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Abstract

Copy number aberrations (CNA) are one of the most important classes of genomic mutations related

to oncogenetic effects. In the past three decades, a vast amount of CNA data has been generated by

molecular-cytogenetic and genome sequencing based methods. While this data has been instrumental

in the identification of cancer-related genes and promoted research into the relation between CNA and

histo-pathologically defined cancer types, the heterogeneity of source data and derived CNV profiles

pose great challenges for data integration and comparative analysis. Furthermore, a majority of ex-

isting studies has been focused on the association of CNA to pre-selected ”driver” genes with limited

application to rare drivers and other genomic elements.

In this study, we developed a bioinformatic pipeline to integrate a collection of 44,988 high-quality

CNA profiles of high diversity. Using a hybrid model of neural networks and attention algorithm, we

generated the CNA signatures of 31 cancer subtypes, depicting the uniqueness of their respective CNA

landscapes. Finally, we constructed a multi-label classifier to identify the cancer type and the organ of

origin from copy number profiling data. The investigation of the signatures suggested common patterns,

not only of physiologically related cancer types but also of clinico-pathologically distant cancer types

such as different cancers originating from the neural crest. Further experiments of classification models

confirmed the effectiveness of the signatures in distinguishing different cancer types and demonstrated

their potential in tumor classification.

Introduction

Copy number variations (CNV) are a class of structural genomic variants, in which the regional ploidy

differs from the normal state of the corresponding chromosome. Germline copy number variations

constitute a major part of genomic variability within and between populations and are an important
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contributor to genetic and inherited diseases [1]. In most cancer types, an extensive number of somatic

CNV, usually referred to as sCNV or CNA (copy number aberrations), accumulate during the progres-

sion of the disease [2, 3]. CNAs have been shown to be directly associated with the expression of driver

genes [4, 5] where expression of oncogenes can be increased by copy number amplifications and tumor

suppressor genes can be suppressed through heterozygous or homozygous deletions. On a genomic level,

recurrent patterns of CNVs are observed in a number of cancer types and have been associated with

cancer prognosis and development [6].

While traditional karyotyping and various DNA hybridization techniques had provided insights into

specific CNV events, the systematic, genome-wide screening for CNV emerged in the 1990s as a reverse

in-situ hybridization technology termed ”comparative genomic hybridization” (CGH; [7, 8]). Chro-

mosomal CGH allowed the semi-quantitative profiling of copy number changes over complete (tumor-

)genomes. However, the technology was limited through its chromosomal banding based low resolution

[9] and only indirect association of CNV events with putative target genes. The hybridization of tumor

(or germline) DNA to genome-spanning matrices was refined through the use of substrates (”arrays”)

containing thousands to more than 2 millions of mapped DNA sequence elements [10, 11], now al-

lowing the direct association of the experimental read-out to specific genome features. A variation of

this principle, SNP (single nucleotide polymorphisms) based arrays [12], originally developed for the

detection of allelic variations within populations, was rapidly adopted for CNV detection and allelic

decomposition analysis in cancer [13]. Nowadays, Next-Generation Sequencing (NGS) techniques are

increasingly adopted to detect copy number variations, [14, 15, 16] although technologies with coverage

below shallow whole genome sequencing [17] show reduced utility for the analysis of CNV events when

compared to high-density arrays. Regardless of their technical heterogeneity, a large number of CNV

data has been generated in the past three decades, which represents an invaluable asset for genomics

studies.

Spurred by an increasing interest in genomic heterogeneity as well as mutational patterns shared

across tumor types, the exponential growth of available cancer CNV profiling data stimulated the study

of patterns in the context of meta-analyses and large consortia studies, across multiple groups of tumors

[18, 19, 3, 20, 21, 22, 23, 24]. The majority of the studies focused on finding either associations to cancer

driver genes or the impact of focal regions in specific tumor types. As a result, the CNA patterns were

often characterized by the coverage of driver genes in contrast to comparative analyses of the whole

genome. While this approach can provide direct connections to the established theories, it also bears two

drawbacks. First, the distribution of cancer driver genes is extremely skewed: a few hallmark drivers

are responsible for a large percentage of tumorigenesis, while a long-tail of rare or putative drivers

are reckoned to be the cause of the rest [25]. Second, besides the association with somatic mutations,

researches have also discovered different facets of CNA in their relations to cellular regulations and

genome dynamics [26, 27, 28, 29]. Therefore, CNA patterns that solely rely on driver genes often

lack the capacity to embrace the full spectrum of the aberrations. To generate CNA patterns, which

capture their multitude of uniqueness, it would be more comprehensive to abstract by the aberrations’

characteristics, rather than using focal regions that overlap with driver genes.

