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ABSTRACT 
Our understanding of protective vs. pathologic immune responses to SARS-CoV-2, the virus that 
causes Coronavirus disease 2019 (COVID-19), is limited by inadequate profiling of patients at 
the extremes of the disease severity spectrum. Here, we performed multi-omic single-cell 
immune profiling of 64 COVID-19 patients across the full range of disease severity, from 5 
outpatients with mild disease to fatal cases. Our transcriptomic, epigenomic, and proteomic 
analyses reveal widespread dysfunction of peripheral innate immunity in severe and fatal 
COVID-19, with the most profound disturbances including a prominent neutrophil 
hyperactivation signature and monocytes with anti-inflammatory features. We further 
demonstrate that emergency myelopoiesis is a prominent feature of fatal COVID-19. 10 
Collectively, our results reveal disease severity-associated immune phenotypes in COVID-19 
and identify pathogenesis-associated pathways that are potential targets for therapeutic 
intervention. 
 

One Sentence Summary: Single-cell profiling demonstrates multifarious dysregulation of 15 
innate immune phenotype associated with COVID-19 severity. 
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INTRODUCTION 
The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), is an urgent public health crisis. COVID-19 has a highly variable disease 
course: approximately 20% of infected individuals require hospitalization, ~5% require critical 
care, and as many as 40% of cases are asymptomatic (1, 2). As the immune response to SARS-5 
CoV-2 is a key determinant of COVID-19 severity and outcome, understanding the 
immunological underpinnings of COVID-19 pathogenesis is critical to predict, prevent, and treat 
SARS-CoV-2 infection and to prepare for the possibility of future infections caused by emerging  
betacoronaviruses that may be introduced from existing reservoirs (3–6).  
 10 
Severe COVID-19 is associated with a number of distinct immunological signatures. For 
example, increased serum levels of proinflammatory cytokines such as IL-1β, IL-6, IP-10, and 
TNFα and the alarmins S100A8 and S100A9 are associated with worse outcomes (7–12). 
Patients with less severe disease tend to have both lower levels of proinflammatory cytokines 
and higher levels of tissue repair factors (9). COVID-19 also reconfigures leukocyte phenotype 15 
in a severity-specific fashion, with severe COVID-19 associated with lymphocyte exhaustion 
(13–15), neutrophil activation signatures (16–20), and hematopoietic alterations (15, 21). While 
many of these findings have been established through transcriptomic and proteomic profiling, the 
gene regulatory changes underlying severe disease manifestations have not been determined.    
 20 
Comparatively less is known about the features of immune responses to SARS-CoV-2 that 
protect against severe disease, as most cohorts profiled to date have included only hospitalized 
patients. Neutralizing antibodies and virus-specific T cell responses have been detected in mildly 
symptomatic patients, providing evidence of a successful adaptive immune response across the 
disease spectrum (22–27). Notably, patients with mild COVID-19 have much lower levels of 25 
proinflammatory plasma cytokines, suggesting that the immune response in mild disease can 
eradicate the virus without triggering the hyperinflammatory state observed in severe cases (9, 
11). Therefore, to define protective versus pathological features of the immune response, we 
aimed to profile both mild (WHO score 1-3, no oxygen requirement), moderate (WHO score 4-5, 
noninvasive oxygen requirement), and severe (WHO score 6-8, intubated) cases of COVID-19. 30 
 
To map the immune response at the epigenetic, transcriptional, and proteomic level, we 
performed single-cell assay for transposase-accessible chromatin (scATAC-seq), single-cell 
RNA-sequencing (scRNA-seq), and cytometry by time-of-flight (CyTOF) on the peripheral 
immune cells of a cohort of COVID-19 patients across the entire spectrum of disease severity. 35 
We discovered many immunological perturbations associated with disease severity, including 
robust signatures related to neutrophil activation along with dysfunction of monocytes, type 2 
conventional dendritic cells, and natural killer (NK) cells. In addition, we found strong evidence 
for emergency myelopoiesis in fatal disease. We also identified epigenetic changes correlated to 
these transcriptional and proteomic changes, demonstrating coordinated changes in regulatory 40 
element accessibility and transcription at key pro-inflammatory cytokine-encoding genes in 
monocytes. Together, this dataset reveals novel mechanistic insights into the pathological and 
protective mechanisms of the immune response to SARS-CoV-2.  

 
  45 
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RESULTS 
A trimodal single-cell atlas of the peripheral immune response to SARS-CoV-2 
To investigate how immune responses vary between different severities of COVID-19, we 
profiled peripheral blood immune cells from 64 patients with COVID-19 and 12 healthy controls 
with three high-dimensional single-cell modalities: Seq-Well (28, 29)-based scRNA-seq (33 5 
patients, 8 controls; including 7 patients previously profiled by our group (15)), scATAC-seq (18 
patients, 7 controls), and CyTOF (64 patients, 12 controls; Fig. 1A, Fig. S1A-B). Importantly, 
we profiled COVID-19 patients across the full range of the disease severity spectrum, including 
patients with mild disease (WHO score 1-3, see Methods) and hospitalized inpatients with 
moderate disease (WHO score 4-5) as well as critically ill patients with severe disease (WHO 10 
ordinal score 6-8). We scored patients by both peak severity (denoted by the colors of 
cells/patients) and severity at time of sample collection (separated as groups for box plots). The 
median age of profiled patients was 43.5 years and 51% were female (Fig. 1B, Fig. S1B, Table 
S1). The majority of patients were sampled during the acute phase of infection; 13 mild and 
moderately-ill patients were sampled in the convalescent phase (>21 days after first positive 15 
nasopharyngeal swab). Demographic information, additional clinical metadata, and the 
modalities applied to each sample are available in Table S1.  
 
Peripheral blood mononuclear cells (PBMCs) were sampled by all modalities; additionally, we 
processed red blood cell-lysed whole blood by scRNA-seq to profile granulocytes like 20 
neutrophils (see Fig. 5), and we processed isolated NK cells by CyTOF with a panel enabling 
deep interrogation of NK cell receptor expression (see Fig. 4; Fig. 1A). In total, we analyzed 
~175,000 single transcriptomes, ~50,000 single chromatin accessibility profiles, and >3.2 million 
single proteomic profiles (Fig. 1A, Tables S2-5). After performing modality-specific quality 
control procedures (see Methods), we created a merged feature matrix of all profiled samples 25 
which we subjected to dimensionality reduction, graph-based clustering, and cell type annotation 
(Fig. 1C-I, Fig. S1C, see Methods, Table S6).  
 
