
1 
 

Previous motor actions outweigh sensory 1 

information in sensorimotor learning 2 

 3 

Barbara Feulner1, 2*, Danilo Postin1, 3, Caspar M. Schwiedrzik4, 5, 6, Arezoo Pooresmaeili1, 6* 4 

1 Perception and Cognition Lab, European Neuroscience Institute Göttingen- A Joint Initiative of the 5 
University Medical Center Göttingen and the Max-Planck-Society, Grisebachstrasse 5, 37077 Göttingen, 6 
Germany  7 

2 Bioengineering Department, Imperial College London, Exhibition Rd, South Kensington, London SW7 8 
2BU, United Kingdom 9 

3 Department of Psychiatry, School of Medicine & Health Sciences, Carl von Ossietzky University of 10 
Oldenburg, Hermann-Ehlers-Str. 7, 26160 Bad Zwischenahn, Germany 11 
 12 
4 Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen- A Joint Initiative of the 13 
University Medical Center Göttingen and the Max-Planck-Society, Grisebachstrasse 5, 37077 Göttingen, 14 
Germany 15 

5Perception and Plasticity Group, German Primate Center – Leibniz Institute for Primate Research, 16 
Kellnerweg 4, 37077 Göttingen, Germany 17 

6Leibniz ScienceCampus Primate Cognition, Göttingen, Germany 18 

 19 

* Correspondences should be made to: b.feulner18@imperial.ac.uk or a.pooresmaeili@eni-g.de 20 

Short title: Learning of spatial priors through saccadic eye movements     21 

Number of pages: 30 22 

Number of figures: 6 23 

Conflict of interests: The authors declare no competing interests. 24 

Acknowledgements: We thank Tomke Schoss for her help with the pilot study. This work was initially 25 

supported by a seed fund grant from Leibniz Science Campus Primate Cognition, Göttingen, Germany to 26 

CMS and AP and continued by an ERC Starting Grant (no: 716846) to AP. CMS was supported by an 27 

Emmy Noether Grant from the German Research Foundation (SCHW1683/2-1). 28 

Authors’ contribution: BF and AP conceptualized the project. BF, CMS and AP designed the task. BF 29 

implemented the experiment. DP collected the data. BF analyzed the data. BF and AP interpreted the results 30 

and wrote the first draft of the manuscript. All authors revised the manuscript. AP and CMS acquired 31 

funding.  32 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.12.18.423405doi: bioRxiv preprint 

mailto:feulnerbar@gmail.com
mailto:a.pooresmaeili@eni-g.de
https://doi.org/10.1101/2020.12.18.423405


2 
 

Abstract  33 

Humans can use their previous experience in form of statistical priors to improve decisions. It is 34 

however unclear how such priors are learned and represented. Importantly, it has remained elusive 35 

whether prior learning is independent of the sensorimotor system involved in the learning process 36 

or not, as both modality-specific and modality-general learning have been reported in the past. 37 

Here, we used a saccadic eye movement task to probe the learning and representation of a spatial 38 

prior across a few trials. In this task, learning occurs in an unsupervised manner and through 39 

encountering trial-by-trial visual hints drawn from a distribution centered on the target location. 40 

Using a model-comparison approach, we found that participants’ prior knowledge is largely 41 

represented in the form of their previous motor actions, with minimal influence from the previously 42 

seen visual hints. By using two different motor contexts for response (looking either at the 43 

estimated target location, or exactly opposite to it), we could further compare whether prior 44 

experience obtained in one motor context can be transferred to the other. Although learning curves 45 

were highly similar, and participants seemed to use the same strategy for both response types, they 46 

could not transfer their knowledge between contexts, as performance and confidence ratings 47 

dropped to naïve levels after a switch of the required response. Together, our results suggest that 48 

humans preferably use the internal representations of their previous motor actions, rather than past 49 

incoming sensory information, to form statistical sensorimotor priors on the timescale of a few 50 

trials. 51 

 52 

Keywords: learning, sensorimotor, prior, probabilistic, saccade 53 

 54 

 55 

 56 

 57 

 58 

 59 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.12.18.423405doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423405