In translational research, an imminent goal of studying the CNA patterns of different cancers is

to gain insight in designing new therapeutic protocols. Recently, the discovery of circulating cell-free

DNA (cfDNA), which presents a potential for early-stage and non-invasive cancer detection, attracts
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the attention of both the academia and the industry [30, 31, 32, 33]. While many cfDNA methods

in cancer detection are focusing on somatic mutations, it is believed that the ultimate solution would

come from an ensemble of different genomic aberrations [34]. One of such aberrations is CNA in cancers

that bear high burdens of copy number mutation. Large-scale cancer genome studies have illustrated

the recurrent CNA patterns across different types of cancer. Several studies have employed CNA of

cfDNA as biomarkers and demonstrated their potential in identifying cancer types and tissues of origin

[35, 36, 37]. As an emerging field, the accurate identification of genomic abnormalities and classifications

of the cfDNA yet remains challenging, and the characterization of CNA patterns across cancer types

would provide a valuable piece of the solution to the puzzle.

Due to the technical heterogenity and underlying biological variability the meta-analysis of multi-

platform cancer CNV data which is necessary for comprehensive ”pan cancer” studies also poses great

challenges in data integration and normalization [38]. In this study, we have assembled a collection

of 56,077 CNA profiles and created the CNA signatures of 31 cancer subtypes, where each signature

represented the CNA landscape of a specific cancer group. The signatures were generated from a com-

putational pipeline (Figure 1), which unifies heterogeneous data and is powered by a hybrid model of

neural networks and attention algorithm. Using the signatures, we also constructed a multi-label classi-

fier of cancer types and tissues of origin from copy number segmentation data. The result illustrates the

genetic uniqueness of CNA in different cancer types and demonstrates the potential of CNA signatures

in tumor identification.

Method

Data integration

In this study, we integrated CNA profiles of tumor samples from three prominent resources. Progenetix

[39] is a curated resource targeting copy number profiling data in human cancer. It features a large

collection of data from different tissues and platforms. The Cancer Genome Atlas (TCGA) [40] repre-

sents a comprehensive cancer genomics initiative which generated standardized molecular profiling data

for a wide range of cancer types. The Pan-Cancer Analysis of Whole Genomes (PCAWG) represents

an initiative from the International Cancer Genome Consortium (ICGC) for the uniform analysis of a

representative set of cancer samples using Whole Genome Sequencing (WGS) [41]. All three repositories

provide publicly - though with exception of Progenetix - partially access-controlled genomic data to-

gether with clinical information and diagnostic classifications. The initial collection consisted of 56,077

samples, representing an accumulation of CNA data from a wide range of tumor types and technological

platforms.

When integrating data of high diversity for analyses, two major technical challenges can be en-

countered. First, genomics studies performed over the last decade will have applied different reference

genome editions in their analysis pipeline, leading to shifted coordinates in results such as CNV seg-

ments. It is crucial to convert all data to the same coordinate system when analyzing data from multiple

studies through a remapping procedure. However, unlike with SNP or other types of mutations involv-

ing short DNA sequences, applying standard re-mapping tools such as liftover [42] would result in a

considerable information loss when converting copy number data, due to a the occurrence of disruptive
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remapping in a relevant proportion of CNA segments. We previously addressed this problem with the

development of a generic tool named segmentLiftover, to convert CNA data with high efficiency and

minimized data loss [43]. Second, regardless of the underlying technology, genomic copy number data

is derived from the relative assessment and integration of multiple signals, with the data generation

process being prone to contamination from several sources. Estimated copy number values have no ab-

solute or strictly linear correlation to their corresponding DNA levels, and the extent of deviation differs

between sample profiles, which poses a great challenge for data integration and comparison in large scale

genome analysis. To tackle this problem, we designed a method called Mecan4CNA(Minimum Error

Calibration and Normalization for Copy Numbers Analysis) to perform a uniformed normalization [38].

In the integration pipeline, samples were first converted to GRCh38(Hg38) using segmentLiftover.

Then, the values in the sample were aligned to the corresponding true copy number levels of the main

tumor clones using Mecan4CNA. For each step, a quality control protocol was set up to filter out samples

carrying a low number of alternations, causing ambiguity in interpretation, or such having incomplete

diagnostic information. In the end, a normalized dataset of high-quality samples was generated, which

consisted of 44,988 tumor samples covering 271 ICDO-topography terms and 211 ICDO-morphology

terms (Table 1).

Feature representation

All copy number data can be represented in a platform-independent format of genomic segments, where

each segment represents a continuous region on a chromosome. As the segments vary dramatically in

platform-dependent resolution, reported size, and biologically supported thresholds [44, 45], a pragmatic

approach for cross-study normalization lies in the creation of equally sized genomic bins and mapping of

segment data into those. This method is elastic on the number of generated bins (features); therefore, it

cooperates well with follow-up computational models that are sensitive to the feature numbers. However,

the binning method disregards the uneven distribution of genes and does not capture any functional or

structural information of the genome, thereby limiting biological correlations between features and the

final model.

Another straightforward approach is to use the coverage of protein coding genes to represent each

segment. This method provides inherent connections to genetic functions, however, direct mapping

to protein coding genes overlooks the structural impact of CNA and also results in a large number of

features, which are often difficult for machine learning methods to perform in optimal. In this study, we

designed a two-phase approach to generate a refined gene panel as the feature representation, so that the

noise and redundancy of the feature space could be reduced with consideration to functional significance.