We first examined how COVID-19 impacted the composition of peripheral immune cells. We 
saw similar trends in immune cell composition between the three modalities, including depletion 30 
of CD16 monocytes, dendritic cells (DCs), and natural killer (NK) cells, as well as increases in 
plasmablasts in patients with severe and fatal COVID-19 (Fig. 1E; Fig. S2-3). Notably, cell 
subset proportions that were altered in moderate and severe disease were generally unchanged in 
mild cases, with the exception of plasmacytoid DCs (pDCs), which were depleted in all severity 
groups (Fig. 1E; Fig. S2-3). Further, a population of developing (or immature) neutrophils first 35 
identified in our prior study of seven patients (15) was confirmed in 17 additional patients (Fig. 
1G, Fig. S1C) and is similar to that observed by other groups (21).  
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Fig. 1. A trimodal single-cell atlas of the peripheral immune response to COVID-19 
across a range of disease severities. A) Pipeline for sample processing and number of 
patients analyzed summarized by modality and peak disease severity score. For all 
display figures, scRNA-seq-derived data are boxed in blue, scATAC-seq-derived data are 
boxed in green, and CyTOF-derived data are boxed in orange. B) Summary of key patient 5 
metadata, including age, peak disease severity score, and days after first positive 
nasopharyngeal (NP) PCR test. The vertical dotted line placed at 21 days post-positive 
test indicates the threshold after which patient samples are considered convalescent. C-D, 
F-I) UMAP projections of complete scRNA-seq (C-D), scATAC-seq (F-G), and CyTOF 
(H-I) datasets colored by peak disease severity score of sample (C,F,H) or cell type 10 
(D,G,I). E) Cell type proportions from scRNA-seq data of PBMCs in each sample are 
colored by peak disease severity score. Platelets are excluded from the proportion 
calculations, as their presence is related to sample processing. The x axes correspond to 
the disease severity score for each sample at the time of collection. *, p < 0.05; **, p < 
0.01; ***, p < 0.001; ****, p < 0.0001, n.s., not significant at p = 0.05 by two-sided 15 
Wilcoxon rank-sum test with Bonferroni’s correction for multiple hypothesis testing.  

 
Multimodal reference mapping enables accurate annotation and analysis of cellular subtypes 
Accurate identification of fine-grained immune cell subtypes is crucial to understanding how 
COVID-19 reconfigures the immune system; however, these cell types can be difficult to 20 
identify de novo in single-cell RNA-seq data due to data sparsity and lack of information on 
canonical surface marker expression in each cell. To address this, we mapped our transcriptomic 
dataset to a large multimodal reference dataset introduced by Seurat v4, which incorporated 
extensive surface marker information to improve cell type calls (Fig. 2A-B, Fig. S4A-B) (30). 
 25 
Alignment to the Seurat v4 reference dataset revealed gene expression profiles of cell subtypes 
matching their expected biological signatures (Fig. S4A-B, Tables S7-8). For example, multiple 
T cell subsets, including γδ T cells, mucosal-associated invariant T (MAIT) cells, and regulatory 
T cells (Tregs) were revealed with Seurat v4 at the expected proportions (Fig. 2B) and with the 
expected transcriptomic phenotype (eg. highly-specific expression of TRDC and TRGC1 by γδ T 30 
cells, and FOXP3 by Tregs; Fig. S4A). These annotations closely matched the manually-
generated labels; importantly, cell types present in our dataset but absent from the reference (ie. 
neutrophils) were not successfully mapped (Fig. S4C,D). To orthogonally confirm the accuracy 
of these annotations, we compared the abundances of MAITs measured by CyTOF to the 
proportions of MAITs in the transcriptomic dataset predicted by Seurat v4. This analysis 35 
revealed high concordance between modalities, supporting the accuracy of these annotations 
(Fig. S4E). 
 
This strategy revealed previously unreported changes in peripheral immune cell composition in 
COVID-19, including the depletion of both CD4 and CD8 T effector memory (TEM) cells and 40 
double-negative T cells in severe and fatal COVID-19 (Fig. 2B). While DCs are known to be 
depleted in COVID-19, our analysis reveals that this was due to depletion of the cDC2 subset, 
while cDC1 cells were unchanged (Fig. 2B). To prioritize downstream analysis of these cell 
subsets we calculated a perturbation score (30, 31) for each cell type from each COVID-19 
sample relative to healthy controls (see Methods). The perturbation score for each cell type is 45 
calculated by first identifying genes that display evidence of differential expression between 
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COVID-19 samples and healthy controls, calculating the difference of pseudobulk expression 
vectors of these genes between COVID-19 samples and healthy controls, and finally projecting 
the whole transcriptome of each donor onto this vector. This score therefore represents the 
magnitude of whole transcriptome shifts in gene expression, and reveals disease severity-
associated patterns in cell subtype perturbation (Fig. 2C). This perturbation score captured 5 
phenotypic changes in major cell types like monocytes (explored further in Fig. 3) as well as 
more granular subtypes like CD8 TEM cells. We focused our downstream analysis on cell 
subtypes with COVID-19 severity-associated perturbation with a high number of DEGs relative 
to other cell subtypes.  
 10 
For example, we identified disease severity-associated phenotypes in cDC2 cells but not other 
DC subsets (Fig. 2C-E). In cDC2 cells, FCER1A, known to be involved in inflammatory DC 
signaling (32), CD83, an activation marker of mature DCs (33), and CTSS, which is involved in 
antigen presentation (Fig. 2F) (34) were downregulated with increased disease severity while 
genes associated with tolerogenic or anti-inflammatory responses, like PKM and CD163, were 15 
upregulated (35, 36). Collectively, these results indicate that dysfunctional and anti-
inflammatory cDC2 cells may be a feature of severe COVID-19, with important potential 
implications for Tfh development and mucosal immunity. 
 
CD8 TEM cells also displayed severity-associated transcriptional perturbations (Fig. 2C, Fig. 20 
S5D-E). Notably, several markers of CD8 effector capacity, like PRF1, GZMB, and CX3CR1 
(37, 38), were downregulated primarily in patients with mild COVID-19 (Fig. S5F). 
Additionally, in severe and fatal COVID-19 patients, CD8 TEM retained expression of markers of 
effector capacity without showing features of exhaustion (Fig. S5G). Together, these data imply 
that over-exuberant peripheral cytotoxic T cell responses may be associated with severe disease, 25 
similar to previous reports (39).  
 
We next examined the impact of disease time point on immune phenotype, given the 
heterogeneity of sampling times between patients (Fig. 1B). These analyses are limited by our 
small sample size of acutely infected mild patients in our transcriptional dataset. Nonetheless, 30 
these analyses suggest that disease acuity has more impact on transcriptional perturbation in 
moderate patients than in mild patients (Fig. S6): patients with a peak WHO severity score of 1-3 
had similar transcriptional profiles marked by minimal perturbation, regardless of acuity status, 
while those with a peak score of 4-5 appeared to cluster by acuity. These results imply that mild 
COVID-19 may be marked by minimal, or rapidly resolved, systemic immune responses, a 35 
finding that is orthogonally supported by our CyTOF analyses that include a greater number of 
subjects. Cell types most perturbed in convalescence included CD8 TEM and CD14 monocytes; in 
moderate patients, B cells were also perturbed in convalescence, displaying downregulation of Ig 
genes (Fig. S6). Additional longitudinal sampling across all severity groups is necessary to 
clarify these signatures. 40 
 



 

8 
 

 
 
