoising steps through the rigorous DADA2 pipelines versus the mock communities. Low 267 

percentages of high quality reads remained following filtering for both the BEI and Zymo mock 268 

communities (38.7% and 48.8% respectively). For the BEI mock community, initial index matching 269 

in R2 reads caused ~30% loss of data (versus less than 5% typically observed in other samples) and 270 

DADA2 quality trimming lost another ~30% of data. For the Zymo mock community, the loss of 271 

data was mainly due to chimeric filtering (~30% of data loss). 272 

For the unenriched libraries, the highest number of total raw read pairs ranged from 4,985,957 in the 273 

Zymo mock community to 28,219,552 in the insecticide-treated mouse feces. The percentage of 274 

reads retained after filtering was greater than 65% for all unenriched libraries. The average 275 

percentage of reads mapped to GreenGenes ranged from 0.1% to 0.2% in the BEI and Zymo mock 276 

communities. 277 
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For 16S-cap libraries, the PE150 reads had higher numbers of reads on average per sample type than 278 

PE300 reads. The highest number of raw reads (i.e., 11,474,476) was obtained for the insecticide-279 

treated mouse feces with PE150 reads. The percentage of reads after filtering were greater than 70% 280 

for all 16S-cap libraries. The average percentage of mapped reads was greater than 50% for all 16S-281 

cap libraries, with the highest percentage of mapping in the 16S-cap BEI mock community 282 

sequenced with PE300 at 75.7%. On average among all sample types, the proportion of on target 283 

reads was increased 435-fold when compared to unenriched libraries (range 283 – 499 fold increase, 284 

Suppplemental Table 2).  285 

[Insert Table 1] 286 

3.3 16S rRNA Target Enrichment Simulated Reads 287 

Summary information for simulated reads is given in Table 2. We observed a higher percentage of 288 

total mapped reads in our simulated mock communities than for the real data from those communities 289 

(Table 2). For example, the real data from the Zymo mock community had an average total mapping 290 

of 78.15% to GreenGenes, compared to 91.43% from the simulated data. Similarly, the BEI mock 291 

community had an average total mapping of 78.62% for the real data, compared to 92.37% for the 292 

simulated data. 293 

[Insert Table 2] 294 

3.4 Validation on Mock Community Samples 295 

We initially prepared amplicon libraries, unenriched metagenomic libraries, and enriched our 296 

metagenomic libraries using the target enrichment bait set (i.e., 16S-cap) we developed using two 297 

mock communities (Table 1). At the phylum level both samples appear to provide accurate 298 

identification of the microbes with good estimates of abundance, regardless of library type or data 299 

analysis method used (Figure 2). The 16S-cap samples and metagenomic samples generate one 300 

detection of a false positive phyla in the mock community samples (Figure 2). Additionally, in both 301 

the unenriched and 16S-cap libraries analyzed with a 16S mapping approach, Cyanobacteria was 302 

found in low abundance even though it was not expected to be present in the mock community. 303 

However, when analyzing the unenriched library using marker gene approach, Cyanobacteria was not 304 

found and instead Ascomycota was identified. 305 

[Insert Figure 2] 306 

At the genus level, 16S-cap and unenriched libraries reflect more accurate microbial community 307 

composition and abundance for most taxa (Figure 3). The 16S-cap and unenriched libraries with 16S 308 
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mapping missed three genera: Escherichia, Listeria, and Bacillus for both mock community samples. 309 

However, after identifying presumably false positive genera with above 1% abundance in the 310 

samples analyzed with 16S mapping software, three families with no genus identification, 311 

Enterobacteriaceae, Listeriaceae, Bacillaceae, were found, suggesting these are likely the missing 312 

genera. In comparison, 16S rRNA amplicon-based analysis identified nearly all genera in mock 313 

samples, however, its estimates of abundance for Actinomyces, Propionibacterium, Pseudomonas, 314 

and Rhodobacter all greatly deviate from the nominal compositions. The unenriched metagenomic 315 

libraries analyzed with a marker-gene approach were able to identify all 18 genera in the mock 316 

communities, however its estimate of Bacillus abundance in both mock communities deviate from 317 

the nominal composition (Figure 3).  318 

[Insert Figure 3] 319 

[Insert Figure 4] 320 

In the BEI mock community libraries, relative abundance estimates in the 16S-cap libraries were 321 

more accurate than the amplicon and unenriched libraries as measured by fold change being very 322 

close to 1 (Figure 4). In the amplicon library, several genera (i.e., Pseudomonas, Actinomyces, 323 