In the first phase, CNA segment data was mapped to cytobands which represent ”genomic phenotypes”

correlated to gene density and chromosome structure and provided a good balance between feature

number and genomic resolution. The cytobands features were added to a hybrid model of Autoencoder

and Layer-wise Relevance Propagation (LRP) to perform a feature extraction which generated a panel

of cytobands with high separation power. In the second phase, the selected cytoband features will

be denormalized to the protein coding genes from each band. Finally, another iteration of the feature

selection process will be performed to arrive at a selection of genes which contribute to the distinctiveness

of individual sample profiles.
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Feature extraction

Autoencoder

An autoencoder is an unsupervised neural network that can derive abstracted representations from

data. It usually consists of two parts, an encoder and a decoder, and both are also neural networks on

their own. The input is first transformed to an encoding, then restored to its original by the decoder.

The aim of an autoencoder is to reconstruct the input as exact as possible, and in the process, it learns

a representation (encoding) of the input. It’s typically used for dimensionality reduction and to remove

noise from signals [46, 47, 48].

An autoencoder possesses several features that are suitable for our research. Its ability to remove

noise is well suited to limit the amount of ”noise” from true passenger mutations which may represent

a considerable part of the copy number variations in tumors but do not have a functional impact. In

the process of restoration, the encoding is able to capture the traits and distinguishing details, which is

ideal for sample characterization in terms of their individual uniqueness. Finally, as a neural network,

it can benefit from the extensive collection of heterogeneous data through its generalization capabil-

ity. In this study, four different autoencoders (basic, denoising, sparse and contractive autoencoders)

were compared on their abilities of input reconstruction. The denoising and contractive autoencoders

showed the best performance in the restoration of CNV data, and the denoising autoencoder was chosen

for its efficiency in implementation. The details of the comparison are elaborated in Supplementary

Implementations.

Layer-wise Relevance Propagation

Layer-wise Relevance Propagation (LRP) is a technique to scale the importance and contribution of

input features in a deep neural network. It utilizes the network weights and activation functions

to propagate the output backward until the input. The basic propagation rule is illustrated as the

following:

Rj =
∑
k

ajwjk∑j
0 ajwjk

Rk

Here, j and k are two neurons from two adjacent layers. a is the activation of a neuron, and w is the

weight between two neurons. The initial R is known from the output, and this formula is iterated to

compute R for each neuron in the previous layer until reaching the input layer. LRP provides a solution

to the ”black-box” problem of deep neural networks, and is especially useful in tracing the network

attentions and understanding the network behaviour. In our hybrid model, we exploited LRP’s ability

to quantify the importance of input features in distinguishing different samples. When an autoencoder

can reconstruct a large number of inputs with high accuracy, it provides an encoding that carries the

information to recognize the differences between samples. If we apply LRP on this encoding, we would

be able to measure the importance of each feature in the encoding.

The hybrid model

A primary goal of the research was to investigate the similarity and differences of CNA between cancers,

through CNA feature dimension reduction towards an optimal representation of the uniqueness of each

5

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.18.423278doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423278
http://creativecommons.org/licenses/by-nd/4.0/


sample. In our hybrid model we combined autoencoder’s ability to recognize differences and the LRP’s

ability to scale feature relevance. First, the transformed feature matrix was used as the input data for

the training of a denoising autoencoder. Then, the encoding generated by the autoencoder was used

as the input of LRP to compute the weightings of each feature in the initial feature matrix. Next,

the weightings of each feature were summed and normalized for all samples. Finally, by applying a

threshold, we obtained a panel of high weighting features representing the uniqueness of each input

sample.

In the two-phased feature extraction, the hybrid model first returned a panel of cytobands with high

weighted CNA coverage; then, the hybrid model was utilized on the new feature matrix (CNA coverage

on protein coding genes of the high-weighting cytobands), to calculate a panel of high-weighting genes

as a representation of each sample’s feature space. Table 3 shows the resulting feature numbers for each

step. The details of the procedures are provided in Supplementary Implementations.

Signature generation

A dataset of major cancer types

To derive the genomic characteristics of different cancer types, it is important to utilize accurate, sys-

tematic mappings between samples and disease classifications. Following the standardized protocol

set up for the Progenetix and arrayMap resources [39, 49], all samples were labeled using morphology

and topography defined by International Classification of Diseases for Oncology (ICD-O 3) [50]. The

complete data collection included of 211 unique morphology (ICDOM) and 271 unique topography (IC-

DOT) terms. While the combination of ICDOM and ICDOT terms in principle can result in detailed

disease classifications, the granularity of available sample descriptors varied dramatically between differ-

ent studies. For example, while some samples were annotated as ”epidermoid carcinoma, keratinizing”

at ”lower lobe, bronchus”, for other pulmonary carcinoma a more general ”squamous cell carcinoma”

of the ”lung” was available in the input data. Also, the number of samples mapped to individual clas-

sification terms was extremely imbalanced. For example, while ”infiltrating duct carcinoma of breast”

was available with more than 5000 samples, ”mucinous adenocarcinoma of lung” only was represented

with 14 samples. For the sake of statistical validity and to minimize small-batch effects we decided to

focus on a data subset of 11 major organ systems with abundant samples and reliable copy number

mutation content.

