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Abstract 39 

Retracing microbial emergence and spread is essential to understanding the evolution and 40 

dynamics of pathogens. The bacterial foodborne pathogen Listeria monocytogenes clonal 41 

complex 1 (Lm-CC1) is the most prevalent clonal group associated with listeriosis, and is 42 

strongly associated with cattle and dairy products. Here we analysed 2,021 Lm-CC1 43 

isolates collected from 40 countries, since the first Lm isolation to the present day, to 44 

define its evolutionary history and population dynamics. Our results suggest that Lm-CC1 45 

spread worldwide from North America following the Industrial Revolution through two 46 

waves of expansion, coinciding with the transatlantic livestock trade in the second half of 47 

the 19th century and the rapid growth of cattle farming in the 20th century. Lm-CC1 then 48 

firmly established at a local level, with limited inter-country spread. This study provides 49 

an unprecedented insight into Lm-CC1 phylogeography and dynamics and can contribute 50 

to effective disease surveillance to reduce the burden of listeriosis.   51 
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Listeria monocytogenes (Lm) is a foodborne bacterial zoonotic pathogen that can 52 

cause listeriosis, a severe infection with a high case-fatality rate in immunocompromised 53 

individuals1,2. Molecular studies have shown the clonal population structure of Lm3,4 and 54 

the worldwide distribution of clonal complex 1 (Lm-CC1, initially called epidemic clone 55 

ECI5,6), a serotype 4b cosmopolitan clonal group defined by multilocus sequence typing 56 

(MLST), which was first isolated from an Italian soldier with meningitis during the first 57 

world war (WWI)7,8. Interestingly, Lm-CC1 has been reported as the most prevalent 58 

clinical clonal complex in several countries9–14, and data collected on NCBI Sequence 59 

Read Archive also support this conclusion (Supplementary Figure S1). 60 

While there is no inter-human transmission of listeriosis, it was only in the mid 61 

1980’s that the foodborne origin of human listeriosis was formally proven15. Since then, 62 

Lm-CC1 has been reported in different food matrixes, including dairy products16–18 which 63 

can be heavily contaminated19 and constitute a major source of human listeriosis20,21. 64 

Previous studies have also demonstrated the hypervirulence of Lm-CC19, and its higher 65 

efficiency in gut colonization and fecal shedding, compared to hypovirulent Lm 66 

clones16,17,22,23. Moreover, increasing evidence suggests that cattle, which are frequent Lm 67 

asymptomatic carriers24–28 and contribute to Lm enrichment in soils25, may constitute a 68 

reservoir for Lm-CC1. In addition to Lm subclinical infections that may contaminate 69 

milk23,26, the long-term persistence of Lm in cattle manure-amended soils29 also poses 70 

serious risks of transmission to fresh produce. 71 

Understanding the global evolution of Lm-CC1, which is now spread over all 72 

continents6, as well as its emergence and dissemination across different spatial levels is 73 

critical to understand Lm population dynamics and to develop better control strategies, 74 

especially in countries with ageing and/or immunosuppressed populations who are most 75 

at risk for severe infection. However the complex movement of livestock and food 76 
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products associated with asymptomatic intestinal colonization complicates traditional 77 

epidemiological investigations aimed to decipher Lm epidemiology by linking isolates in 78 

space and time. 79 

Here we took a population biology approach to fill this knowledge gap and 80 

conducted the largest genomic Lm-CC1 study to date, combining genomic and 81 

evolutionary approaches to decipher its evolutionary history and pattern of emergence 82 

and spread. 83 

 84 

Results 85 

Lm-CC1 is composed of 3 sublineages of uneven prevalence. We analyzed 2,021 86 

genomes, including 1,230 newly sequenced isolates, originating from 40 countries in 6 87 

continents and diverse sources (Figure 1a; Supplementary Table S1). We covered a 88 

time span of 98 years, from the first Lm isolation to the present time (1921-2018), and 89 

included all contemporary clinical isolates collected between 2012 and mid-2017 within 90 

the surveillance framework of 7 countries over 3 continents (Figure 1a,b). 91 

Lm-CC1 genome sizes ranged from 2.77 to 3.25 Mbp, with an average number of 92 

2,879±77 coding sequences and G+C content of 37.7-38.3% (Supplementary Figure 93 

S2). On the basis of MLST4, 58 sequence types (STs) could be distinguished, with ST1 94 

representing 91% (n=1838) of isolates. On the basis of core genome MLST (cgMLST)30, 95 

we identified within Lm-CC1 867 cgMLST types, 92% of which were country-specific 96 

(Supplementary Figure S3). Rarefaction analysis based on cgMLST resampling did not 97 

reach an asymptote (Supplementary Figure S3), indicating that despite the high number 98 

of sequences obtained in this study, a significant amount of Lm-CC1 diversity remains 99 

undetected. 100 
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To better understand the phylogenetic diversity of Lm-CC1, we built maximum 101 

likelihood phylogenies and identified 3 sublineages (SL1, SL404 and SL150, named 102 

based on their smallest ST number). These sublineages have highly uneven frequency 103 

(Figure 1c,d; Supplementary Figure S4), with SL1 (n=2002, isolated worldwide) 104 

representing 99.1% of the isolates, while 0.1% are SL404 (n=2, found in Europe and 105 

North America) and 0.8% represent SL150 (n=17, found in North America, Africa and 106 

Asia). Within SL1, we further identified 8 distinct genetic clades, which we named GC1 107 

to GC8 by decreasing prevalence (Figure 1; Supplementary Figure S4). The average 108 

genetic distance was 1166±134 wgSNPs (and 478±20 cgMLST alleles) between Lm-CC1 109 

sublineages, and 76±16 wgSNPs (and 40±9 cgMLST alleles) within SL1 clades 110 

(Supplementary Table S2; Supplementary Figure S5). The finding that SL1 is by far 111 

the major sublineage in Lm-CC1 is consistent with either its increased virulence and/or 112 

transmission or that SL404 and SL150 are restricted to some yet unknown ecological 113 

niches. Within SL1, all different genetic clades were well represented, with strong spatial 114 

structure: GC1 is the most prevalent clade in Europe (48%, 593/1237), Asia (68%, 17/25) 115 

and South America (64%, 14/22); GC2 is the most prevalent clade in North America 116 

(29%, 150/512) and Oceania (52%, 84/163), while GC3 is the most prevalent clade in 117 

Africa (80%, 43/54) (Figure 1e; Supplementary Figure S6). 118 

 119 

The Lm-CC1 pangenome is diverse. Analysis of Lm-CC1 pangenome identified 10,789 120 

orthologous coding sequences (BlastP identity cut-off of ≥95%), 2,649 of which (92% of 121 

the average isolate genome content) present in at least 95% of isolates (core genome) 122 