Fig. 2. Reference-based cell subtype annotations reveal disease severity-associated 
perturbations in immune cell subtypes. A) Weighted-nearest neighbors projection of 
scRNA-seq dataset colored by cell type labels transferred from Seurat v4 (left), or by 5 
peak disease severity score (right). B) Selected cell type proportions in scRNA-seq 
dataset of cell subtype labels from Seurat v4. Neutrophils and developing neutrophils are 
excluded from calculation of cell type proportions as these cells do not appear in the 
Seurat v4 reference. C) Heatmap of cellular perturbation scores, as described by 
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Papalexi, et al. (31), per COVID-19 sample in each Seurat v4-labeled cell type. The 
number of DEGs between all COVID-19 cells and healthy cells for each cell type is 
plotted at the left. D) UMAP projection of all DC subsets colored by peak disease 
severity score (left) and Seurat v4-annotated cell type (right). E) Dot plot depicting 
percent and average expression of canonical DC genes defining the four annotated DC 5 
subsets (see Methods, Fig. S4A). F) Box plots depicting average expression of selected 
DEGs (see Table S9 for complete list) by cDC2 cells for each sample. For all box plots: 
points are colored by the peak disease severity score, shaped according to disease acuity, 
and grouped by the disease severity score at time of sample collection. *, p < 0.05; **, p 
< 0.01; ***, p < 0.001; ****, p < 0.0001, n.s., not significant at p = 0.05 by two-sided 10 
Wilcoxon rank-sum test with Bonferroni’s correction for multiple hypothesis testing.  

 
Emergence of monocytes with dysfunctional features in severe COVID-19 
We next analyzed the phenotypes of peripheral monocytes in COVID-19, as these cells appeared 
to be strongly reconfigured in nonlinear dimensionality reduction projections for all three 15 
modalities (Fig. 1C-D, F-I). Embedding of CD14 monocytes alone from the transcriptomic 
dataset recapitulated this phenotypic shift (Fig. 3A). Similar to previous reports (11, 15, 21, 40, 
41), multiple ISGs (Fig. 3B-C, Fig. S7) and markers of immature and tolerogenic monocytes, 
like CD163, PLAC8, and MPO (Fig. 3B-C), were upregulated with increasing disease severity. 
Notably, ARG1, encoding the myeloid-derived suppressor cell (MDSC) marker and T cell 20 
inhibitor arginase, was also upregulated most prominently in the monocytes of fatal COVID-19 
patients (Fig. 3B-C). Monocytes from severe and fatal COVID-19 patients possessed additional 
features of an MDSC-like phenotype, including loss of HLA class II-encoding genes (Fig. 3B-C, 
Fig. S7) and enrichment of published gene signatures from MDSCs (42) and monocytes in the 
setting of bacterial sepsis (43) (Fig. 3D). Additionally, we noted a severity-associated loss of 25 
CD4 expression (Fig. 3B-C), which is involved in monocyte-to-macrophage differentiation and 
pro-inflammatory cytokine induction in CD14 monocytes (44, 45). These results collectively 
suggest that suppressive and dysfunctional monocytes are a feature of severe and fatal COVID-
19, in agreement with previous reports (11, 15, 21). Importantly, mild COVID-19 generally did 
not lead to this shift towards suppressive and dysfunctional monocytes.  30 
 
We also noted that C19orf59, which encodes MCEMP1, a key biomarker for stroke risk and 
outcome (46, 47), was upregulated in the monocytes of severe and fatal COVID-19 patients (Fig. 
S8). Given the accumulating data that COVID-19 can drive thrombotic complications including 
ischemic stroke, we also examined expression of other transcripts reported to predict stroke risk 35 
by Raman, et al. (47). We found that each of the five most predictive transcripts for stroke risk 
and prognosis reported by Raman, et al. (C19orf59, IRAK3, ANXA3, RBM47, and TLR5) were 
abundantly expressed in monocytes and neutrophils, and that each of these transcripts was 
significantly upregulated in severe COVID-19 in either monocytes or neutrophils (Fig. S8).  
 40 
We next examined the expression of pro-inflammatory cytokine-encoding genes by peripheral 
monocytes. Similar to previous work (11, 15), we found minimal expression of key monocyte-
derived pro-inflammatory cytokine-encoding genes in severe and fatal COVID-19 patients; in 
fact, IL1B and TNF were significantly downregulated in the monocytes of severe and fatal 
COVID-19 patients (Fig. 3E-F). Similar phenotypic changes were also observed in CD16 45 
monocytes in the scRNA-seq dataset (Fig. S7). Further, monocytes from mild COVID-19 
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patients also did not upregulate many pro-inflammatory cytokine-encoding genes (Fig. 3E-F), in 
contrast to mild cases of similar viral infections like influenza (48–50). 
 
To investigate potential gene regulatory mechanisms that could explain the downregulation of 
IL1B in the CD14 monocytes of severe and fatal COVID-19 patients, we examined changes in 5 
chromatin accessibility around the IL1B locus. We identified a putative enhancer downstream of 
IL1B, which shows linkage to the IL1B promoter via single cell co-accessibility analysis and 
chromosome conformation capture Hi-C data from the THP-1 monocytic cell line (Fig. 3G, see 
Methods) (51). This putative enhancer showed significantly decreased accessibility in severe 
COVID-19 patients (p=0.0081, Wilcoxon test, Fig. 3H). Furthermore, this element contains an 10 
NF-κB binding motif, suggesting it may be regulated by NF-κB family transcription factors. We 
identify similar changes in peaks containing NF-κB motifs at loci for other monocyte-produced 
inflammatory cytokines including CCL2 and CCL3 (Fig. S9). 
 
Consistent with this hypothesis, we further observed COVID-19-associated changes in genome-15 
wide NF-κB family transcription factor activity. Using ChromVAR analysis to quantify 
transcription factor activity from the chromatin accessibility of each cell, we found increased 
NF-κB activity in mild cases and significantly decreased activity in severe cases, consistent with 
the changes we observed at the IL1B locus (p=0.0047, Wilcoxon test, Fig. 3I) (52). Our scRNA-
seq data did not show significant transcriptional changes for most NF-κB-family TFs, although 20 
REL and RELB are significantly downregulated in severe COVID-19 (Fig. S9). This could either 
reflect technical limitations of measuring lowly-expressed transcription factor transcripts, or it 
could indicate that our observed NF-κB activity changes are caused by post-translational 
modifications (53). The NF-κB pathway is crucial for the inflammatory responses to virus 
infections in innate immune cells (53–55), and its activation relies on various proinflammatory 25 
cytokines including IL-1β and TNFα (56). Activated NF-κB can further induce TNF and IL1B 
expression (53, 57), leading to a positive feedback loop. Our results suggest that aberrant 
decreases in NF-κB activity in severe COVID-19 may result in loss of accessibility at putative 
enhancers of key cytokine genes, providing a potential mechanism for the previously reported 
impairment in cytokine production by peripheral monocytes in COVID-19 (11).   30 
 