Signatures of cancer subtypes

After the two-phase feature extraction, we obtained a panel of genes, which drastically reduced the

feature space to the signals of 918 genes. For any given sample, a small subset of the genes from this

panel reflects its ”signature” mutations and is able to represents the uniqueness of the sample against all

other samples. When aggregating the samples of a disease type, we should be able to identify a subset

of feature genes that are significantly altered in this disease (implementation details in Supplementary

Implementations). Thus, we could use this subset of feature genes and their intensities as the CNA

signature of the group. However, as mentioned in earlier sections, the samples were not labeled with the

same granularity. For the clarity of analyses, samples of similar signatures were grouped together with a

consistent label. First, samples were grouped into subtypes by the combination of their topography and
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morphology. Subtypes with less than 50 samples were removed. Then, the signature of each subtype

was generated and the Pearson’s correlation coefficient of signatures was computed for subtypes of the

same organ. Next, for each organ, subtypes of the same morphology level were merged into a more

general morphology term if their correlation is greater than 0.9. Similarly, a subtype with a more

detailed morphology is merged into another subtype of a more general morphology if their correlation is

greater than 0.9. Finally, a dataset with refined disease labels was produced, which consisted of 22,671

samples covering 11 topography (organs) and 31 cancer subtypes. Table 2 shows the number of selected

samples and subtypes in each organ. The complete table of subtypes and the merging are presented in

Supplementary Subtypes.

Classifiers of subtypes and organ involvement

The compact feature panel and the curated labels provided us an opportunity to apply machine learning

methods of classification performance. We constructed a multi-label classifier using the signature genes

and their normalized signal intensities as features, and the subtype of each sample as labels. The

primary challenge of building a multi-label classifier came from the extremely imbalanced number of

samples in different classes, because the classifier would be significantly biased by the classes with

a high number of samples. To create a robust classifier, we first applied undersampling on classes

with a high number of samples and oversampling on classes with a low number of samples, so that

the number of samples in each class became relatively balanced. Then, we recruited a random forest

to learn and predict the subtypes. In addition to the prediction of subtypes, we were also able to

evaluate the classifier’s performance on predicting samples’ organ of origin by mapping the subtype

labels from predictions to the corresponding organ labels. Comparing with the approach that directly

used the organ of each sample as labels in training, the subtype mapping method showed an improved

performance. The implementation details of the model and comparisons are presented in Supplementary

Implementations.

Results

CNA signatures

By using the gene panel generated from the hybrid model, we were able to create an abstract represen-

tation for each copy number profile, where only alternations that contributed to the distinctiveness of

the sample were preserved. Figure 2 compares the original CNA patterns with the derived abstractions

where the frequent and extensive regional alterations in the original data have been replaced by a small

number of feature genes, which visibly compare to subsets of characteristic changes in the original CNA

data and represent the most discriminative alternations. With our methodology, ubiquitous alterations

such as deletions on the short arm of chromosome 8 (Figure 2) were considered ”non-typical” and

therefore are not represented in the abstracted signatures.

While the complete panel of feature genes provides the feature space for the whole of analyzed

samples, in each individual sample only a small subset of these features reflects the sample’s own

mutations. By aggregating samples from individual cancer subtypes, we were able to deduct the set of

subtype related, significantly altered feature genes and could generate the CNA signatures of 31 cancer
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subtypes. Every signature consists of a subset of the general feature genes and their relative signal

intensity comparing to other signatures. Figure 3 illustrates parts of the signature of medulloblastoma,

glioma and melanoma. The complete list of signatures in all subtypes are included in Supplementary

Signatures.

In the majority of copy number studies, analyses of tumor samples are focused on identifying the

driver genes or the focal regions. However, in this study, the frequent drivers such as TP53 and PTEN,

and the common aberrations such as CDKN2A/B and MYC are removed due to their prevalence.

The genes in the signatures rather reflect the uniqueness of each sample or each cancer subtypes.

Although the unique aberrations do not imply pathogenic causation, we can instead reveal their potential

implications and correlations by investigating the signatures and the feature genes (Figure 4). In general,

the signatures of different subtypes show high preference in several genomic regions that suffer frequent

CNAs in many cancer types; and some subtypes, which have distance ontology, exhibit high similarity

in their signatures.