(Supplementary Figure S7). The accessory genome included 8,140 gene families, of 123 

which 2,844 (35%) were unique to one isolate, and was enriched in transcription, 124 

replication/repair and cell wall functions, as well as in gene families of unknown function 125 
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(Supplementary Figure S7). Plasmids were present in 6% (120/2021) of isolates, and 126 

were more prevalent in GC7 (83%, Supplementary Figure S7). Intact prophages were 127 

present in 62% isolates (1263/2021), and were distributed across the breadth of CC1 128 

phylogeny, except in SL404 (Supplementary Figure S7). In contrast to Listeria 129 

pathogenic islands LIPI-131 and LIPI-332 which were present in all isolates, the Listeria 130 

genomic island LGI2-133, previously identified in CC1 isolates encoding resistance to 131 

cadmium and arsenic, was present in 14% (277/2021) isolates and only in GC3 (80%, 132 

225/283), GC5 (60%, 38/63) and SL150 (82%, 14/17; Supplementary Figure S7). 133 

Sublineage-specific genes were detected (n=81; Supplementary Tables S3 and S4) and 134 

pangenome-wide association analyses identified 24 genes that are associated with a 135 

clinical origin (Supplementary Table S5). The impact of these traits on isolates’ 136 

differential ecology or virulence remains to be studied, yet the presence of human isolates 137 

in all sublineages and clades shows that pathogenic isolates are not restricted to a specific 138 

Lm-CC1 clade. 139 

 140 

Emergence and worldwide spread of Lm-CC1 main sublineage (SL1) occurred in the 141 

last 200 years. To understand Lm-CC1 evolution and spread, we performed temporal and 142 

phylogeographic analyses on a subset of 200 genomes representative of Lm-CC1 genetic 143 

and geographic diversity using BEAST34, and on the full dated dataset (1,972 Lm-CC1 144 

genomes) using Treedater35 (Supplementary Figures S8 and S9) and PastML36, under 145 

an uncorrelated relaxed clock model (see Material and Methods for details). We estimate 146 

a core genome substitution rate of 1.95x10-7 substitutions/site/year (95% CI: 1.75x10-7-147 

2.15x10-7; Supplementary Figure S8), consistent with previous findings30. We estimate 148 

that Lm-CC1 originated about 1,800 years ago (date: 197 AD; 95% CI: 860 BC - 1045 149 

AD; Figure 2b) and infer that its last common ancestor evolved in North America 150 
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(Supplementary Figure S10), long before European colonization and the introduction of 151 

cattle in the Americas at the end of the 15th century37. Even though the low number of 152 

genomes available for Asia, Africa and South America could bias this estimation,  the 153 

estimated origin was also supported by the measures of population variability, which 154 

showed higher genetic diversity within North America (Supplementary Figure S5; 155 

Supplementary Table S2), and by the basal position of North American Lm-CC1 156 

isolates in the phylogeny (Figure 2b, Supplementary Figure S10). Whether Bison bison 157 

populations, which are phylogenetically and ecologically related to bovine and dominated 158 

North American prairies prior to colonization by the Europeans and their livestock, 159 

played a role in its dispersion remains unknown. 160 

Demographic analyses performed using the Bayesian Skyline Plot method38 161 

(Figure 2a) show that Lm-CC1 effective population size was stable up to the middle of 162 

the 19th century, followed by two waves of expansion: the first in the late 1880s and the 163 

second in the 1930s, coinciding with the first and second ages of globalization, 164 

respectively. Tajima’s D statistic39 also supported a recent CC1 population expansion and 165 

SL1 emergence (D<0; Supplementary Table S2). SL1 emerged in North America 166 

approximately 160 years ago (date: 1859, 95% CI: 1821-1889), thus closely following the 167 

start of the Industrial Revolution (Figure 3). The first SL1 introductions into Europe 168 

occurred around 1868 (GC6/GC8 ancestor, 95% CI: 1827-1890), 1871 (GC3/GC7 169 

ancestor, 95% CI: 1838-1905) and 1889 (GC2, 95% CI: 1852-1909), concomitant with 170 

the 1870 North Atlantic Meat trade agreement40. Under this agreement, surplus cattle in 171 

North America were shipped to Europe, which had experienced severe livestock 172 

shortages due to widespread disease outbreaks (contagious bovine pleuropneumonia and 173 

foot and mouth disease), leading to an unprecedented man-made 1000-fold increase in 174 

cattle movement From North America to Europe41. Within the same period, intra-175 
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continental diversification also took place, likely driven by cattle movements across 176 

North America and railway expansion in North America and Europe. The first SL1 177 

introductions that occurred in Oceania (1903, GC2) followed the ‘Great Drought’ of 178 

1895-1903, which severely affected livestock42. 179 

In the following decades and after WWI, multiple CC1 introductions continued 180 

from North America into Europe (GC1, GC4, GC5 and GC8) and Asia (GC3) and from 181 

Europe to Africa (GC3) (Figure 3a-b). The rate of intercontinental bacterial movement 182 

declined after 1930s (Figure 3c), concomitant with the protectionist trade policies that 183 

followed the ‘Great Depression’, which led to a sharp reduction of livestock exports from 184 

the USA during the first half of the 20th century43. A second wave of SL1 expansion 185 

occurred after this period, likely driven by a new increase in intercontinental movements 186 

favoured by the industrialization of food production and globalization of the food and 187 

cattle trades (Figures 2a; Supplementary Figure S11). Other important human 188 

pathogens that have a zoonotic reservoir such as Escherichia coli O157:H744 and 189 

Campylobacter jejuni ST6145, have been estimated to have most recent common 190 

ancestors (MRCA) at similar times and to have undergone population expansions in the 191 

context of animal trade or intensive cattle farming, respectively. 192 

A stabilization and relative decline of Lm-CC1 population is observed after 1984 193 

(Figure 2a), coincident with the major advances in infectious diseases’ prevention in 194 

dairy cattle46 and with the relative decrease of the dairy cattle population in Western 195 

countries, in particular Europe (Supplementary Figure S11). It also coincides with the 196 

time when human listeriosis foodborne origin was formally proven15, which led to the 197 

implementation of surveillance programs in North America and Europe47–50, in particular 198 

in the dairy sector following cheese and milk related Lm-CC1 outbreaks51. Whether these 199 
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findings can be observed in other dairy-associated L. monocytogenes clonal complexes, 200 

such as CC6 (lineage I) or CC37 and CC101 (lineage II)17,52 will deserve future studies.  201 

 202 

Recent SL1 transmission chains are mostly local. To further analyze more recent strain 203 

transmission dynamics, we compared the genetic diversity of SL1 isolates from 2010-204 

2018 (n=1,266) across different spatial scales. To avoid oversampling isolates from 205 

outbreak investigations, we excluded all non-clinical isolates from confirmed outbreaks 206 

(n=91 isolates from 19 outbreaks). We find that pairs of isolates present within the same 207 

2-year period and the same country are 18.7 times (95% CI: 4.7-190.7) more likely to 208 

have their MRCA within the past 5 years than pairs of isolates coming from other intra-209 

continental countries >1,000 km apart (Figure 4a). Furthermore, we observe no 210 

difference in the probability of having a recent MRCA in isolates coming from nearby 211 

intracontinental countries (<1,000km) than from further apart. Isolates coming from 212 

different continents are about 100 times less likely to have an MRCA within the past 5 213 

years (0.2; 95% CI: 0.01-2.9) than isolates from the same countries (18.7; 95% CI: 4.7-214 