We also examined the epigenetic regulation at the CD4 locus, as this gene was significantly 
downregulated with increasing disease severity. Although there was no change in chromatin 
accessibility of the CD4 gene promoter between severity groups, we found that the accessibility 
of monocyte-specific CD4 gene putative regulatory regions was significantly reduced in severe 35 
samples (Fig. S9). This monocyte-specific loss of CD4 expression may provide an additional 
mechanism explaining the previously reported impairment of cytokine production by monocytes 
in COVID-19 (11, 21), as the interaction between IL-16 and monocytic CD4 induces the 
expression of proinflammatory cytokines, including IL-1β (44).  
 40 
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Fig. 3. Monocytes with dysfunctional features emerge in severe and fatal COVID-19. 
A) UMAP projection of CD14 monocytes from scRNA-seq dataset, colored by peak 
disease severity score. B,E) Feature plots depicting expression of selected DEGs and pro-
inflammatory cytokine-encoding genes by CD14 monocytes (see Table S10 for complete 
DEG list). C,F) Box plots depicting average expression of features plotted in (B,E) in 5 
each sample. D) Box plot showing average module score for gene signatures of 
monocytes in bacterial sepsis (43) and MDSCs (42) (see Methods). G) Genome track 
showing 100 kb around the IL1B gene locus. Top panel shows the coverage at different 
peak regions for different severity groups; the box below shows peaks called from all 
CD14 monocytes in that region (dark blue) and peaks containing putative strong NF-κB2 10 
binding sites (red); the “CoAccessibility” box shows the accessibility correlated peak 
pairs across all CD14 monocytes; the “Genes” box shows location of IL1B gene, blue 
color means the gene is located on the minus strand; the bottom “Virtual 4C” track shows 
KR-normalized contact frequencies to the IL1B promoter in THP1 monocytic cells. A 
locus with significantly altered accessibility is marked by a black arrow. H) Box plot 15 
depicting the accessibility of the peak marked by a black arrow in (G) in CD14 
monocytes from each sample, measured by number of Tn5 insertions per million. I) Box 
plot depicting the average chromVAR z-scores of NF-κB2 binding motifs in CD14 
monocytes from different samples. J) UMAP projection of all monocytes from CyTOF 
dataset, colored by peak disease severity score. K-L) Feature plots (K) and box plots (L) 20 
depicting arcsinh-transformed expression of selected protein markers by monocytes in 
CyTOF dataset. For all box plots: points are colored by the peak disease severity score, 
shaped according to disease acuity, and grouped by the disease severity score at time of 
sample collection. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001, n.s., not 
significant at p = 0.05 by two-sided Wilcoxon rank-sum test with Bonferroni’s correction 25 
for multiple hypothesis testing.  

 
Profiling of COVID-19 monocytes by CyTOF recapitulated many of these findings (Fig. 3J,K). 
This included a loss of CD16+ monocytes as well as a distinct shift in the phenotype of CD14+ 
monocytes (Fig. 3J,K; Fig. S10). As observed in our transcriptional data, expression of HLA-30 
DR and CD4 was lost in the CD14+ monocytes of severe COVID-19 samples. Importantly, this 
proteomic reconfiguration was not observed in patients with mild COVID-19, evident in non-
linear dimensionality reduction (Fig. 3J). Mild patients experienced no significant increase in 
expression of the stress marker CD112, nor did they upregulate CCR2, which is involved in 
monocyte recruitment to the airways in the setting of severe COVID-19, although both of these 35 
markers were upregulated in severe patients (Fig. 3J-L) (58, 59). They also displayed a less 
dramatic loss of HLA-DR and CD4 expression compared to monocytes in severe cases (Fig. 3J-
L). These results indicate that while monocytes are dramatically remodeled in severe COVID-19, 
mild COVID-19 has minimal, or rapidly resolved, impact on the monocyte proteome. 
 40 
Peripheral NK cells are depleted in severe COVID-19 and have a highly activated phenotype 
We next interrogated changes in the NK cells of COVID-19 samples. As demonstrated 
previously (15, 60), peripheral NK cells were substantially depleted across all three modalities 
and transcriptionally reconfigured in severe COVID-19 samples (Fig. 4A-B, Fig. S11), which 
may reflect their trafficking to the site of infection. Transcriptional changes appeared to be 45 
driven by upregulation of several canonical NK cell activation genes, including higher 



 

13 
 

expression of cytotoxic effector molecule-encoding genes GZMB and PRF1, as well as 
proliferation marker MKI67 and ISGs like XAF1 (Fig. 4B-C). NK cells from moderate and 
severe, but not mild, COVID-19 cases, also displayed transcriptional evidence of exhaustion 
(Fig. 4C). 
 5 
We next examined this NK cell activation signature at the protein level. We corroborate 
previously known changes in NK cell biology, including increased expression of the activation 
markers CD38 and CD69 (60), and also demonstrate that surface expression of the death receptor 
ligand Fas-L is increased in moderate and severe COVID-19 patients (Fig. 4D; Fig. S11). While 
perforin was also upregulated in moderately and severely ill patients, surprisingly, NK cells from 10 
fatal COVID-19 patients failed to upregulate both this cytotoxic effector and the proliferation 
marker Ki-67 (Fig. 4D-E). These data, coupled with transcriptomic evidence of NK cell 
exhaustion in severe and fatal COVID-19 (Fig. 4C), suggest that defects in NK cell cytotoxicity 
may be associated with adverse outcomes.  
 15 
Dynamic changes in NK cell receptors and ligands may underlie COVID-19 severity-associated 
NK activation 
To assess mechanisms of NK cell activation, we interrogated changes in the NK cell repertoire of 
surface-expressed activating and inhibitory receptors as well as their cognate ligands. Notably, 
surface expression of the activating receptors DNAM-1 (CD226) and NKG2D was significantly 20 
downregulated in the activated (CD69+CD38+) (Fig. 4F) and total (Fig. S11F) NK cells of 
severe COVID-19 samples compared to healthy controls, despite no change in the expression of 
the genes encoding these proteins in the total NK cells within our scRNA-seq data (Fig. 4G). As 
expression of both DNAM-1 and NKG2D can be downmodulated following ligation (61, 62), we 
investigated the abundance of the two ligands for DNAM-1, poliovirus receptor (CD155) and 25 
Nectin-2 (CD112), and of the ULBP proteins, which are recognized by NKG2D. Both Nectin-2 
and the ULBPs were significantly upregulated on the peripheral monocytes of hospitalized 
COVID-19 patients compared to healthy controls (Fig. 4H), which supports the hypothesis that 
SARS-CoV-2 may decrease surface expression of DNAM-1 and NKG2D through internalization 
following ligation of overexpressed Nectin-2 and ULBP proteins due to stress. We found no 30 
change in the expression of the other ligand for DNAM-1, CD155, nor did we observe any 
changes in the protein- or RNA-level expression of either TIGIT, an inhibitory receptor that 
competes with DNAM-1 for binding of Nectin-2, or TACTILE (CD96), which recognizes 
CD155 (Fig. S11E). Alternatively, activated NK cells expressing DNAM-1 or NKG2D may 
migrate to the tissue in the setting of severe disease, depleting these markers from the circulating 35 
population.  
 