Propionilbacterium, and Rhodobacter) are beyond the 2-fold change of their nominal compositions. 324 

In particular one genus, Rhodobacter, proved to be challenging for all three library preparation 325 

methods for accurate estimation of relative abundance. Duncan’s multiple range test revealed that 326 

there were significant differences (p-value ≤ 0.05) between the BEI mock community amplicon and 327 

16S-cap libraries, whereas the unenriched libraries were not found to be significantly different than 328 

the amplicon or 16S-cap libraries. For the Zymo mock community libraries, relative abundance 329 

estimates in the 16S-cap libraries are more accurate than relative abundance estimates for the 330 

amplicon library. However, Duncan’s multiple range test did not detect a significant difference 331 

between the three library types (i.e., amplicon, unenriched, and enriched) (Figure 4). 332 

3.5 Validation on Fecal Samples  333 

Principle coordinate analysis was performed on mock community samples and additional samples 334 

from laboratory mice and rats to further validate the 16S-cap method. When Bray-Curtis was used to 335 

construct the dissimilarity matrix, which considers abundance estimates, we found that regardless of 336 

analyses at the level of family (Figure 5A, left) or genus (Figure 5B, right) similar themes emerged. 337 

We observed that the mock community samples were similar to each other regardless of library type. 338 

Conversely, in the mouse and rat samples, we found that the unenriched libraries analyzed with a 339 
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marker-gene approach grouped together separately from amplicon, unenriched, and 16S-cap libraries, 340 

all of which were analyzed with the 16S mapping approach.  341 

[Insert Figure 5] 342 

A comparison of Bray-Curtis distance was performed for rodent fecal samples at the level of family 343 

and genus (Figure 6). This analysis revealed similar trends regardless of sample type or taxonomic 344 

rank. The 16S-cap and unenriched libraries analyzed with 16S mapping approach showed to be the 345 

most similar to each other, with a dissimilarity rate below 0.25. Bray-Curtis dissimilarity was higher 346 

when comparing the amplicon libraries to both 16S-cap and unenriched libraries. When comparing 347 

the unenriched libraries analyzed with two different analysis strategies (i.e., mapping reads to 348 

GreenGenes vs gene-marker approach), we observed the highest degree of dissimilarity at both the 349 

family and genus levels with dissimilarity rates at approximately 0.75. Post-hoc analysis revealed 350 

that there were significant differences when comparing the unenriched and 16S-cap libraries to all 351 

other library types, regardless of sample type or taxonomic rank (Figure 6).  352 

[Insert Figure 6] 353 

4 Discussion 354 

Given the limitations of 16S rRNA amplicon and shotgun metagenomic libraries outlined in the 355 

introduction, we sought to provide an alternative method to identify microbial community 356 

composition by creating a 16S rRNA hybridization capture assay (i.e., 16S-cap). Our study revealed 357 

two important things: 1) our 16S-cap method is an efficient way to obtain sequences from the 358 

complete 16S rRNA gene to accurately reflect microbial community composition and abundance and 359 

2) bioinformatic analysis methods greatly influence community composition in environmental 360 

samples, regardless of library type. In our study we observed that sequences from 16S-cap were not 361 

significantly different than sequences from unenriched shotgun libraries when analyzed using similar 362 

bioinformatic methods and databases. However, we did find that the 16S-cap assay requires far fewer 363 

reads, thus allowing enriched libraries to be characterized on benchtop sequencers, including 364 

Illumina MiSeq instruments, at reasonable cost while overcoming the previously mentioned 365 

limitations with direct 16S rRNA approaches and metagenomic approaches. These limitations 366 

include selection and drift bias in PCR during amplicon library preparation and the potential for non-367 

target DNA (e.g., human DNA) in metagenomic libraries, which can lead to errors in downstream 368 

analyses.  369 
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Enrichment for genes of interest is an important technique in characterizing complex environmental 370 

samples. Previous studies have found other capture enrichment methods to increase the proportion of 371 

on target reads from ~0.1% in unenriched shotgun libraries to ~60% in enriched libraries (Gasc and 372 