190.7) (Figure 4a). This strong local spatial structure persists for very long time periods, 215 

with complete mixing of isolates within a continent appearing only after 50 years (Figure 216 

4a). At a finer spatial scale, available for France (“départements”, sub-regional 217 

administrative division in France, Supplementary Figure S12), a strong local spatial 218 

structure is also evident, with the proportion of genetically close pairs of clinical cases 219 

being higher between isolates coming from the same French department (4.4%, 95% 220 

CI: 1%-10.6%) than between isolates coming from different departments (0.2%, 95% CI 221 

0.04%-0.5%), with no effect of distance between them (Figure 4b). As expected, in 222 

densely urban areas with no farming, such as the city of Paris, clinical strains are 223 

significantly less likely to share a recent MRCA than in rural areas or other departments 224 
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(0.0%, 95% CI: 0.0%-4.4% vs. 3.9%, 95% CI: 1.0%-9.5%) (Figure 4c). This result is 225 

consistent with urban infections being driven by unrelated Lm introductions originating 226 

from across the country. Spatial dependence between French isolates persists for 20 years 227 

(Supplementary Figure S13), with on average 20 (1/0.05) different sources of human 228 

infection present at any one time per department (Figure 4b). 229 

 230 

Discussion 231 

Understanding pathogen evolutionary history is essential to understand the population 232 

dynamics and biodiversity of microbial infectious agents, and for effective disease 233 

surveillance. Here, we have shown that Lm-CC1 has spread worldwide following the 234 

Industrial Revolution, and that genotypes are now firmly established at a local level, with 235 

decades-long localized persistence. These results are consistent with the establishment of 236 

separate, locally entrenched sources of Lm-CC1 with limited flow of bacteria either 237 

within or between countries, in line with cgMLST analyses in which 92% of clusters are 238 

country-specific. 239 

In the absence of inter-human transmission, this observation likely represents 240 

persistent infection sources, i.e. individual herds and/or production facilities, in which Lm 
241 

can reside for several years28,53. Outbreak investigations performed at local scale, 242 

including in farm environments, would therefore likely improve the identification of 243 

contaminating sources, which remain unknown in about 80% of clusters of human 244 

cases54. Identifying and eradicating sources along the food chain, from the farm to the 245 

fork, could lead to significant long-term reductions in the transmission of the Lm-CC1.  246 

The current scarcity of genomes available for Asia, Africa and South America, 247 

and from natural and animal reservoirs may overlook other CC1 clades and could have 248 

biased our phylogeographic analyses. Nevertheless, this study sheds unprecedented light 249 
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onto the evolutionary history, epidemiology and population dynamics of Lm-CC1. Similar 250 

approaches targeting other major globally distributed clonal complexes will allow 251 

clarifying their transmission dynamics and uncovering epidemiological specificities of 252 

Lm clones. Deciphering the dynamics and drivers of Lm sublineages across time and 253 

space will inform infection control policies and ultimately reduce the burden of listeriosis.  254 

 255 

Methods 256 

Bacterial isolates and genome sequencing. A total of 2,021 high quality Listeria 257 

monocytogenes clonal complex 1 (CC1) genomes collected by this study group (n=1,230) 258 

and from NCBI repositories (n=791, as of 14 March 2018) were analyzed. These were 259 

part of an initial dataset of 2,154 CC1 genomes, from which 133 were discarded due to 260 

low sequencing coverage (<40X after read trimming, n=62) or low assembly quality 261 

(>200 contigs and/or N50<20Kb, n=71)30. The 2,021 isolates originated from human 262 

(n=1,453; 72%) and animal hosts (n=44; 2%), food (n=387; 19%), food-processing 263 

environments (n=88; 4%), feed (n=11; 0.5%), natural environments (n=11; 0.6%) or 264 

from unknown sources (n=27; 1%) (Figure 1; Table S1). Isolates were sampled in 40 265 

countries from 6 continents, between 1921 and 2018 (Figure 1; Table S1). Between 2012 266 

and mid-2017, exhaustive sampling was obtained for 7 countries in 3 continents in the 267 

context of listeriosis national surveillance programs in Australia (n=75), Denmark 268 

(n=42), France (n= 395), The Netherlands (n=53), New Zealand (n=34), the United 269 

Kingdom (n=106) and the United States (n= 317). Sequencing reads were obtained using 270 

Illumina sequencing platforms (Illumina, San Diego, US) and 2x50 bp (n=110), 2x75 bp 271 

(n=2), 2x100 bp (n=233), 2x125 bp (n=9), 2x150 bp (n=1,145), 2x250 bp (n=351), 272 

2x300 bp (n=138) paired-end runs (Table S1). 273 

 274 
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Sequence analysis. Whole genome sequencing reads were available for 1,988 out of 275 

2,021 isolates. Reads were trimmed from adapter sequences and non-confident bases 276 

using AlienTrimmer v.0.455 (minimum read length of 30 bases and minimum quality 277 

Phred score 20, i.e. 99% base call accuracy) and corrected with Musket v.1.156, 278 

implemented in fqCleaner v.3.0 (Alexis Criscuolo, Institut Pasteur). FastQC v.0.11.557 279 

was used to assess sequence quality before and after trimming. Assemblies were obtained 280 

from paired-ended trimmed reads ≥75 bp (n=1,878 isolates) by using SPAdes v.3.11.058 281 

with the automatic k-mer, --only-assembler and --careful options. For paired-ended 282 

trimmed reads of 50 bp (n=111), assemblies were built using CLC Assembly Cell v.5.0.0 283 

(Qiagen, Denmark), with estimated library insert sizes ranging from 50 to 850 bp. Contigs 284 

smaller than 500 bp were discarded from both SPAdes and CLC generated assemblies. 285 

 286 

Pangenome analysis. Gene prediction and annotation was carried out from the draft 287 

assemblies using Prokka v.1.1259. Functional classification was carried out with EGGnog-288 

mapper v260 using DIAMOND (Double Index Alignment of Next-generation sequencing 289 

Data)61. The presence of plasmids, intact prophages and Listeria genomic regions was 290 

inferred from the assemblies using MOB-suite v.2.0.162, PHASTER (https://phaster.ca/)63 291 

and BIGSdb-Lm (http://bigsdb.pasteur.fr/listeria/)30,64, respectively. Pangenome analyses 292 

were carried out using Roary v.3.1265 with an amino acid identity cut-off of 95% and 293 

splitting homologous groups containing paralogs into groups of true orthologs. Venn 294 

diagrams were obtained using Venny 2.1 (Oliveros, 2007). Pangenome-wide association 295 

analyses were performed using treeWAS v.1.066, to control for phylogenetic structure, 296 

using a significance threshold of p<10-5.  297 

 298 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.12.18.423387doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423387


13 
 

In silico molecular typing. PCR-serogrouping (5 loci)67, MLST (7 loci)4 and cgMLST 299 

(1748 loci)30 profiles were extracted from draft assemblies using the BIGSdb-Lm 300 

platform (http://bigsdb.pasteur.fr/listeria/) as previously described30. Profiles were 301 

compared using the single linkage clustering method implemented in BioNumerics v.7.6 302 