Discriminative genomic loci

Since feature genes represented the uniqueness of individual samples, it is expected that they would

distribute exclusively among different subtypes in general. Interestingly, while most of the features are

sparsely distributed, there are also a few hot zones, which are frequent CNV regions in general, that

are commonly included in many signatures with high significance. Figure 5 illustrates the distribution

and frequency of duplication and deletion feature genes separately. Figures on the first row are plotted

using the full panel of feature genes, and figures on the second row are plotted using feature genes from

all signatures (i.e. significantly high frequency). The most prominent feature genes among subtypes are

those representing duplications on chromosome 7 and 8. Specifically, the feature genes are distributed

in groups in several regions: chr7:28,953,358 - 34,878,332 and chr7:49,773,638 - 50,405,101 on the p

arm of chromosome 7; chr7:91,692,008 - 93,361,123, chr7:105,014,190 - 117,715,971, chr7:129,611,720

- 130,734,176 and chr7:148,590,766 - 152,855,378 on the q arm of chromosome 7; chr8:47,260,878 -

50,796,692, chr8:51,319,577 - 54,871,720 and chr8:112,222,928 - 138,497,261 on the q arm of chro-

mosome 8. As shown in Figure 2, chromosome 7 and 8 contain the most frequently duplicated regions

among all studied cancer types. Despite their common existence, analysis of individual signatures and

samples reveals three patterns that may explain their prominence in features: first, on the two chro-

mosomes, samples often have large duplications. The aggregated signals in individual subtypes usually

show high alternation frequency of the whole region and pose a plausible hint of frequent chromosome or

arm level events. Second, the spans of duplications differ among subtypes. For example, the signature

of melanoma consists of feature genes covering the entire chromosome 7 and 8; the signature of lung

adenocarcinoma consists of feature genes only on the p arm of chromosome 7, and the signature of

ovary carcinoma consists of feature genes only on the q arm of chromosome 8. Third, the alternation

amplitude of the feature genes also shows distinctive patterns among subtypes. Chromosome 7 and

8 harbor some of the key cancer driver genes such as EGFR, BRAF, and MYC. A number of studies

have shown [51, 52, 53, 54, 55, 56, 57] that mutations and amplifications of the two chromosomes are

closely associated to the progression and the prognosis of many cancers. The subtle difference in the

scale and amplitude of CNV on chromosome 7 and 8 suggest that aberrations of these hot regions may
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play differentiating roles in different cancers.

Similar to duplications, the most common deletion features distribute on three regions on chromo-

some 18: chr18:2,916,994 - 7,117,797 on the p arm; chr18:58,481,247 - 60,372,775 and chr18:69,400,888

- 70,330,199 on the q arm. Different from duplications on chromosome 7 and 8, the deletions on chro-

mosome 18 show a similar pattern of high amplitude deletions on the entire chromosome 18, where

feature genes on the p arm suggest a one-copy deletion on average, and feature genes on the q arm

indicate frequent homozygous deletions. Interestingly, the deletion features on chromosome 18 are usu-

ally mutually exclusive to the deletion features on chromosome 10, which are under high pressure of

chromosome level deletions in several subtypes. Previous studies have observed strong correlations of

deletions on chromosome 18 and chromosome 10 to the progression of several cancer types. Other anal-

yses have investigated their functional impacts and suggested the presence of several tumor suppressor

genes [58, 59, 60, 61]. Another hot zone of deletion features locates on the q arm of chromosome 22

(chr22:48,489,460 - 48,850,912 ). High-level deletions are frequently observed and selected as features in

many subtypes. Different studies have shown similar observations of frequent deletions on chromosome

22, however, the mechanism of the deletion is still obscure and the functional impact remains putative

[62, 63].

Similarities of neural crest originated subtypes

The signature based clustering of cancer subtypes (Figure 4) shows that diseases in the same cluster

usually also share close ontologies. However, there is an interesting outlier, which consists of medul-

loblastoma, melanoma and glioma (astrocytoma is a subtype of glioma). The three clinically and

topographically distant cancer types have signatures of high similarity in both the selection of features

and their alternation frequencies. Figure 3 shows the comparison of the original CNV data, the features

and the known drivers of the three cancers on chromosomes harboring similar signatures. Their signa-

tures exhibit high similarities in the duplication of chromosome 7 and the deletion of chromosome 10.

They also share pairwise similarities on the duplication of chromosome 1 and 20, and the deletion of 9

and 14. For the three cancers, the most frequently amplified chromosome 7 harbors several of the key

oncogenes. For example, EGFR, CDK6 and MET in glioma; KMT2C and PMS2 in medulloblastoma;

BRAF, RAC1 and TRRAP in melanoma. The most frequently deleted chromosome 9 and 10 harbor

several important suppressor genes. For example, CDKN2A and PTEN in glioma; XPA, PPP6c and

CDKNA in melanoma; PTCH1 and SUFU in medulloblastoma. Noticeably, the CDKN2A/B deletion

is the most frequent copy number aberrations across all cancer types. Although the distribution of

driver genes shows a close correlation with the frequency and amplitude of CNV, most drivers do not

demonstrate signal peaks nor overlap with the feature genes. Frequent duplications on chromosome 1

and deletions on chromosome 14 do not show direct correlations to common driver genes, however, a

number of studies have shown the connection of CNAs on these regions to the progress and prognosis

in these cancer types [64, 65, 66, 67, 68, 69].