3 
 

Introduction  60 

We often have to make decisions based on sparse and uncertain sensory information. Previous 61 

research has shown that in these cases humans use Bayesian inference where the current sensory 62 

information (likelihood) and the previously acquired knowledge (priors) are integrated, each 63 

weighted by their respective uncertainty [1,2]. While the majority of previous studies have 64 

examined whether the perceptual and sensorimotor decisions follow the rules of a Bayesian 65 

framework [1,3], less emphasis has been placed on understanding how likelihoods and especially 66 

statistical priors are learned and represented in the first place. A number of elegant recent studies 67 

have tried to bridge this gap by investigating how people learn likelihoods [4] and priors [5] to 68 

perform Bayesian computations. Interestingly, the timescale of the two types of learning varied 69 

vastly, with fast learning of likelihood but slow learning of prior distributions. It remains unknown 70 

why such an asymmetry should exist, as theoretically both types of learning are equivalent. It has 71 

been hypothesized that learning about the likelihood versus learning about the prior involves 72 

different neural mechanisms, potentially hinting to the fact that their respective distributions might 73 

be represented in different regions of the brain [6] .  74 

Learning of statistical priors is itself not a uniform process as it shows dependencies on the specific 75 

context where the learning occurs. In Bayesian framework, priors are a form of abstract knowledge 76 

[7–9], which can be generalized across different contexts. However, previous findings regarding 77 

the generalization of statistical priors have been mixed. Some studies have shown that statistical 78 

learning of priors is very narrow-band and context/modality-specific in perceptual [10] and 79 

sensorimotor domains [11,12], thus preventing learned information to transfer to different 80 

contexts/modalities. Other studies, on the other hand, provided evidence for generalization [4,13], 81 

although generalization, in some instances, seemed to occur differently for different parameters of 82 

a statistical distribution; e.g. the mean and the variance of a distribution [14]. The finding that 83 

some aspects of learning could generalize, while others could not, was confirmed by a recent study 84 

showing that, for instance, in Bayesian time estimation, priors can be generalized across stimuli, 85 

but not motor actions [15].  86 

Therefore, despite an increasing number of studies testing generalization and transfer, the exact 87 

rules determining generalizability remain unclear. One potential reason for these seemingly 88 

contradictory results is a lack of a formal definition of what is learned. It has been argued that 89 

when learning is not generalized, a policy (i.e. a specific rule for action) rather than knowledge (i.e. 90 
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abstract and context-independent information) is acquired through learning [16]. However, it is 91 

not clear what features of the learning dynamics determine whether a policy or knowledge is 92 

acquired during encounters with the learned information.  93 

To investigate learning and generalizability of a prior distribution, we employed a saccadic eye 94 

movement task similar to the design of a previous study [17], where participants had to learn to 95 

locate a hidden target. The location of the hidden target corresponded to the mean of a circular 96 

normal distribution. In each trial, a visual hint sampled from the underlying distribution was shown 97 

and participants indicated their current estimate with a saccadic eye movement, looking either 98 

towards (pro-saccade) or to the exact opposite direction of the target (anti-saccade). To 99 

successfully estimate the hidden target location, participants had to combine information across 100 

multiple trials. This design allowed us to investigate whether participants formed their prior 101 

knowledge by combining the visual information or by combining the previous motor actions across 102 

time, under different saccadic response contexts. Our results from two experiments indicate that 103 

sensorimotor learning of a spatial prior in both response contexts is largely guided by previous 104 

motor plans, rather than by previous sensory input in form of visual hints. Despite the high degree 105 

of similarity of pro- and anti-saccades in their learning behavior, suggesting a motor-independent 106 