(Applied-Maths). cgMLST profiles were classified into cgMLST types (CT) and 303 

sublineages (SL) using previous defined cut-offs (7 and 150 allelic mismatches, 304 

respectively, out of 1748 loci)30. Rarefaction curves were computed with vegan v. 2.5-668 305 

R package, estimated with the rarefaction function (Joshua Jacobs, 306 

joshuajacobs.org/R/rarefaction) using 100 random samples per point. 307 

 308 

Phylogenetic analyses. Core genome multiple sequence alignments were built from the 309 

1748 cgMLST loci concatenated sequences30. Briefly, individual allele sequences were 310 

translated into amino acids, aligned separately with MUSCLE v.3.8.3169 and back-311 

translated into nucleotide sequence alignment. Concatenation of the 1748 loci alignments 312 

resulted in a multiple sequence alignment of 1.57 Mb. 313 

In parallel, whole genome SNP (wgSNP)-based alignments were built from trimmed 314 

reads and NCBI assemblies using the Snippy v.4.1.0 pipeline 315 

(https://github.com/tseemann/snippy). The closed CC1 genome F2365 (accession no. 316 

NC_002973.6), from the 1985 Canadian cheese outbreak70 was used as reference in read 317 

mapping, resulting in an alignment of 2.29 Mb. 318 

Gubbins v.2.2.071 was used to detect recombination regions in both core and whole-319 

genome alignments, using default parameters and a minimum of 3 base substitutions 320 

required to identify recombination. Alignment regions positive for recombination were 321 

then completely removed from the original alignments, resulting in recombination-free 322 

core- and whole-genome alignments of 1.29 Mb and 2.28 Mb, respectively. Maximum 323 
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likelihood phylogenies were obtained from the recombination-purged alignments using 324 

IQ-tree v.1.6.7.272 under the determined best-fit nucleotide substitution model 325 

(GTR+F+G473, as determined by ModelFinder74) and ultrafast bootstrapping of 1000 326 

replicates75. Trees were visualized and annotated with ggtree v.1.14.676 and iTol v.4.277. 327 

To measure the degree of genetic variation within sublineages, genetic clades and 328 

geographic locations, the pairwise allelic and SNP distance matrices were calculated from 329 

the cgMLST profiles and multiple sequence alignments, respectively. SNP distances were 330 

computed taking into account only the ATGC polymorphic positions, extracted from the 331 

alignments using SNP-sites v.2.4.178. 332 

The nucleotide diversity and the Tajima’s D statistics per alignment were calculated using 333 

the R package PopGenome v.2.6.179. 334 

 335 

Demographic and spatio-temporal analysis. To infer the population size changes, 336 

Bayesian skyline plots were obtained with BEAST v1.10.434. The coalescent Bayesian 337 

skyline model was chosen due to its flexibility to allow a wide range of demographic 338 

scenarios, avoiding the biases of pre-specified parametric models in the estimates of 339 

demographic history38. Analyses were performed on a random subset of 200 isolates 340 

selected out a subset of 422 isolates representative of genomic and geographic diversity 341 

of the full dataset (1 isolate per country per cluster of 99% core genome similarity). 342 

Sampling times were positively correlated with the genetic divergence (p<0.05, F-343 

Statistic test; Supplementary Figure S6), as observed using TempEst v1.5.180. BEAST 344 

estimations were made using the nucleotide evolutionary model GTR+Γ4 and a default 345 

gamma prior distribution of 1, under an uncorrelated relaxed clock model, to allow each 346 

branch of the phylogenetic tree to have its own evolutionary rate81. Runs were performed 347 

in triplicates, each consisting of MCMC chains of 400 million iterations, with a 25% 348 
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burn-in. Parameter values were sampled every 10,000 generations. The effective sample 349 

size (ESS) values were confirmed to be higher than 200 for all parameters using Tracer 350 

v.1.782. The time of the most recent common ancestor (MRCA) and 95% highest posterior 351 

densities (95% HPDs) were inferred from the nodes of the maximum clade credibility 352 

tree. To assess the significance of the temporal signatures observed, 10 randomized tip 353 

date datasets run under the same parameters were used as controls83. To assess the 354 

robustness of the population size inference to changes in the dataset, a second non-355 

overlapping subset of 200 genomes obtained from the same representative subset of 422 356 

isolates was analyzed using BEAST with the same parameters as described above. 357 

Estimations of the effective population size along the years were computed using Tracer 358 

v.1.782. 359 

Phylogeography analyses were then extended to the 1972 CC1 genomes for which 360 

country and year of isolation were available. Time-calibrated phylogenies were inferred 361 

from the maximum likelihood core genome trees (obtained with IQ-tree, as described 362 

above) using either Bactdating v1.0.184, Treetime v0.5.285 or Treedater v0.3.035, assuming 363 

a relaxed clock model and the estimated substitution rate of 1.954x10-7±2.0152x10-8 364 

substitutions/site/year (obtained with BEAST as described above). Cophenetic 365 

correlations between BEAST and the three alternative large-scale dating methods were 366 

evaluated and better R2 coefficient scores were obtained for Treedater (Supplementary 367 

Figure S7). For this reason, the latter dated tree was used in further downstream analyses.  368 

Ancestral geographic reconstruction was performed with PastML36 using the MPPA 369 

method with an F81-like model and estimated ancestral state probabilities were mapped 370 

onto the full time-calibrated phylogeny using the R package ape v5.386.  371 

 372 
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SL1 global transmission dynamics. To infer the transmission dynamics at a recent time 373 

scale (Figure 4a and supplementary Figure S12), we focused on the CC1 main sublineage, 374 

and we analyzed the genetic similarity of SL1 isolates from 2010-2018 (n=1,266) across 375 

different temporal and spatial scales, as described before87. To avoid oversampling 376 

isolates from outbreak investigations, we excluded all non-clinical isolates from 377 

confirmed outbreaks (n=91 isolates from 19 outbreaks). We computed the probability 378 ܔ۾ 

that a pair of isolates that satisfy a given location criteria that were sampled within two 379 

years of each other had a MRCA in a specific range (0-5 years, 5-20 years, 20-50 years, 380 

>50 years), relative to the probability ܎܍ܚ۾	that a pair isolates), sampled within two years 381 

of each other, had an MRCA within that particular range. The location criteria used were: 382 

i) within countries (both isolates come from the same country); ii) between countries 383 

≤1000 km (isolates come from distinct countries, separated by less than 1000 km, from 384 

the same continent); iii) between countries >1000km (isolates come from distinct 385 

countries, separated by more than 1000 km, from the same continent; used as reference); 386 

and iv) between continents (isolates come from distinct continents). Spatial relationships 387 

between isolates were calculated using the centroid coordinates of the countries or regions 388 

of origin.  389 

We estimated these probabilities using:  390 

P୪ ൌ 	
#	pairs	ሼMRCA ∈ window	&	sampled	within	2	years	&	given	location	criteriaሽ

#	pairsሼsampled	within	2	years	&	given	location	criteriaሽ
 

P୰ୣ୤ ൌ 	
#	pairsሼMRCA ∈ window	&	sampled	within	2	years	&	distant	countriesሽ

#	pairsሼsampled	within	2	years	&	distant	countriesሽ
 

Finally, the relative risk (RR) was given by:  391 

ܴܴ ൌ 	
P୪
P୰ୣ୤

 