In the 1990s, epidemic studies [70, 71, 72] first revealed the connection between melanoma and tu-

mors of the nervous system: not only a familial association, which was confirmed by germline mutations;

but also a significantly increased risk of one disease in people having a history of the other one. Although

there was evidence showing their potential common pathophysiologic pathways and responsiveness to
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the same drugs, the genetic connection of the two disease groups was still largely unclear [73]. In spite

of their ontological difference, medulloblastoma, melanoma and glioma are all derived from the lineages

of neural crest cells. Recent studies of neural crest cells and the cancers from their lineage cells suggest

that malignant cells mimic many of the behavioral, molecular, and morphologic aspects of neural crest

development [74, 75, 76]. Aberrations in tumor cells may lead to the reactivation of their embryonic

developmental programs and promote tumorigenesis and metastasis. For example, the WNT family

members, which play import roles during the epithelial-to-mesenchymal transition of neural crest cell,

are reactivated during invasive transformation in melanoma [77, 78]. In glioblastoma, experimental

data suggests that the dysregulation of the WNT signaling pathway supports the onset of cancer stem

cells, which assure the enlargement of the tumoral mass and eventually the spread of metastases [79].

In medulloblastoma, the WNT subgroup signifies one of the four molecular subtypes of the disease [80].

In regions represented by the similar signatures, several WNT genes exhibit abnormal amplification fre-

quencies, which are a potential refection of the overexpression of WNT signaling. Specifically, WNT2B

and WNT4 are covered by amplifications of moderate frequencies, and WNT2, WNT3A, WNT9A and

WNT16 are encompassed by amplifications of high frequencies. WNT2 and WNT16 are signature genes

in all three subtypes implicating their prevalence among individual samples.

Another interesting result from the similar signatures is the connection between melanoma and

medulloblastoma, which has dramatic differences in many biological aspects. For example, medul-

loblastoma is considered primarily originated from embryonal cells in early development. It mostly

occurs in children and usually has good prognosis outcomes. On the other hand, melanoma is primarily

caused by ultraviolet light exposure. Its risk has a positive correlation with age and the prognosis is

usually very poor once passing the early stage of the disease. However, besides their differences, all

three cancer types are notorious for their fast progression, high invasiveness and wide metastasis. It’s

possible that their common CNA signatures are the imprint of their acquired cancer hallmarks instead

of their mutational characteristics. The combined evidence suggests that different types of tumor may

achieve their hallmark abilities through different evolution paths [81]. The acquired hallmarks exhibit a

number of common genotypes such as copy number aberrations, which are potentially the downstream

result of primary mutation events that contribute to the functional sustainability of tumor cells.

Classification of subtypes and organs

The identification of the origin of a tumor sample is a challenging task that attracted significant attention

from both academia and industry. A great number of computational methods have been proposed in

recent years to facilitate the early diagnosis of cancers from liquid biopsies [30, 35, 82, 83, 84]. In this

research, we constructed a multi-label classifier capable of predicting among 31 cancer subtypes and 11

organs of origin of a sample using copy number data.

In the prediction of subtypes, the model achieved on average 0.5624 in accuracy, 0.4368 in F1-score,

0.4341 in precision and 0.4579 in recall with 10-fold cross validations. Figure 6(a) shows the confu-

sion matrix of individual subtypes. The x-axis represents the true labels and the y-axis represents the

predicted labels. The complete metrics of each subtype are included in Supplementary Performance.

In general, the performance of individual subtypes was positively correlated with the number of sam-

ples (Figure 6(c)). Specifically, the classifier exhibited consistent performance in predicting: breast
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intraductal carcinoma, colon adenocarcinoma, brain glioma, cerebellum medulloblastoma, cerebellum

medulloblastoma, and kidney clear cell adenocarcinoma. Investigation on false negatives and false pos-

itives showed that most of the false predictions were among the subtypes of the same organ, suggesting

the topological influence on genetic alternations.

In the prediction of organs, the model achieved on average 0.6618 in accuracy, 0.6277 in F1-score,

0.6211 in precision and 0.6447 in recall with 10-fold cross validations. Figure 6(b) shows the confusion

matrix of individual organs. Specifically, the prediction of the brain, lung and colon had the best

performance of the F1-score over 0.7. Similar to the prediction of subtypes, the performance was

positively correlated with the total number of samples in each organ (Figure 6(d)). Comparing with

individual subtypes, the prediction results showed a remarkable improvement in all organs.

Heterogeneity within subtypes

The results of the classifier showed significant differences in performance among different subtypes and

organs. While some of the under-performance may be attributed to the insufficient number of samples,

the false predictions of several classes suggested the heterogeneity within these subtypes. As shown in

Figure 6(a), for breast infiltrating duct carcinoma and cerebellum medulloblastoma, the false predictions

were widely distributed over several unrelated classes. Figure 6(c) and (d) highlighted breast infiltrating

duct carcinoma, lung non-small cell carcinoma, and lung adenocarcinoma as outliers of the correlation,

where the high number of samples did not improve but deteriorate their performance.