We also investigated the surface expression levels of other ligands for NK cell receptors and 
observed a loss of LLT-1 expression on CD14+ monocytes that appears to correlate with disease 
severity, with a near-total loss in fatal samples (Fig. 4I); however, we found no change in the 40 
expression of the inhibitory receptor that recognizes LLT-1, CD161, on NK cells (Fig. S11G). 
The overall profile of activating and inhibitory receptors and ligands expressed in severe 
COVID-19 is summarized in Fig. 4J and suggests that the activated phenotype observed in these 
samples may be driven by activating signals received through DNAM-1 and NKG2D as well as a 
lack of inhibitory signaling through CD161. 45 
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Fig. 4. NK cells of severe COVID-19 patients exhibit a unique proteomic and 
transcriptional profile. A) Box plots of manually-annotated NK cell proportions from 
CyTOF (left), Seurat v4-annotated NK cell proportions from scRNA-seq (center), and 
Seurat v4-annotated NK cell proportions from scATAC-seq (right, see Methods). B) 
UMAP projections of NK cells from scRNA-seq dataset colored by peak disease severity 5 
score (left) and selected DEGs (right; see Table S11 for complete list). C) Box plots of 
average ISG signature and NK cell exhaustion (defined as expression of LAG3, PDCD1 
and HAVCR2, see Methods) module scores in Seurat v4-annotated NK cells. D) Heatmap 
of Z-score normalized protein-level expression of canonical NK cell activation and 
cytotoxicity markers (Perforin, Ki-67, CD38, CD69, and Fas-L) in each sample. E) Box 10 
plots quantifying arcsinh-transformed average expression of Ki-67 (left) and Perforin 
(right) by NK cells, grouped by peak disease severity score. F) Box plots of average 
expression of DNAM-1 (left) and NKG2D (right) protein in activated NK cells (defined 
as CD38+CD69+ NK cells based on manual gating) from CyTOF dataset. G) Box plots of 
average expression of CD226 (which encodes DNAM-1; left) and KLRK1 (which 15 
encodes NKG2D; right) from scRNA-seq dataset (G). H-I) Box plots of arcsinh-
transformed average protein-level expression of NK cell ligands CD112 and ULBP-
1,2,5,6 (H) and LLT-1 (I) by monocytes. J) Schematic illustrating changes in protein-
level expression of NK cell activating and inhibitory receptors and their ligands. Text 
color indicates if a receptor/ligand is activating (green), inhibitory (red), or either, 20 
depending on the context (yellow). Arrows and dashes indicate whether abundance of a 
protein is increased, decreased, or unchanged in severe COVID-19 compared to healthy 
controls. Dashed lines indicate interactions between receptors and ligands. For all box 
plots except (E): points are colored by peak disease severity score, shaped according to 
disease acuity, and grouped by the severity score at sample collection. *, p < 0.05; **, p < 25 
0.01; ***, p < 0.001; ****, p < 0.0001, n.s., not significant at p = 0.05 by two-sided 
Wilcoxon rank-sum test with Bonferroni’s correction for multiple hypothesis testing.  

 
A hyperactivated neutrophil signature marks severe and fatal COVID-19 
Despite evidence that neutrophils are major players in the dysregulated immune response 30 
defining severe and fatal COVID-19 (16, 18–20, 63–66), there is a relative dearth of deep 
profiling of neutrophils from COVID-19 patients given their sensitivity to both cryopreservation 
and mechanical stimulation (67, 68). To address this, we demonstrated that Seq-Well generated 
high-quality scRNA-seq data of primary human neutrophils from a healthy blood donor (Fig. 
S12). While fewer genes were detected in sequenced neutrophils, the number of unique 35 
molecular identifiers (UMIs) sequenced in neutrophils was comparable to the expected recovery 
based on known RNA content (69, 70). We also found that neutrophils from ACK-lysed whole 
blood were phenotypically similar to neutrophils isolated by magnetic-activated cell sorting 
(MACS; Fig. S12D-E); the former strategy was also able to uncover other granulocytic cell 
types like eosinophils (Fig. S12C). 40 
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Fig. 5. Neutrophil activation is a hallmark of severe and fatal COVID-19. A) UMAP 
projections of complete scRNA-seq dataset colored by expression of canonical neutrophil 
markers (top) and of canonical neutrophils alone colored by peak disease severity score 
(bottom). B) Heatmap of DEGs between neutrophils of each COVID-19 sample 5 
compared to neutrophils of all healthy controls, colored by average log(fold-change). All 
displayed DEGs are statistically significant at the p < 0.05 confidence level by Seurat’s 
implementation of the Wilcoxon rank-sum test (two-sided, adjusted for multiple 
comparisons using Bonferroni’s correction). C) Box plots depicting average expression 
of selected neutrophil DEGs by severity group (see Table S13 for complete DEG list). D) 10 
Plots depicting median ISG signature score of neutrophils in each sample grouped by 
disease severity score at time of sample collection (left) and by days after first positive 
NP swab (right). All points are colored by peak disease severity score. For scatter plot at 
right, Pearson’s r, exact two-sided p values and the 95% confidence interval are shown 
for each peak disease severity score grouping. E) Box plots depicting average module 15 
scores for genes sets of neutrophil phagocytosis and neutrophil degranulation (see 
Methods, Table S12). F) Dot plots depicting average and percent expression of pro-
inflammatory cytokine encoding genes (left) and epigenetic regulators (right) by 
canonical neutrophils. The y axis corresponds to the peak disease severity score. G) 
Results of transcription factor activity prediction analysis performed by iRegulon (76). 20 
DEGs between neutrophils from severely ill (peak severity 6-8) and neutrophils from 
healthy controls were used as input (see Methods, Table S14). H) Box plots of average 
module scores for PD-L1+ neutrophils in an in vitro model of endotoxemia (74) and 
granulocytes in the setting of sepsis and ARDS (75) (see Methods, Table S12). For all 
box plots: points are colored by the peak disease severity score, shaped according to 25 
disease acuity, and grouped by the disease severity score at time of sample collection. *, 
p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001, n.s., not significant at p = 0.05 
by two-sided Wilcoxon rank-sum test with Bonferroni’s correction for multiple 
hypothesis testing.  

 30 
Seq-Well processing of red blood cell-lysed whole blood yielded 33,276 high-quality single 
transcriptomes of primary neutrophils (Fig. 5A). These cells uniformly and specifically 
expressed neutrophil lineage marker-encoding genes, including CSF3R and CXCR2, indicating 
their identity as canonical neutrophils (Fig. 5A, Table S6). Non-linear dimensionality reduction 
revealed that neutrophil transcriptional phenotype was strongly remodeled in COVID-19 (Fig. 35 
5A), driven in part by upregulation of PADI4, which is required for NETosis, the IL-8 receptor 
CXCR1, and multiple alarmins, including S100A8 and S100A9 (Fig. 5B-C), which together 
induce neutrophil chemotaxis and adhesion (71). We also noted disease severity-specific 
induction of interferon-stimulated genes (ISGs) in moderate and severe, but not in mild, COVID-
19 patients (Fig. 5D). While this ISG signature was detected across most cell types in moderately 40 
and severely ill patients, neutrophils upregulated the broadest number of ISGs (Fig. S13). 
Importantly, the differential expression of ISGs by neutrophils between COVID-19 severity 
groups was not due to a difference in infection time point between patients: neutrophils from 
patients with mild COVID-19 did not upregulate ISGs at any point during infection (Fig. 5D). 
Additionally, gene set enrichment analysis demonstrated upregulation of genes associated with 45 
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neutrophil phagocytosis and degranulation in a disease severity-associated fashion (Fig. 5E, see 
Table S12).  
 