Peyret, 2018). Similarly, we found 0.1 – 0.2% of unenriched libraries to map to the16S rRNA, 373 

whereas 58-76% of the enriched reads mapped to the 16S rRNA (Table 1). On average we achieved a 374 

435-fold increase in reads mapped to the 16S rRNA in our 16S-cap libraries compared to the 375 

unenriched libraries (Supplementary Table 2). In silico simulations of 16S-cap revealed that under 376 

ideal conditions, 88-92% mapping to the 16S rRNA from mock communities could be achieved. 377 

Therefore, our 16S-cap enrichment process helps to achieve a very high percentage of on-target 378 

reads, but not quite as high as theoretically possible. 379 

Our 16S-cap method identified several species that were not expected in the theoretical targets of the 380 

mock communities, which may be attributed to several factors. First, the lack of genus identification 381 

may be due to the mapping methods or clustering level used in data analysis rather than the library 382 

preparation method. Both the 16S-cap and unenriched libraries analyzed with a 16S mapping method 383 

failed to identify three genera Escherichia, Listeria, and some Bacillus in the mock communities. 384 

However, there are three familes, Enterobacteriaceae, Listeriaceae, and Bacillaceae, in the false 385 

positive genera with >1% abundance that align with our missing genera. Thus, it appears that reads 386 

for these three genera appear to be present, but are not being assigned appropriately at the genus 387 

level. By assigning these unidentified genera as Escherichia, Listeria, and Bacillus respectively, the 388 

16S-cap library is highly accurate in terms of taxonomic classification and abundance. Taxonomic 389 

misassignement is a known problem with 16S mapping bioinformatic methods, and new software is 390 

in development (Schloss and Westcott, 2011; Pollock et al., 2018; Zinger et al., 2019; Djemiel et al., 391 

2020). Additional work on the mapping and assignment processes used here, as well as comparisons 392 

of newly developed and commonly used bioinformatic software is beyond the scope of this paper, but 393 

warranted in future work. Other taxa identified that were not expected in the mock communities may 394 

be due to reagent contamination or index hopping during sequencing. Several studies show that 395 

contaminating DNA is common in laboratory reagents and DNA extraction kits (Salter et al., 2014; 396 

Weiss et al., 2014; Kim et al., 2017; Eisenhofer et al., 2019; Zinter et al., 2019). Furthermore, studies 397 

recommend sequencing negative controls consisting of ‘blank’ extractions and library preparations to 398 

identify contamination by bacterial species (Salter et al., 2014; Knight et al., 2018). Conversely, false 399 

positives of extremely low abundance (i.e., 0.1% or less) may be due to misassigned data that can 400 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.18.423101doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423101


  16S Target Enrichment 

 
14 

This is a provisional file, not the final typeset article 

occur during Illumina sequencing. This phenomena is often referred to as index hopping (van der 401 

Valk et al., 2019).  402 

We compared theoretical target values of the BEI resources and Zymo mock communities to all three 403 

library types (i.e., amplicon, unenriched, and 16S-cap) (Figures 3, 4). We find that the 16S-cap 404 

libraries are representative of the target abundance values of the mock communities (Figure 3). Post-405 

hoc analysis revealed that the 16S rRNA amplicon library and 16S-cap library made from the BEI 406 

mock community were significantly different from each other (p-value ≤ 0.05) based on relative 407 

abundance. A PCoA revealed that in the mouse and rat samples the unenriched libraries analyzed 408 

with a marker-gene approach grouped together separately from 16S rRNA amplicon libraries and 409 