Large-scale cancer genome studies have shown that tumors from the cerebellum, lung and breast

usually carry high burdens of copy number mutations [19, 3]. With the extensive number of CNA in

these subtypes, it is expected to be more challenging to identify key signals. Genomic studies in the

past two decades have revealed mutation characteristics in these diseases, and established classifica-

tions of their molecular subtypes. For example, medulloblastomas are now commonly categorized into

four subgroups: WNT, SHH, G3 and G4. Similarly, breast carcinomas can be categorized into four

subgroups: Luminal A, Luminal B, Her2-enriched and basal-like. Studies of their mutational patterns

showed distinct markers and different mutation landscapes of each subtype, and multi-omics studies fur-

ther revealed the intrinsic complexity within subtypes and suggested classifications of more subgroups

[85, 86, 87]. However, the majority of the samples in our dataset were labeled by their morphology, with

the molecular subtype classification missing in the sample annotations. As a result, large diagnostic

groups such as ”breast infiltrating duct carcinoma” could not be further separated a priory, resulting

in a common label for breast carcinomas with the diagnostic subtype consisting of 5,657 samples, over

three times more than the second-largest subtype. While we addressed these skewed overall subtype

sizes through the application of undersampling techniques, the implicit mixture of different molecu-

lar subgroups provided an inevitable impact on the association of diagnostic labels and CNA based

classifiers.

Discussion

For this study, we assembled a large collection of cancer CNA profiles with the aim to identify genomic

aberration signatures with specificity for individual cancer types. In order to integrate technically
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diverse data we developed innovative tools for genome data conversion and signal normalization. Tar-

geting the identification of unique components in diagnosis mapped CNA profiles, we were able to

derive the CNA signatures of 31 cancer subtypes, where each signature was characterized by a minimal

representation of genes with high discrimination capacity. The signatures were further evaluated to

derive classifiers identifying tumor types and organs of origin. The comparative analyses of signature

genes and their represented regions showed that duplications on chromosome 7 and 8, and deletions on

chromosome 22 were the most common aberrations among studied cancer types. However, these regions

also harbored features of high differentiating power which may indicate the functional significance of

cancer related genes with specificity for cancer-type related pathway involvement.

While our feature genes exhibited certain correlations with known driver genes, this itself does

not provide direct evidence of their functional significance. Feature genes could also be the result of

the downstream effects of mutational activities or be co-opted as representation of an aberrant region

where the pathogenetic activity is provided by different genomic elements [88]. In the analysis, we were

prudent to limit propositions of the impact of individual feature genes.

Our analyses showed that three clinico-pathologically distant cancer types - medulloblastoma, melanoma

and glioma - shared CNA signatures of high similarity. Developmentally, the three tumor types can be

traced back to common lineages of neural crest cells. Research of neural crest cells and epidemiologic

studies of glioma and melanoma have shown sporadic evidence of their connections in cancer devel-

opment, but the genetic foundation of their association with respect to oncogenetic processes is still

elusive. Here, comparative analysis of shared mutations together with improvements of developmental

processes in the corresponding normal tissues may provide insights into shared pathologies and potential

therapeutic targets.

The studies on genomic classifiers demonstrated the capacity and potential of CNA signatures in tu-

mor identification. However, while the multi-label classification approach showed promising performance

in many cancers , in a few subtypes the performance was deteriorated by the intrinsic heterogeneity of

their CNA profiles. Here we expect that future follow-up studies with extended input data and em-

ploying different ontology-based grouping strategies may lead to improved performance and potential

emergence of better group aggregations.

An essential challenge in the study was the integration of data from varying genomic profiling

platforms. During normalization and quality control, we removed samples that were ambiguous in

interpretation or had an abnormal distribution of signals. However, as a trade-off, many genomically

heterogeneous samples (e.g. aneuploid or containing CTLP) were removed in the process. For future

studies, complementary strategies should be developed to include these samples without detrimental

effects on data normalization and quality. With respect to sample annotation for histologic and diag-

nostic classifications, extensive efforts went into the curation of the data with the aim to use a unified

set of classifications. Here, future analyses may make use of emerging cancer specific ontologies for a

better integration of varying annotation granularities using hierarchical terms and concepts. Currently,

our research group is finishing a parallel study on ontology mappings of cancer samples, and we are

expecting a considerable improvement in the disease annotation of samples in future studies.

In summary, this study presents a systematic pipeline for integrative and comparative analyses

of a large amount of copy number data. The resulting CNA signatures offer new perspectives on the

understanding of common foundations in cancers and show promising potential in applications of tumor
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classification.
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[56] El Gammal AT, Brüchmann M, Zustin J, Isbarn H, Hellwinkel OJC, Köllermann J, et al. Chromo-
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siveness of human melanoma xenograft models is promoted by aneuploidy-driven gene expression

deregulation. Oncotarget. 2012;3(4):399–413.