We also identified two distinct neutrophil immunophenotypes of fatal COVID-19. Neutrophils 
from 4/6 fatal COVID-19 cases had robust ISG induction and expressed CD274 (encoding PD-5 
L1; Fig. 5B-C), in line with previous work (21). However, we also identified 2 fatal COVID-19 
cases with less pronounced ISG induction but with upregulation of additional neutrophil 
activation markers not observed in other samples, including CXCR4, CLEC12A, EGR1, and the 
decoy IL1β receptor IL1R2 (Fig. 5B-C). Additional severity-associated changes in neutrophil 
phenotype included the upregulation of pro-inflammatory cytokine-encoding genes, including 10 
CXCL16 and TNFSF10 (encoding TRAIL), as well as upregulation of several epigenetic 
regulators involved in neutrophil activation, like PADI4, which is required for formation of 
neutrophil extracellular traps (NETs; Fig. 5F) (19, 72, 73).  
 
Transcription factor activity analysis implicated STAT1, STAT2, STAT3, and IRF1 as key 15 
upstream regulators of the observed transcriptional reconfiguration, further suggesting that 
COVID-19 neutrophils are strongly activated by type I IFN in a disease severity-specific fashion 
(Fig. 5G). To better contextualize these findings, we scored the neutrophils in our dataset against 
gene modules upregulated in a model of endotoxemia (74) and in ARDS-complicated sepsis 
(75). This analysis revealed that both of these signatures are upregulated with increasing 20 
COVID-19 severity (Fig. 5H), implying similarities in neutrophil phenotype between these 
clinical conditions. Collectively, profiling fresh whole blood rather than isolated PBMCs reveals 
a prominent neutrophil hyperactivation signature in severe and fatal COVID-19.  
 
Developing neutrophils are a feature of fatal COVID-19 25 
We next analyzed a population of developing neutrophils from the transcriptomic dataset that 
was enriched in patients with severe and fatal COVID-19 (Fig. 1E, Fig. 6A). This population has 
been identified in other COVID-19 datasets but is not yet well-characterized (21, 63). These cells 
specifically and highly expressed genes encoding markers expressed at distinct stages in 
neutrophil development, including DEFA1B, LCN2, and MMP8 (Fig. S1C, Table S6), indicating 30 
that they likely represent immature neutrophils derived from emergency granulopoiesis. As we 
hypothesized that these cells were not a static population but rather were dynamically 
differentiating, we embedded them in two and three dimensions using PHATE, a dimensionality 
reduction method developed to visualize phenotypic continua, branches, and continual 
progressions (Fig. 6B-C, Fig. S14) (77). Clustering of these cells revealed 5 clusters that 35 
corresponded to sequential stages in neutrophil development, beginning with cluster 0 (pro-
neutrophils) expressing primary neutrophil granule protein-encoding genes, followed by clusters 
1-3 (pre-neutrophils) consecutively expressing secondary and tertiary neutrophil granule protein-
encoding genes, and finally cluster 4 (mature neutrophils) which expresses markers of canonical 
neutrophils (Fig. 6C-D) (78). Importantly, ELANE (which encodes neutrophil elastase), was 40 
specifically expressed by pro-neutrophils, implying that these cells may be capable of NETosis 
(79, 80). An orthogonal approach ordering each cell in latent time modeled by splicing kinetics 
of RNA velocity (81, 82) (Fig. 6E) also revealed a similar developmental trajectory with respect 
to both granule protein-encoding genes (Fig. 6F) and transcription factors known to be involved 
in neutrophil development, like the C/EBP family (Fig. 6G, Fig. S14). In our earlier work, we 45 
hypothesized that developing neutrophils may arise via transdifferentiation from plasmablasts 
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based on their phenotypic similarity in nonlinear dimensionality reduction manifold space and 
subsequent analysis of cellular trajectory by RNA velocity. In this larger dataset, a phenotypic 
relationship between developing neutrophils and plasmablasts was still evident (Fig. 1C-D), but 
RNA velocity analysis of plasmablasts, developing neutrophils, and mature neutrophils did not 
reveal a clear transdifferentiation bridge (Fig. S14). Orthogonal experiments are necessary to 5 
conclusively determine the development origins of these cells.  
 
As developing neutrophils were present uniformly, often at high frequencies, in patients with 
fatal COVID-19, and these cells specifically expressed many genes not found in other peripheral 
blood cell types, we hypothesized that the developing neutrophil gene signature might be an 10 
accurate predictor of mortality in COVID-19. We therefore identified the five most positively 
differentially-expressed genes between developing neutrophils (6,569 cells across 21 patients) 
and all other cells in our dataset: DEFA1B, DEFA3, LTF, DEFA1, and S100A8. We next 
obtained a publicly-available whole blood bulk transcriptomic dataset of 103 COVID-19 patients 
as a validation cohort and scored each sample in this dataset by the aggregated expression of 15 
these five genes (see Methods). After scoring each sample, we used the associated patient 
metadata to determine the 28-day mortality of each scored sample. We then constructed a 
receiver operating characteristic (ROC) plot using the gene score as predictor and the 28-day 
mortality as the response variable. We found that the developing neutrophil gene score 
accurately predicted 28-day mortality of the 17 patients who succumbed to infection (AUC = 20 
0.81; Fig. 6H, Fig. S14). Importantly, the sequential organ failure assessment (SOFA) score at 
the time of sample collection did not strongly predict 28-day mortality (AUC = 0.67), indicating 
that the presence of developing neutrophils is a better prognostic indicator than current clinical 
status measured by clinically used severity scales (Fig. S14). Thus, developing neutrophils are 
likely enriched in the blood of fatal COVID-19 cases in other cohorts, and gene signatures from 25 
these cells have promise as a potential prognostic indicator.  
 
Myeloid skewing of hematopoietic progenitors in severe and fatal COVID-19 
Considering that severe and fatal COVID-19 patients displayed evidence of emergency 
myelopoiesis in the periphery, we hypothesized that there also may be severity-associated 30 
aberrations in a small population of hematopoietic stem and progenitor cells (HSPCs) we 
identified in our transcriptomic dataset (Fig. 1C-D, Fig. 2C). Although the frequency of these 
cells did not change in COVID-19 (Fig. 6I), we found that several genes involved in HSPC 
maintenance and self-renewal, including CDK6, SOX4, and CHD4 (83–89), were generally 
upregulated in COVID-19 patients relative to healthy controls (Fig. 6J). These DEGs suggest 35 
that the hematopoietic progenitor compartment in COVID-19 patients has been transcriptionally 
reshaped to accommodate the stress of emergency hematopoiesis. To better understand the 
identities of these cells, we leveraged a publicly available single-cell transcriptomic dataset of 
hematopoiesis in healthy human blood and bone marrow (Fig. 6K) (90), into which we projected 
HSPCs from our COVID-19 dataset (Fig. 6L). We found a trend towards myeloid skewing in 40 
COVID-19 circulating HSPCs with increasing disease severity, with lower frequencies of 
common lymphoid progenitors in severe and fatal patients, as well as granulocyte/macrophage 
progenitor (GMP)/neutrophil-like cells appearing in severe and fatal cases (Fig. 6M). Together, 
these results indicate severity-associated changes in hematopoiesis in COVID-19 with greater 
myeloid skewing evident in circulating HSPCs.  45 
 