16S-cap and unenriched libraries analyzed with taxonomic binning approach (Figure 5). Thus, 410 

enrichment and amplicon sequencing result in similar library composition, as do 16S-cap and 411 

unenriched libraries analyzed with a 16S taxonomic binning approach. This indicates that our 16S-412 

cap method may be less biased than 16S amplification, but that analysis methods or the reference 413 

database may greatly influence community composition results. Walsh et al. (2018) analyzed 414 

different species classifiers using marker gene approaches and taxonomic binning, and found that the 415 

results of the marker gene approach (i.e., MetaPhlAn2) were different from taxonomic binning 416 

methods. Taxonomic binning methods are influenced by the size of the reference genome, whereas 417 

marker gene approaches are not (Droge and McHardy, 2012; Balvociute and Huson, 2017; Walsh et 418 

al., 2018). The use of hybridization capture baits may help alleviate some of these issues.  419 

Other groups have designed a more limited bait set to hybridize all known 16S rRNA gene sequences 420 

by focusing on highly conserved regions and incorporating ambiguities(Gasc and Peyret, 2018). 421 

When validating their bait set on a mock community, they found that they detected 24 of 26 genera 422 

tested, and that two less abundant species (i.e., Methanobrevibacter smithii and Methanococcus 423 

aelocius at 0.00006%) were missed. In addition, Cariou et al., (2018) tested hybridization capture 424 

probes designed by Gasc & Peyret (2018) on a previously characterized pea aphid and found their 425 

enriched libraries to be representative of the bacterial population. There are some key differences 426 

between the design of our baits set and Gasc & Peyret (2018). Foremost, is the number of baits 427 

included in the bait set. Our bait set included 37,745 120mer baits, whereas Gasc & Peyret bait set 428 

include 15 baits that are 28- to 50-mer. Using more baits with more sequence variation among the 429 

baits helps to capture a greater range of diverse targets and thus generates more accurate abundance 430 

estimates of the full range of community members. Having a more extended bait set, as ours, may 431 

allow to overcome some of the previous challenges, demonstrated by the ability to detect all genera 432 
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in our mock communities. These aspects are critical when studying environmental samples and 433 

searching for rare taxa. In addition, the use of longer hybridization times or “double capture” (i.e., 434 

when captured product is captured again) can improve the percentage of on target reads and help 435 

capture rare sequences. Future work to identify the optimal bait set(s) for various microbial 436 

communities and research objectives should include a direct comparison of the Gasc & Peyret (2018) 437 

bait set verses our bait set.  438 

Preparing 16S-cap libraries can most readily be accomplished by using an existing enrichment kit, 439 

which ranges in cost from $1,500 - $5,200 depending on the number of reactions purchased. To 440 

reduce reagent costs and hands-on time, we have successfully pooled multiple samples (see section 441 

2.5), which is commonly done (Glenn and Faircloth, 2016). For example, pooling samples in groups 442 

of eight reduces capture costs from $93.75 per sample to $11.72 per sample (Supplementary Table 443 

3). Larger numbers of samples can be pooled to further reduce costs, but there are tradeoffs (see 444 

Glenn & Faircloth, 2016). Our baitset is commercially available from Arbor Biosciences in ready-to-445 

use kit format, and the bait sequences are freely available to the scientific community 446 

(Supplementary Data 4). Thus, our baits can be modified and/or synthesized by any strategy any 447 

researcher desires. 448 

Sequencing 16S-cap libraries require less extensive sequencing than unenriched shotgun 449 

metagenomic libraries, which reduces costs (Supplementary Tables 4, 5). For example, a 100-fold 450 

16S-cap enrichment sequenced on an Illumina MiSeq Nano PE150 provides a cost-savings of 451 

approximately $315 compared to an unenriched metagenomic shotgun library requiring 1 million 452 

reads (Supplementary Table 4). Indeed, 16S-cap makes it economically and logistically reasonable to 453 

routinely screen for 16S segments from enriched shotgun metagenomic libraries on Illumina MiSeqs. 454 

16S-cap decreases costs when using a production scale Illumina sequencer (e.g., Illumina NovaSeq) 455 

to less than $0.10 per sample when achieving a 100-fold enrichment (Supplementary Table 5). 456 

However, because production scale sequencers produce 400 – 2,500 million read pairs, to achieve 457 

low cost for samples needing relatively few reads, each run requires huge numbers of samples or a 458 

mixture of some samples needing large numbers of reads (i.e., a mixture of projects; see Glenn et al. 459 