To measure uncertainty, we used a combination of bootstrapping observations and 392 

sampling trees from the Treedater v0.3.0 package35 to incorporate both sampling and tree 393 
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uncertainty. Over repeated resamples, we first selected a random tree and calculate the 394 

evolutionary distance separating all pairs of sequences. Then, we resampled all the 395 

isolates with replacement and recalculate RR each time. The 95% confidence intervals are 396 

the 2.5% and 97.5% quantiles from the resultant distribution from 1000 resampling 397 

events. 398 

 399 

SL1 local transmission dynamics. To assess the SL1 local transmission dynamics, we 400 

used available data from France. We computed the proportion of closely related pairs of 401 

French isolates (defined as having a MRCA<5years) as a function of the spatial distance 402 

within and between administrative Departments (Figure 4b): 403 

ሻ݊݋݅ݐܽܿ݋ሺ݈݌ ൌ 	
#	pairs	ሼMRCA ൏ 5	years	&	sampled	within	2	years	&	given	locationሽ

#	pairsሼsampled	within	2	years	&	given	locationሽ
 

The different location criteria used are: i) within Department: both isolates come from the 404 

same Department; ii) between Departments: isolates come from different Departments, 405 

separated by a distance from 50 to >500km. The French Departments are shown in the 406 

map in Figure S11. 407 

As shown in Salje et al.87, the reciprocal of ݌ሺ݄݊݅ݐ݅ݓ	ݐ݊݁݉ݐݎܽ݌݁݀ሻ represents the lower 408 

limit of the number of sources of human infection circulating within a Department. 409 

To assess uncertainty, we used the bootstrapping approach as described above. 410 

To explore possible differences between Departments, we computed the relative risk that 411 

a pair of isolates share a MRCA of less than 5 years when both come from the same 412 

department compared to when coming from different departments. We looked at 2 413 

different groups of departments: i) Paris alone (Figure 4c, left): within Paris (both 414 

isolates come from Paris) and between Paris and other departments (for each pair of 415 

isolates, one of them come from Paris, and the other one from another department); ii) 416 

other departments, except Paris (Figure 4c, right): with other departments (both isolates 417 
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come from the same department, excluding Paris) and between all other departments 418 

(isolates come from 2 different departments, excluding Paris). For each group, to compute 419 

the relative risk	ܴܴ, we used the same approach as explained above. We estimated: 420 

P୪ ൌ 	
#	pairs	ሼMRCA ൏ 5	years	&	sampled	within	2	years	&	same	departmentሽ

#	pairsሼsampled	within	2	years	&	same	departmentሽ
 

P୰ୣ୤ ൌ 	
#	pairsሼMRCA ൏ 5	years	&	sampled	within	2	years	&	different	departmentsሽ

#	pairsሼsampled	within	2	years	&	different	departmentsሽ
 

Finally, the relative risk is given by:  421 

ܴܴ ൌ 	
P୪
P୰ୣ୤

 

To determine uncertainty, we used the same bootstrapping approach as described above. 422 

To assess the statistical significance of each	ܴܴ, we performed a one-tailed test. We set 423 

the null hypothesis (ܪ଴) as	ܴܴ ൑ 1, and alternative hypothesis (ܪଵ) as	ܴܴ ൐ 1. For each 424 

group, composed N bootstrap events, we computed:  425 

݌ ൌ 	
∑ ሺܴܴ௜ܫ ൑ 1ሻே
௜ୀଵ

ܰ
 

 426 

Data availability. All sequence data will be made available in NCBI-SRA and EBI-ENA 427 

public archives upon acceptation. 428 

  429 
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Figure legends 663 

Figure 1. Geographical and temporal distribution of the isolates used in this study (N=2,021) 664 

and phylogenetic analyses 665 

a. Geographical distribution and source distribution. Sampled countries are colored in blue, with 666 

hue gradient according to the number of isolates. Pie charts are proportional to the number of 667 

isolates sampled in each continent and represent the repartition of sample source types, using the 668 

source color key indicated in panel d. Out of 2,021 genomes, 8 isolates had unknown sampling 669 

location and are not shown in the map. b. Temporal distribution of isolates collected in this study. 670 

Darker blue bars indicate the period for which exhaustive clinical sampling was obtained for 7 671 

countries spanning 3 continents (2012-2017; US, FR, UK, DK, NL, AU, NZ). c. Unrooted 672 

maximum-likelihood phylogenetic tree of 2,021 Lm-CC1 genomes. The tree was generated from 673 

analysis (GTR+F+G4 model, 1000 ultra-fast bootstraps) of a 1.29 Mb recombination-purged core 674 

genome alignment. d. Midpoint rooted maximum-likelihood phylogenetic tree of 2,002 SL1 675 

genomes based on a recombination-purged core genome alignment of 1.29 Mb. The four external 676 

rings indicate the world region, year, type of infection and source type, respectively. The two 677 

inner rings indicate ST1 isolates and the 8 SL1 genetic clades identified in this study, 678 

respectively. e. Percentage of genomes per phylogroup and world region. Partitions are colored by 679 

world regions (left) and phylogroups (right), using the same color code as in panel d. 680 

 681 

Figure 2. Bayesian temporal and demographic analyses on a representative 200 isolate 682 

dataset 683 

a. Bayesian skyline plot (BSP) with the estimation of Lm-CC1 effective population size (Ne). The 684 

y-axis refers to the predicted number of individuals (log scale) and the x-axis to the timescale (in 685 

years). The median population size is marked in blue with its 95% high posterior density (HDP) 686 

in gray. Blue vertical panels delimitate the three globalization ages (1870-1914, 1944-1971, 1989-687 

present). b. Bayesian time-calibrated tree. Nodes represent the estimated mean divergence times 688 

and gray bars represent the 95% HPD confidence intervals of node age. Scale indicates time (in 689 

years). Terminal branches and tips are colored by continents, as indicated in the key panel.  690 

 691 

Figure 3. Phylogeography of sublineage SL1 692 

a. Time-calibrated phylogeny based on the 1956 SL1 genomes. Pies at the nodes represent the 693 

probability of ancestral geographical locations, estimate using PastML using the MPPA method 694 

with an F81-like model. b. Inferred spread of SL1 populations across continents. The first 695 

introductions of each phylogroup are represented by arrows from their estimated world region 696 

origin. c. Proportion of inter-continental transitions per 10-year bins, normalized by the total 697 

number of phylogenetic branches per bin. 698 

 699 

Figure 4. Transmission dynamics of sublineage SL1 700 

a. Each point summarizes the relative risk that a pair of isolates has a MRCA within a defined 701 

timeframe and between different spatial scales: within the same country (within the same 702 

continent or within different continents), relative to the risk that a pair of isolates from countries 703 

separated by >1000km have a MRCA in the same range (set as the reference value, ‘ref’). Error 704 

bars represent the 95% confidence intervals, based on 100 bootstrap time-calibrated trees. b. 705 