 

20 
 

 

●●●● ●●● ●

ns
ns

**

Developing
neutrophil

0

1−
3

4−
5

6−
7

0

20

40

60

WHO severity score at draw

Pr
op

or
tio

n 
(%

)

●●
●
●

●

●

●

●

ns
*

ns
HSPC

0

1−
3

4−
5

6−
7

0.0

0.5

1.0

1.5

2.0

WHO severity score at draw

Pr
op

or
tio

n 
of

 a
ll c

el
ls 

(%
)

●●

●

●

●
●●

●

**
ns

ns

●
●

●

●●●

●

●

ns
ns

**

●
●

●
●

●
●●

●

**
ns

ns

●

●
●

●

●●
●
●

*
ns

ns

●
●

●

●

●
●●

●

ns
ns

ns

●
●

●

●●
●●●

**
*

ns
HNRNPA2B1 PTMA YBX1

CDK6 SOX4 CHD4

0

1−
3

4−
5

6−
7 0

1−
3

4−
5

6−
7 0

1−
3

4−
5

6−
7

0

1

2

3

0

1

2

3

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

Severity score at draw

Av
er

ag
e 

ex
pr

es
si

on

Peak severity
score
●

●

●

●

●

0
1−3
4−5
6−7
8

Acuity
● Healthy

Acute
Convalescent

A B C

D

E F G

H I

K L M

HSPC representative DEGs

Developing neutrophils

Latent time

Developing neutrophils

Severity
Developing neutrophils

Clusters

Developing neutrophils

Pseudotime – TFs

Developing neutrophils

Pseudotime – granule markers

CD34+-enriched BMMCs 

hematopoiesis dataset

(Granja, et al. 2019)

Projection of COVID-19 dataset HSPCs

● ● ● ● ●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●●●●●●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●●●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●●●●●●●● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ●

4

3

2

1

0

IG
LC
3

EL
AN
E
CT
SG
AZ
U1MP

O
DE
FA
4

DE
FA
1

DE
FA
1B
DE
FA
3
SR
GN

NU
CB
2
BP
I

MS
4A
3

CE
AC
AM
6

HM
GN
2
MK
I67

OL
FM
4

CE
AC
AM
8

AB
CA
13
RE
TN LY

Z
LT
F
CA
MP
LC
N2
MM
P8
PA
DI4

S1
00
A9
CY
BB

CR
ISP
3
TC
N1

S1
00
A8 HP

S1
00
A1
2
MM
P9
SE
LLB2

M

FC
GR
3B
TX
NIP

AH
NA
K
VC
AN

NA
MP
T

DU
SP
1

NA
MP
TL
NE
AT
1

C
lu

st
er

Percent Expressed
●

●

●
●

25
50
75
100

−1

0

1

Average Expression

0.00

0.25

0.50

0.75

1.00

0.
00

0.
25

0.
50

0.
75

1.
00

Latent time

R
el

at
ive

 e
xp

re
ss

io
n 

(s
ca

le
d)

Gene
DEFA1B
LTF
MMP9
CSF3R

0.0

0.2

0.4

0.6

0.
00

0.
25

0.
50

0.
75

1.
00

Latent time
R

el
at

ive
 e

xp
re

ss
io

n 
(s

ca
le

d)

Gene
CEBPB
CEBPD
CEBPE

JPredicting mortality in validation cohort

Overmyer, et al. (2020)

Top 5 developing neutrophil genes: 

DEFA1B, DEFA3, LTF, DEFA1, and S100A8



 

21 
 

Fig. 6. Emergency granulopoiesis and other hematopoietic abnormalities 
characterize severe and fatal COVID-19. A) Box plot depicting proportions of 
developing neutrophils in each sample from the scRNA-seq dataset. B-C) Two-
dimensional PHATE projection of developing neutrophils colored by peak disease 
severity score (left) and cluster number (right). D) Dot plot depicting percent and average 5 
expression of DEGs between developing neutrophil clusters (see Table S15). E) Two-
dimensional PHATE projection of developing neutrophils colored by latent time 
calculated by scVelo (82). F-G) Scaled expression of selected neutrophil granule-
encoding genes (F) and C/EBP transcription factor family-encoding genes (G) by 
developing neutrophils across inferred latent time. H) Receiver operating characteristic 10 
(ROC) curve depicting sensitivity and specificity of 28-day mortality prediction of a five-
gene signature of developing neutrophils (DEFA1B, DEFA3, LTF, DEFA1, and S100A8) 
in an independent validation cohort of 103 samples where 17 cases are fatal (91). I) Box 
plot depicting proportions of Seurat v4-annotated HSPCs in scRNA-seq dataset. J) Box 
plots of average expression of selected HSPC DEGs (see Table S16). K-L) UMAP 15 
projection of Seurat v4-annotated HSPCs from scRNA-seq dataset into a publicly-
available blood and bone marrow hematopoiesis dataset (90) colored by published cell 
type annotations (K) and with projected HSPCs colored in red (L). M) Bar plot depicting 
proportions of cell type identities transferred after projection into the publicly-available 
hematopoiesis dataset for each peak disease severity score bin. For all box plots: points 20 
are colored by the peak disease severity score, shaped according to disease acuity, and 
grouped by the disease severity score at time of sample collection. *, p < 0.05; **, p < 
0.01; ***, p < 0.001; ****, p < 0.0001, n.s., not significant at p = 0.05 by two-sided 
Wilcoxon rank-sum test with Bonferroni’s correction for multiple hypothesis testing.  
 25 
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DISCUSSION 
In this work, we have compiled a trimodal single-cell atlas of immune cells from COVID-19 
patients with a wide range of disease severities through scRNA-seq, scATAC-seq, and CyTOF. 
By virtue of our whole blood analyses and multi-modal approach, our analysis reveals novel 
mechanisms of immune activation and dysregulation in the setting of severe COVID-19, in 5 
addition to providing critical validation of results from other studies. We found that neutrophils 
and NK cells appeared strongly activated with increasing disease severity, with heightened ISG 
induction and increased expression of cytotoxic machinery. Conversely, monocytes and dendritic 
cells displayed dysregulated and tolerogenic features in severe and fatal COVID-19. Finally, we 
found dramatic changes in hematopoietic development in severe COVID-19, with the appearance 10 
of a population of developing neutrophils in the periphery and skewing of circulating 
hematopoietic precursors towards the myeloid lineage.  
 