2019a). Due to the limited savings possible on production sequencing costs (Supplementary Table 4), 460 

the savings in data transfer, storage, and compute time may be more significant than savings in 461 

sequencing costs.  462 

In summary, our data demonstrates that the 16S-cap assay and unenriched shotgun metagenomic 463 

libraries produce very similar community profiles. Importantly, our 16S-cap library is produced from 464 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.18.423101doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423101


  16S Target Enrichment 

 
16 

This is a provisional file, not the final typeset article 

a metagenomic library, which eliminates primer (though not all PCR) biases. Additionally, our 16S-465 

cap assay provides a deeper community profile (i.e., more 16S reads that can be queried to a 466 

database) with far fewer reads than the unenriched shotgun metagenomic libraries. In environmental 467 

samples, we routinely achieved > 400-fold enrichment. Thus, expensive deep sequencing is 468 

unnecessary for 16S-cap libraries because a few thousand reads provide the same number of 16S 469 

rRNA sequences as millions of shotgun reads. By trading modest additional library preparation costs 470 

for reduced sequencing costs (Supplementary Tables 3-5), 16S cap is economical and opens up the 471 

possibility of adding deep taxonomic sampling to studies that are capturing other genes of interests 472 

(e.g., antibiotic resistance genes (Guitor et al., 2019; Oladeinde et al., 2019; Thomas et al., 2020). In 473 

comparison to amplicon libraries, the 16S-cap assay will be more expensive, however, it provides 474 

superior microbial community resolution, increased accuracy of relative abundance, and greater 475 

flexiblity in terms of sequencer and kit choice. We believe that our bait set is a valuable tool to 476 

efficiently and accurately identify microbial community composition and would be well-suited to be 477 

used in combination with other bait sets targeting different genes of interest (e.g., antimicrobial 478 

resistance baits). 479 

Figures 480 

Figure 1. Overview of data analysis methods on the three library types (i.e., 16s amplicon, 16s 481 

hybridization bait capture, and metagenomic libraries). 482 

Figure 2. Relative abundance of bacterial phyla in mock community controls sequenced and 483 

analyzed using different methods. Phyla that are not among the nominal composition of the 484 

respective mock communities are plotted as black dots next to z_Others. The black dot in the 485 

enriched and unenriched library analzyed with 16S mapping software the assigned phyla was 486 

Cyanobacteria. In unenriched libraries analyzed with a marker gene approach, the assigned phyla was 487 

Ascomycota. Colored vertical bar in each panel represents the nominal abundance of respective 488 

phylum. X-axis is plotted in log-scale to show the low abundance phylum. Row panel strips labels 489 

identify the mock communities; column panel strips labels identify library type (i.e., amplicon, 490 

enriched 16S-cap, unriched metagenomic library) and analyzing strategy (i.e., denoising, 491 

16Smapping, and marker gene). 492 

Figure 3. Relative abundance of bacterial genera in mock community controls sequenced and 493 

analyzed using different methods. Panel A is the BEI mock community. Panel B is the Zymo mock 494 

community. Genera that are not among the nominal composition of the respective mock communities 495 
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were plotted as black dots under z_Others. Colored vertical bar in each panel represents the nominal 496 

abundance of respective genus. X-axis plotted in log-scale to show the low abundance genus. Row 497 

panel strips labels identify the mock communities; column panel strips labels identify library type 498 

(i.e., amplicon, enriched 16S-cap, unriched metagenomic library) and analyzing strategy (i.e., 499 

denoising, 16Smapping, and marker gene). 500 

Figure 4. Fold change (i.e., upper or under) comparing the relative abundances of respective genera 501 

in each library to its nominal abundance. Duncan's multiple range test was performed to compare 502 

each library type for each mock community. Letters indicate whether significant differences were 503 

detected. 504 

Figure 5. PCoA plots were constructed using Bray-Curtis dissimilarity matrix at a family level 505 

(panel A) and genus level (panel B). Each project is represented by a colored dot (i.e., orange = BEI 506 

mock community, green = mouse samples, blue = rat samples, and purple = Zymo mock 507 

community). Each library type, sequencing read length and data analysis method is represented by a 508 

different shape (i.e., circle = amplicon library, square = 16S-cap enriched PE150 reads, diamond = 509 

unenriched PE150 analyzed with 16S mapping and triangle = unenriched PE150 analyzed with 510 

metagenome mapping). Numbers represent sample number.   511 

Figure 6. A comparison of the Bray-Curtis distance metric was performed for each library type at a 512 

genus level using box plots. Bray-Curtis distance is indicated on the y-axis. Library type is indicated 513 

on the x-axis. Duncan's multiple range test was performed to compare each library type for each 514 

mock community. Letters indicate whether significant differences were detected. 515 