[69] Park AK, Lee JY, Cheong H, Ramaswamy V, Park SH, Kool M, et al. Subgroup-specific prognostic

signaling and metabolic pathways in pediatric medulloblastoma. BMC Cancer. 2019;19(1):571.

18

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.18.423278doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423278
http://creativecommons.org/licenses/by-nd/4.0/


[70] Azizi E, Friedman J, Pavlotsky F, Iscovich J, Bornstein A, Shafir R, et al. Familial cutaneous

malignant melanoma and tumors of the nervous system. Cancer. 1995;76(9):1571–1578.

[71] Scarbrough PM, Akushevich I, Wrensch M, Il’yasova D. Exploring the association between

melanoma and glioma risks. Ann Epidemiol Annals of epidemiology. 2014;24(6):469–474.

[72] Desai AS, Grossman SA. Association of melanoma with glioblastoma multiforme. Journal of

Clinical Oncology JCO. 2008;26(15 suppl):2082.

[73] Middleton MR, Grob JJ, Aaronson N, Fierlbeck G, Tilgen W, Seiter S, et al. Randomized Phase

III Study of Temozolomide Versus Dacarbazine in the Treatment of Patients With Advanced

Metastatic Malignant Melanoma. Journal of Clinical Oncology JCO. 2000;18(1):158.

[74] Powell DR, O’Brien JH, Ford HL, Artinger KB. Chapter 16 - Neural Crest Cells and Cancer:

Insights into Tumor Progression Neural Crest Cells. In: Trainor PA, editor. Neural Crest Cells.

Boston: Academic Press; 2014. p. 335–357.

[75] Maguire LH, Thomas AR, Goldstein AM. Tumors of the neural crest: Common themes in devel-

opment and cancer. Developmental Dynamics Dev Dyn. 2015;244(3):311–322.

[76] Jiang M, Stanke J, Lahti JM. The connections between neural crest development and neuroblas-

toma. Curr Top Dev Biol Current topics in developmental biology. 2011;94:77–127.

[77] Kovacs D, Migliano E, Muscardin L, Silipo V, Catricalà C, Picardo M, et al. The role of Wnt/beta-
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Appendix

Source Samples Topographies Morphologies Platform

arrayMap 31,805 63 197
SNP6, CytoscanHD,

250K, and others

TCGA 11,287 139 137 SNP6

PCAWG 1,896 68 25 WGS

Total 44,988 271 211 -

Table 1: The data composition in the final dataset after quality filtering.

ICDO topography Samples subtypes

Breast 6,255 3

Lung 3,968 5

Brain 2,808 5

Ovary 2,128 3

Colon 1,832 4

Kidney 1,385 2

Stomach 1,303 5

Skin 1,238 1

Prostate 1,198 1

Cerebellum 1111 1

Liver 673 1

Table 2: The number of samples and cancer subtypes in the studied organs.

Phase Step Representation Features

Phase 1
Input Cytobands 1622

Output Cytobands 159

Phase 2
Input Genes 3029

Output Genes 927

Table 3: The number of features before and after each extraction phase. Cytoband features represent

CNA occurrence on cytoband locations. Gene features are CNA coverage of protein coding genes, on

the selected high weighted cytobands.
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Figure 1: The workflow of the study was composed of three parts. The Features part consisted of

methods of data integration and feature generation. The Signature part focused on creating CNA

signatures for cancer subtypes and the categorization of subtypes. The Classification part recruited

machine learning techniques to predict the organ and the subtype from a given copy number profile.
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Figure 2: The landscape of aggregated data in the original and in the feature abstraction. The feature

genes are able to dramatically reduce the complexity of CNA signals while maintaining the mutational

characteristics for many cancer types.
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Figure 3: The integrated view of the original data and the selected features, in the the neural crest

originating entities medulloblastoma, glioma and melanoma. The shaded background area color illus-

trates the original data. Color bars illustrate the feature genes, where brighter colors indicate stronger

signal intensity. The adjacent known driver genes are also included for each tumor type.
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Figure 4: A heatmap of features in 31 signatures. The blue colours are duplication features, and red

colours are deletion features. Duplication and deletion frequencies are normalized separately.
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a b

c d

Figure 5: The distribution and frequency of feature genes of 31 cancer subtypes on each chromosome. (a)

shows all duplication feature genes, (b) shows all deletion feature genes, (c) shows only the duplication

genes in signatures, (d) shows only the deletion genes in signatures. The signatures further reduce the

complexity of feature space while maintaining the separation for each subtype.
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a. b.

c. d.

Figure 6: (a) The classification performance of individual subtypes. (b) The classification performance

of individual organs. For (a) and (b), the x-axis are true labels, and the y-axis are predicted labels. (c)

The correlation between the performance and the number of samples in the classification of subtypes.

(d) The correlation between the performance and the number of samples in the classification of organs.
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