Proportion of pairs of isolates within the same country (France) sharing a MRCA of 5 or less 706 

years in function of the spatial distance within and between administrative departments (shown in 707 

the map). The green line indicates the mean proportion of genetically close strains regardless the 708 

geographical location. c. Left: relative risk for a pair of isolates to share a MRCA of 5 or less 709 

years when both are coming from Paris to when coming from another department (set as reference 710 

value) (p=0.43). Right: relative risk for a pair of isolates to share a MRCA of 5 or less years when 711 

coming from the same department in France, except Paris, compared to when coming from 712 

different departments (set as reference value) (p<0.001, see Material and Methods for details). 713 
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Figure 4. Transmission dynamics of sublineage SL1
a. Each point summarizes the relative risk that a pair of isolates has a MRCA within a defined timeframe and between different
spatial scales (within the same country, within the same continent or within different continents), relative to the risk that a 
pair of isolates from countries separated by >1000km have a MRCA in the same range (set as the reference value, ‘ref’). Error 
bars represent the 95% confidence intervals, based on 100 bootstrap time-calibrated trees. b. Proportion of pairs of isolates 
within the same country (France) sharing a MRCA of 5 or less years in function of the spatial distance within and between 
administrative departments (shown in the map). The green line indicates the mean proportion of genetically close strains 
regardless the geographical location. c. Left: relative risk for a pair of isolates to share a MRCA of 5 or less years when both 
are coming from Paris to when coming from another department (p=0.43). Right: relative risk for a pair of isolates to share a 
MRCA of 5 or less years when coming from the same department in France, except Paris, compared to when coming from 
different departments (p<0.001, see Material and Methods for details). 
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Table S2. Genetic characteristics of CC1 sublineages and SL1 genetic clades and statistics by world region. 39 
 40 

 41 

cgMLST allelic distances 
n mean ± stdev mean ± stdev Tajima's D nucleotide diversity haplotype diversity mean ± stdev Tajima's D nucleotide diversity haplotype diversity

Phylogroup SL1 2002 68 ± 23.27 38 ± 14.8 -2.69 4.33 0.966 80 ± 27.4 -2.77 63.31 0.999
SL404 2 57 50 nd 50.00 1.000 107 nd 107.00 1.000
SL150 17 42 ± 16.90 38 ± 16.8 -1.46 33.41 1.000 86 ± 30.9 -1.70 79.62 1.000
GC1 710 39 ± 11.16 32 ± 9.5 -2.78 10.13 0.992 67 ± 15.9 -2.82 49.05 0.997
GC2 684 51 ± 18.03 45 ± 16.4 -2.70 14.92 0.991 92 ± 30.6 -2.80 48.27 0.997
GC3 282 47 ± 17.41 38 ± 14.8 -2.63 12.79 0.991 85 ± 25.8 -2.77 65.25 0.999
GC4 142 46 ± 19.97 39 ± 17.3 -2.59 24.68 0.990 100 ± 29.9 -2.73 86.73 0.992
GC5 63 34 ± 13.23 28 ± 11.3 -2.38 22.38 0.995 73 ± 23.5 -2.51 68.35 0.999
GC6 47 45 ± 16.00 36 ± 13.6 -2.22 32.66 0.988 79 ± 25.6 -2.29 73.67 0.990
GC7 46 28 ± 24.28 24 ± 20.8 -1.60 19.97 0.966 63 ± 51.7 -2.03 58.94 0.998
GC8 28 29 ± 7.94 25 ± 6.7 -2.39 23.18 0.997 50 ± 10.5 -2.47 45.31 1.000

World Region Africa 54 66 ± 91.55 64 ± 148.7 -2.72 41.06 0.962 146 ± 220.0 -2.62 119.17 0.997
Asia 25 85 ± 119.86 100 ± 204.3 -2.55 67.85 0.990 187 ± 332.3 -2.49 180.76 1.000
Europe 1236 61 ± 24.50 53 ± 28.9 -2.74 13.42 0.995 110 ± 44.9 -2.78 59.04 0.999
North America 513 92 ± 92.77 96 ± 160.3 -2.58 28.06 0.992 194 ± 232.0 -2.68 164.93 0.998
South America 22 63 ± 31.91 52 ± 27.6 -1.39 47.01 0.987 117 ± 55.0 -1.57 114.57 0.996
Oceania 22 63 ± 31.91 52 ± 27.6 -1.39 47.01 0.987 117 ± 55.0 -1.57 114.57 0.996

cg1748 SNP distances (1.29 Mb, 11,976 ATGC sites) wgF2365 SNP distances (2.28 M, 29,108 ATGC sites)
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Table S3. Sublineage-specific genes present in at least 50% of isolates. Gray shades 42 

highlight genes within the same genomic context. 43 

 44 
 45 

Remarks Roary_family Reference locus Ortholog Annotation Length (nt) No. isolates % Isolates (in SL) #Order in contig

exclusively in SL1 group_2369 ID32421_02477 lmo0671 hypothetical protein 293 1852 93%

exclusively in SL404 group_7853 ID31663_01719 lmo0804 hypothetical protein 176 2 100% 1067

group_7852 ID31663_01117 LMOf2365_0494 hypothetical protein 2150 1 50% 6972

exclusively in SL150 group_897 ID32037_02878 hypothetical protein 260 16 94% 1226

group_6423 ID32037_02875 LMOSA_10 hypothetical protein 467 16 94% 1229

group_5149 ID32037_02874 LMOSA_20 replication-associated protein 305 14 82% 1230

group_6471 ID32037_02873 LMOf2365_0352 hypothetical protein 284 12 71% 1231

group_6421 ID32037_02872 hypothetical protein 314 16 94% 1232

group_5148 ID32037_02871 hypothetical protein 116 12 71% 1233

group_6420 ID32037_02870 lmo0339 inorganic pyrophosphatase 371 16 94% 1234

group_6409 ID32037_00117 hypothetical protein 290 14 82% 3282

group_2611 ID32037_00115 lmo2044 peptide ABC transporter substrate-binding protein 1664 13 76% 3284

group_6408 ID32037_00121 lmo2749 glutamine amidotransferase 572 16 94% 3302

group_6406 ID32037_00123 lmo2375 hypothetical protein 395 16 94% 3304

group_6417 ID32037_01337 hypothetical protein 110 16 94% 4171

group_6418 ID32037_01335 lmo2688 cell division protein FtsW 1130 16 94% 4175

recD ID32037_02916 LMOSA_12110 DNA helicase; RecBCD enzyme subunit RecD 1355-3608 18 95% 2391

group_5134 ID32037_02915 hypothetical protein 1061-1340 18 95% 2392
(absent in SL1) group_6411 ID32037_02914 lmo0303 putative secreted, lysin rich protein 551 18 95% 2393

group_6412 ID32037_02912 lmo0305 L-allo-threonine aldolase 1082 18 95% 2395

group_6413 ID32037_02911 lmo0306 hypothetical protein 467 18 95% 2396

group_6415 ID32037_02907 lmo0310 hypothetical protein 1076 17 89% 2400

group_152 ID32421_02841 LMOf2365_0349 cell wall surface anchor family protein  (LPxTG motif) 293-3221 1380 69% 2433