Permission to reuse and Copyright 516 

Figures, tables, and images will be published under a Creative Commons CC-BY licence and 517 
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Tables 522 

Table 1. A brief overview of the average summary statistics (i.e., number of samples, total raw read-pairs, average filtered/bar, average 523 

mapped/filtered) for each sample type of each library type (i.e., 16S amplicon libraries, 16S-cap enriched, and unenriched).  524 

Library 
Type 

Read 
Length 

Sample 
Type 

N 
Samples 

Total Raw 
Read-Pairs 

Total 
Filtered 
Reads 

Average 
Filtered/Raw 
(Mean±SD) 

Average 
Mapped/Filtered 
(Mean±SD) 

Amplicon-
16S/V3V4 

PE300 Rat feces 5 318,561  247,781  (77.3±6.2)% NA 

Amplicon-
16S/V3V4 

PE300 BEI 
Mock  

1 136,184  52,734  38.7% NA 

Amplicon-
16S/V3V4 

PE300 Zymo 
Mock  

1 49,828  24,301  48.8% NA 

Amplicon-
16S/V4 

PE250 Mice 
feces 

8 526,754  389,000  (77.6±7.1)% NA 

Enriched PE150 Mice 
feces 

8 8,321,081  11,474,476  (70.1±5.4)% (59.1±0.8)% 

Enriched PE150 Rat feces 5 6,450,541  9,470,428  (72.9±2.1)% (57.8±4.1)% 
Enriched PE150 BEI 

Mock   
1 5,345,638  8,203,396  76.7% 70.4% 

Enriched PE150 Zymo 
Mock 

1 3,359,376  5,140,030  76.5% 70.1% 

Enriched PE300 Mice 
feces 

8 1,050,608  1,573,122  (75.1±3.2)% (59.9±2.1)% 

Enriched PE300 BEI 
Mock 

1 737,309  1,108,481  75.2% 75.7% 

Enriched PE300 Zymo 
Mock  

1 467,250  721,740  77.2% 73.8% 

Unenriched PE150 Mice 
feces  

8 28,219,552  37,894,050  (68.6±6.4)% 0.1% 

Unenriched PE150 Rat feces 5 16,266,683  28,448,468  (87.4±0.9)% 0.1% 
Unenriched PE150 BEI 

Mock   
1 6,263,379  8,889,636  71% 0.2% 

Unenriched PE150 Zymo 
Mock 

1 4,985,957  7,001,503  70.2% 0.2% 

525 
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 526 
Table 2. Summary statistics for simulated data and real data from mock communities, libraries were enriched for 16S using the 16S-cap 527 

enrichment and sequenced on an Illumina MiSeq PE150 reads. 528 

Sample 
ID 

Library 
Type 

Avg. No. of 
(Simulated) 
Reads 

No. of 
Simulated 
Reads 

Matched 
Pairs 

Matched 
Forward 

Matched 
Reverse 

Total 
Mapped  

Percent 
of Avg. 
Total 
Mapped 

Simulated Data 
Zymo 
Mock  

Enriched-
PE150 

412,520 206,260 171708 190,964 
  

186,216 
  

377,180 
  

91.43% 

BEI Mock Enriched-
PE150 

415,472 207736 176547 193998 189,777 
  

383,775 
  

92.37% 

Lindgreen 
et al., 
2016 

Enriched-
PE150 

490,238 245119 188620 218911 213,918 
  

432,829 
  

88.29% 

Real Data 
Zymo 
Mock  

Enriched-
PE150 

3,904,480 1,952,240 1,314,654 1,548,323 1,503,225 3,051,548 78.15% 

BEI Mock Enriched-
PE150 

6,260,110 3,130,055 2,127,656 2,486,274 2,435,425 4,921,699 78.62% 

529 
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