Importantly, our profiling of patients with mild COVID-19 allows us to demonstrate that many 
of these changes occur largely in severe and fatal COVID-19 and not in milder forms of the 15 
disease. For example, the kinetics and role of local and systemic IFN signaling in ameloriating or 
exacerbating SARS-CoV-2 remain controversial (41, 92–95). Here, we noted minimal induction 
of ISGs in mild COVID-19 cases, regardless of the time point of infection. This suggests that 
robust IFN responses detectable in the periphery may not be required for disease resolution. 
Additionally, we observed surprisingly little perturbation of monocytes and NK cells from mild 20 
COVID-19 patients, whereas mild cases of influenza are known to induce systemic activation of 
these cells (96, 97). Direct comparative analyses and larger sample sizes will be necessary to 
identify conserved or differential features between mild COVID-19 and other mild respiratory 
virus infections.   
 25 
Our analysis demonstrated a strong severity-associated hyperactivation phenotype in peripheral 
neutrophils marked by broad ISG induction, pro-inflammatory cytokine-encoding gene 
production, enrichment of phagocytosis and degranulation gene sets, and upregulation of 
epigenetic regulators associated with inflammatory neutrophils, such as PADI4 which is required 
for NETosis. Neutrophils in severe COVID-19 also strongly upregulated S100A8 and S100A9, 30 
which dimerize to form the inflammatory molecule calprotectin, which is involved in neutrophil 
activation and chemotaxis (71). Additionally, we found features associated with neutrophil 
exhaustion, like upregulation of CD274, similar to other studies (21). While this finding has led 
some groups to conclude that neutrophils become “suppressive” in severe COVID-19 (21), we 
believe our findings, combined with accumulating evidence that NETosis contributes to tissue 35 
injury and thrombotic complications in severe COVID-19 (16, 18, 64–66), suggest a 
predominantly pathogenic role for circulating neutrophils in severe COVID-19. Importantly, 
these data provide insight into the mechanistic pathways that drive neutrophil activation. 
Targeting such pathways may provide new therapeutic opportunities. For example, an agonist of 
a neutrophil-expressed inhibitory receptor Siglec-10 (SACCOVID) has shown promising results 40 
in suppressing hyperinflammation in severe COVID-19 and is in a phase III clinical trial (98–
100). Agonists against other neutrophil-expressed inhibitory receptors, like Siglec-9, may also 
represent novel therapeutic candidates (101). 
 
In addition to identifying features of severe COVID-19, we were also able to identify key 45 
differences between the immune responses of patients with severe COVID-19 who went on to 
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survive the disease versus those who did not. A striking difference between fatal and non-fatal 
cases was the emergence of a population of developing neutrophils that was first described by 
our group (15). In this earlier work we identified these cells in 4/4 patients with acute respiratory 
distress syndrome (ARDS) requiring mechanical ventilation, including in one patient who 
succumbed to infection. We now show the presence of these cells in 17 additional patients, 5 
including 5/7 patients with severe and 6/6 patients with fatal COVID-19. Our trajectory analyses 
demonstrate that these cells follow the stages of canonical neutrophil development, beginning 
with defensin-rich promyelocytes and differentiating through metamyelocytes and bands to form 
mature neutrophils. This process may be driven by elevated levels of circulating pro-
inflammatory cytokines, like IL-17, that may induce formation of neutrophils (102). Although 10 
any functional or pathological role for these cells in COVID-19 pathogenesis remains unclear, 
their abundance in the periphery of patients with fatal COVID-19 enabled us to demonstrate that 
their most defining transcripts could be used to predict 28-day mortality in an independent bulk 
transcriptomic dataset. While emergency myelopoiesis is known to be a feature of bacterial 
sepsis (103, 104), it is likely that emergency myelopoiesis is also an underappreciated feature of 15 
severe viral infection. For example, in an integrated multicohort analysis of viral disease 
severity, Zheng, et al. report a gene module that includes several markers of immature 
neutrophils (eg. CEACAM8, DEFA4, LCN2) that is enriched in other viral infections including 
influenza and RSV (105). Additionally, a six-mRNA classifier of viral disease severity, which 
includes DEFA4, trained on non-COVID-19 viral infections was found to also predict COVID-20 
19 severity (106). These results suggest that emergency myelopoiesis is a common feature of 
multiple severe viral infections and may be used to predict adverse outcomes. 
 
In addition to canonical and immature neutrophils, the phenotype of NK cells in fatal COVID-19 
cases was also distinct from that of severe non-fatal cases. While circulating NK cells are known 25 
to become activated in severe COVID-19 (60), our work is the first to show that patients with 
fatal COVID-19 fail to proliferate and upregulate the cytotoxic effector perforin. The absence of 
this activation could indicate a defect in the functional responses of NK cells in fatal COVID-19, 
although this finding requires direct validation. We also identify NK cell ligand-receptor axes 
that may contribute to their activation in severe COVID-19; for example, our data suggest that 30 
DNAM-1-mediated recognition of Nectin-2 could drive NK cell activation in COVID-19, as 
could NKG2D-mediated activation. These data are consistent with other viral infections in which 
activation of NK cells through DNAM-1 or NKG2D are important (107, 108), and highlight 
pathways that should be investigated through in vivo model systems for their role in disease 
outcome.  35 
 
While neutrophils and NK cells are activated in COVID-19, monocytes and dendritic cells 
appear to take on an impaired inflammatory phenotype. Perturbations in the cDC2 dendritic cells 
of patients with severe COVID-19 could inhibit priming of Tfh cells and development of 
mucosal immunity (109). Both cDC2s and monocytes of critically ill COVID-19 patients 40 
appeared to downregulate or failed to upregulate genes involved in activation and inflammation; 
for example, cDC2s lost expression of FCER1A and CD83, while CD14+ monocytes notably did 
not upregulate any genes encoding proinflammatory cytokines such as IL-6 and CCL3, and 
genes encoding IL-1β and TNF were significantly downregulated in these cells compared to 
healthy controls. This lack of proinflammatory cytokine expression is of note as other viral 45 
infections such as influenza drive an increase in the production of these molecules by peripheral 
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monocytes (97). We identified the inactivation of NF-κB family TFs as a possible epigenetic 
mechanism for this silencing of proinflammatory cytokine production in monocytes, as we 
observed a striking loss of accessibility at an NF-κB binding site within the IL1B locus. This 
observed inactivation is unusual, given that these TFs typically play an important role in antiviral 
immune responses, including through regulating the production of cytokines (110). Indeed, NF-5 
κB family TFs have been implicated in driving the proinflammatory cytokine production in other 
cell types during SARS-CoV-2 infection (111). It is also possible that the absence of NF-κB 
activity and accessibility at cytokine-encoding genes reflects the immaturity of monocytes in 
severe COVID-19. 
 10 
There are several limitations to this work that should be noted. Though large for a multi-modal 
dataset, our sample size is still limited. Moreover, we were unable to profile each patient by all 
three single-cell modalities, preventing us from performing cross-modality validation on a per-
patient basis. Additionally, our CyTOF panels only allowed us to examine a limited number of 
cell types, preventing us from performing orthogonal validation of some transcriptional or 15 
epigenetic findings in proteomic space. This work profiled exclusively circulating immune cells; 
while understanding the peripheral immune system is critical to understanding aberrant and 
protective immune responses to SARS-CoV-2 infection, it does not capture the immune response 
at the site of infection. Finally, further functional experimentation is necessary to validate or 
refute many of the hypotheses presented here. 20 
 
Collectively, our work represents the first trimodal epigenomic, proteomic, and transcriptomic 
cell atlas of peripheral immune responses to COVID-19 across a broad spectrum of disease 
severity. By identifying novel immune features associated with COVID-19 mortality, as well as 
the immune status of patients with mild disease, our work enhances our understanding of 25 
pathological vs. protective immune responses and highlights several opportunities for therapeutic 
development. 
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