group_1481 ID32421_01841 LMOf2365_2341 aminotransferase, class I 221-1166 1936 97% 3295
(absent in SL150) group_4436 ID32421_01836 lmo2375 hypothetical protein 263-392 2004 100% 3309

group_378 ID32421_01835 reverse transcriptase 302-1385 1977 99% 3310

group_1844 ID32421_00303 lmo2688 cell division protein FtsW 758-1130 1009 50% 4177

group_1501 ID32421_00308 LMOf2365_2670 N-acetylmuramoyl-L-alanine amidase, family 4 1100-1775 1450 72% 4183

group_1153 ID32421_02877 lmo0297 transcriptional antiterminator BglG 593-1871 1991 99% 2373

sau3AIR ID32421_02872 Type-2 restriction enzyme Sau3AI 152-1667 1990 99% 2379
(absent in SL404) group_4596 ID32421_02871 LMOf2365_0326 transcriptional regulator 164-206 2000 99% 2382

group_1899 ID32421_02870 LMOf2365_0327 cytosine-specific methyltransferase 131-1409 1988 98% 2384

group_1900 ID32421_02869 LMOf2365_0328 hypothetical protein 236-854 1952 97% 2386

group_1572 ID32421_02868 LMOf2365_0329 putative lipoprotein 197-554 1993 99% 2387

group_1901 ID32421_02867 LMOf2365_0330 threonine aldolase 305-1079 2000 99% 2388

group_3681 ID32421_02866 LMOf2365_0331 peptidase, M48 family 464-920 2001 99% 2389

group_1342 ID32421_02360 lmo0804 hypothetical protein 155-959 1997 99% 3058

group_5703 ID32037_01341 hypothetical protein 89 1021 51% 4167

group_2203 ID32421_00342 hypothetical protein 329-632 1999 99% 4215

group_596 ID32421_00343 hypothetical protein 248-1286 1837 91% 4216

group_791 ID32421_00344 hypothetical protein 455-983 1787 89% 4218

group_5708 ID32421_00345 hypothetical protein 299 1991 99% 4222

group_5709 ID32421_00346 hypothetical protein 359-359 1995 99% 4223

group_2733 ID32421_00347 hypothetical protein 407-773 1999 99% 4224

group_3456 ID32421_00351 lmo2724 3-demethylubiquinone-9 3-methyltransferase 323-443 1986 98% 4229

group_2255 ID32421_02154 LMOf2365_0239 dihydrouridine synthase family protein 209-995 1585 79% 4765

group_81 ID32421_00680 LMOf2365_0495 putative lipoprotein 155-2159 1244 62% 6967

group_2830 ID32421_00615 lmo2084 aminoglycoside phosphotransferase 455-476 1862 92% 7056

group_3057 ID32421_01316 lmo1343 competence protein ComGE 284-284 2004 99% 8031

group_1982 ID32421_01310 LMOf2365_1365 glycine cleavage system T protein GcvT 797-1088 2009 100% 8039

group_555 ID32421_02213 lmo1721 transcriptional regulator 788-2771 1943 96% 8392

group_2258 ID32037_00061 LMOf2365_1741 transcriptional regulator, TetR family 188-584 1950 97% 8398

group_1540 ID32421_02218 lmo1715 methyltransferase 185-668 1940 96% 8399

group_1048 ID32421_00984 lmo0738 PTS beta-glucoside transporter subunit IIABC 698-1448 1879 93% 8654

group_5905 ID32421_00985 lmo0116 hypothetical protein_lmaC_phageA118 167 2015 100% 8657

group_1669 ID32421_00989 lmo1655 vanZ-like protein 128-563 1889 94% 9030

exclusively in SL150 & 
SL404

exclusively in SL1 & 
SL404

exclusively in SL1 & 
SL150
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Table S4. SL1 genetic clades-specific genes present in at least 50% of isolates.  
Clades-specific genes were only found in GC3 and GC7. Gray shadows highlight genes within the same genomic context. 
 

 

Remarks Roary_family Reference locus Ortholog Annotation Length (nt) No. isolates % Isolates (in GC) #Order in contig
exclusively in GC3 group_1376 ID106_01313 fibrinogen-binding protein 1562-2693 215 76% 7335

group_5934 ID106_01309 hypothetical protein 1301 271 96% 7345
group_5933 ID106_01308 hypothetical protein 485 271 96% 7346
group_4885 ID106_01307 hypothetical protein 212-374 271 96% 7347
group_5932 ID106_01306 hypothetical protein 1019 271 96% 7348
group_5931 ID106_01305 hypothetical protein 338 271 96% 7349
group_4884 ID106_01304 hypothetical protein 269-686 271 96% 7350
group_3147 ID106_01302 hypothetical protein 1253-1769 269 95% 7356
group_3146 ID106_01301 P60 protein 812-1025 271 96% 7358
group_2504 ID106_01300 cadmium resistance protein_cadA 1403-2105 268 95% 7359
group_4029 ID106_01299 cadmium efflux system accessory protein_cadC 236-356 267 95% 7360
group_5930 ID106_01298 ABC transporter- permease protein 770 270 96% 7361
group_4883 ID106_01297 ABC transporter- ATP-binding protein 278-935 271 96% 7362
group_5929 ID106_01296 hypothetical protein 173 269 95% 7363
group_5928 ID106_01295 dihydrolipoamide dehydrogenase 1673 271 96% 7364
acr3_2 ID106_01293 Arsenical-resistance protein Acr3 1076 271 96% 7370
group_5926 ID106_01291 ArsR family transcriptional regulator 365 271 96% 7379
arsD_1 ID106_01290 Arsenical resistance operon trans-acting repressor ArsD 371 271 96% 7380
group_5924 ID106_01289 cadmium efflux system accessory protein_cadC 293 271 96% 7381
arsA_2 ID106_01288 Arsenical pump-driving ATPase 263-1739 271 96% 7382
arsD_2 ID106_01287 Arsenical resistance operon trans-acting repressor ArsD 311 270 96% 7383
group_5922 ID106_01286 cystathionine beta-lyase 1142-1142 270 96% 7384
group_5921 ID106_01285 hypothetical protein 458 254 90% 7385
group_4882 ID106_01284 hypothetical protein 302-404 256 91% 7386

exclusively in GC7 group_8396 ID32182_02420 hypothetical protein 326 42 91% 1150
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Table S5. Human-associated significant loci, as determined using treeWAS, with a 
significance threshold of p<10-5. 

 

 

G, genome; P, phenotype; 0 absent, 1 present.  

Gene Annotation treeWAS 
score

Association type G1P1 G0P0 G1P0 G0P1

group_1361 hypothetical protein 24 positive 1303 88 480 150
group_2465 valyl-tRNA synthetase_valS 22 positive 1300 89 479 153
group_1038 N-acetylmuramoyl-L-alanine amidase 26 positive 1265 96 472 188
group_619 hypothetical protein 23 positive 1175 138 430 278
group_10387 tRNA-Glu(ttc) 25 positive 1041 181 387 412
group_497 hypothetical protein 24 positive 1029 190 378 424
group_1926 transcriptional regulator 25 positive 1024 193 375 429
group_706 hypothetical protein 25 positive 1020 191 377 433
group_1527 hypothetical protein 24 positive 1007 186 382 446
group_209 hypothetical protein 24 positive 866 254 314 587

group_6398 tRNA-Val(tac) -25 negative 611 246 322 842
group_10476 5S ribosomal RNA -31 negative 520 253 315 933
group_10390 tRNA-Glu(ttc) -33 negative 532 276 292 921
group_10432 tRNA-Lys(ttt) -35 negative 499 289 279 954
group_10162 tRNA-Asn(gtt) -29 negative 461 309 259 992
group_10094 hypothetical protein -28 negative 492 362 206 961
group_10662 hypothetical protein -30 negative 479 358 210 974
group_1927 transcriptional regulator -25 negative 430 375 193 1023
group_499 hypothetical protein -23 negative 404 397 171 1049
group_10488 5S ribosomal RNA -41 negative 282 399 169 1171
group_4211 5S ribosomal RNA (partial) -37 negative 227 398 170 1226
group_60 putative l ipoprotein -27 negative 188 476 92 1265
group_533 hypothetical protein -22 negative 74 508 60 1379
group_6404 hypothetical protein -22 negative 36 518 50 1417
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2. Supplementary figures 

 

 

 

 

 

 

 

Figure S1. Frequency of most prevalent clonal complexes among different 
environments. Data collected based on 29,349 L. monocytogenes genomes with 
associated source metadata available on NCBI Sequence Read Archive (as of October 
23rd, 2020). MLST typing was performed from reads using the srst2 v.0.1.5 software 
(http://katholt.github.io/srst2) and the BIGSdb-Lm profiles database 
(https://bigsdb.pasteur.fr/listeria).  
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Figure S2. Genome metrics of isolates included in this study.  
a) Distribution of isolates per sequence read length (left) and distribution of sequencing coverages 
after reads quality trimming (right).  
b) Assembly metrics per CC1 sublineages, based on the number of contigs, N50 and N95 contig 
lengths, genome size, G+C content and cgMLST loci detected.
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Figure S3. Core genome multilocus sequence typing (cgMLST) analyses.  
a) Rarefaction analysis of cgMLST types sampled per sublineage. 
b) Number of SL1 cgMLST types per number of different world regions in which they were observed (n=860 types with world region information).  
c) Number of SL1 cgMLST types per number of different countries in which they were observed (n=857 types with country information). 
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Figure S4. Phylogenetic analysis based on whole genome SNP analyses. 
a) Unrooted maximum-likelihood phylogeny (GTR+F+G4 model, 1000 ultra-fast bootstraps, using 
IQ-Tree23,26) of 2,021 CC1 genomes based on the recombination-purged whole genome SNP 
alignment of 2.28 Mb.  
b) Midpoint rooted maximum-likelihood phylogenetic tree of 2,002 SL1 genomes based on based on 
the recombination-purged whole genome SNP alignment of 2.28 Mb. The four external rings indicate 
the world region, year, type of infection and source type, respectively. The two inner rings indicate 
ST1 isolates and the 8 SL1 genetic clades identified in this study, respectively. The black star 
highlights the phylogenetic placement of isolate F2365 (accession no. NC_002973.6), used as 
reference in whole genome read mapping. 
 
 
  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.12.18.423387doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423387


 
 

11 
 

 

 
 

Figure S5. Genetic diversity among Lm-CC1 isolates.  
Pairwise isolate distances within CC1 phylogroups (top) and world regions (bottom): a,d) pairwise 
cgMLST allelic distances; b,e) pairwise SNP distances in recombination-purged Lm core genome 
alignment and c,f) recombination-purged CC1 whole genome alignment. Uncalled alleles, Ns and gap 
alignment positions were ignored in pairwise comparisons. Each box denotes the 25% and 75% 
quartiles and lines represent the medians. Inter-SL, inter CC1 sublineages; GC#, within SL1 genetic 
clades; Afr, Africa; Asi, Asia; Eur, Europe; NAm, North America; Sam, South America; Oce, 
Oceania. 
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Figure S6. Distribution of Lm-CC1 isolates per clade, world regions and source types 
(N=2,021).  
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Figure S7. CC1 pangenome analysis.  
a) Frequency of sampled gene families. b) Pan- and core gene families sampled.  c) Venn diagram 
showing the number of gene families present in at least 1 sublineage member.  d) Distribution of the 
functional categories of the clusters of orthologous genes across the CC1 pangenome. e) Differential 
proportion of each assigned COG category in core vs accessory genome, calculated as the difference 
between the ratio of each category (n) and the total number of hits (N) among each gene pool set, as in 
(naccessory/Naccessory-ncore/Ncore). f) Distribution of Listeria genomic islands, prophages and plasmids and 
across CC1 phylogeny. The midpoint rooted maximum-likelihood phylogenetic tree (GTR+F+G4 
model, 1000 ultra-fast bootstraps) was inferred from the 1.29 Mb recombination-purged core genome 
alignment of 2,021 CC1 genomes. Sources, continents and SL1 clades are colored according to the 
color codes shown in Figure S4.  
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Figure S8. Temporal analyses on a representative dataset of 200 isolates.  
a) Maximum likelihood (GTR+F+G4) phylogeny of the representative 200 isolates selected randomly across the CC1 phylogeny. Tips are colored 
by sublineage and SL1 genetic clades as indicated in the legend. b) Regression analyses showing the root-to-tip genetic distance against 
sampling date (year). Statistical significance was assessed using the F-test. c) Bayesian molecular clock estimations in real and randomized tip 
dates (controls). Estimations based on real data were run in triplicates, whereas estimations based on randomized tip datasets were run in 10 
replicates. Stars denote statistical significance of p<0.0001, assessed using t-test.                                  
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Figure S9. Benchmarking of dating methods.  
Cophenetic distances between isolates dated with BEAST and alternative large-scale methods: a) BactDating v.1.0.1, b) Treetime v.0.5.2 and c) Treedater 
v.0.3.0, using the CC1 estimated rate of 1.954x10-7 ± 2.0152x10-8 substitutions/site/year obtained with BEAST. “g200” and “g1972” refer to the number of 
CC1 genomes used in each analyses (n=200 and n=1,972, respectively). Red lines denote perfect positive correlation coefficients (R2=1). 
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Figure S10. Phylogeography inference of Lm-CC1 based on 1972 dated genomes. 
Pies at the nodes represent the probability of ancestral geographical locations, estimate using PastML using the MPPA method with an F81-like model. The 
detailed view of SL1 can be found in Figure 3.  
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Figure S11. Cattle demographics.  
a) Cattle population per world region; b) Dairy cows per world region. Data available for 1961-2018; source: Food and Agriculture Organization 
of the United Nations; www.fao.org/faostat). Vertical dashed bars mark the estimated date of the stabilization of Lm-CC1 population size. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.12.18.423387doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423387


 
 

18 
 

 

Figure S12. French administrative Departments (départements). Source: Global 
Administrative Areas, gadm.org.  
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Figure S13. SL1 transmission dynamics within country (France). Relative risk for a 
pair of isolates to have a MRCA within a defined period when coming from the same 
Department in France versus different ones. 
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