learning algorithm, the learned prior in one context did not generalize to the other. We propose 107 

that the lack of transfer between the two contexts is a natural consequence of their shared learning 108 

algorithm in which previous motor actions outweigh sensory information.  109 

Results 110 

To investigate the dynamics of sensorimotor learning of a spatial prior and its dependence on the 111 

response modality, we designed an experiment where participants had to find a hidden target and 112 

indicate their guess by either a pro- or an anti-saccade. Participants learned the location of each 113 

hidden target within twenty trials, of which a block of ten trials required pro-saccades and the other 114 

block of ten trials required anti-saccades as the response modality (Fig.1 A). This design allowed 115 

us to probe whether the learning dynamics shows dependencies on the response modality, hence 116 

being modality-specific. We also used another task, referred to as the calibration task, to estimate 117 

each participant’s motoric noise during the visually driven execution of pro- or anti-saccades. In 118 

contrast to the calibration task, in the hidden target task the main error source is the uncertainty 119 

regarding the hidden target location. As the same motor system is used in both the hidden target 120 
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task as well as the calibration task, we assumed that the motor noise affecting participants’ 121 

performance in both tasks is equal. As the motor noise in the calibration task is not time-dependent, 122 

we assumed that all time-dependent performance improvement during the hidden target task 123 

reflected statistical learning, defined as the reduction in the uncertainty regarding the location of 124 

the hidden target. 125 

 126 

Figure 1: Experimental design of the hidden target task employed to study the statistical learning of a spatial prior 127 
in two different visuo-motor contexts. (A-B) Main task of the experiment. (A) Participants were told to estimate the 128 
location of a ‘hidden treasure’ on a ring by observing and combining information provided by the visual hints across 129 
trials. The hidden target location was defined as the mean of a von Mises distribution and the hints, presented at each 130 
trial, were samples drawn from this underlying distribution. Participants had twenty trials to estimate the location of 131 
the hidden target, after which a new hidden target had to be found. Participants used their gaze to indicate their 132 
responses. (B) Each trial started with a fixation period, after which the hint was presented, and participants had to 133 
indicate their guess about the location of the hidden target by either looking at it (pro-saccade response) or by looking 134 
exactly opposite to it (anti-saccade response). In half of the trials (i.e. consecutive 10 trials), participants had to use 135 
pro-saccades, and in the other half they used anti-saccades, with a randomized order across blocks. (C-D) Calibration 136 
task used to estimate the motoric error of each participant for pro- and anti-saccades. Participants had to directly look 137 
either at the lines (pro-saccade response) or exactly opposite to the lines (anti-saccade response). (E) Block-design of 138 
the experiment. (F) We compared learning across two levels of difficulty and two different response types. Task 139 
difficulty was varied by changing the standard deviation of the von Mises distribution. Finally, we tested whether 140 
knowledge could be transferred from one visuo-motor context to the other. For this we also varied the order of pro-141 
saccade and anti-saccade responses across blocks. 142 

 143 
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Participants successfully accumulate information and learn on a short time scale 144 

To establish that participants were in general able to learn on a short timescale, we initially focused 145 

on the first ten trials of each hidden target block (Fig.2 B). In this case, in all ten trials participants 146 

responded by using the same modality, either exclusively by pro-saccades, or exclusively by anti-147 

saccades. To quantify performance, we calculated the absolute angular error between the saccade 148 

endpoint and the hidden target location (Fig.2 A). By comparing the average absolute angular error 149 

in the first five trials with the average absolute angular error in the last five trials, we found that 150 

most of the participants were able to improve their estimates of the target location (i.e. their 151 

guesses) during this short timescale (paired t-test: t=7.25, p<0.0001, N=20) (Fig.2 C). In line with 152 

performance, participants’ confidence about the accuracy of their guesses increased during the ten 153 

trials (paired t-test: t=-4.39, p=0.0003, N=20) (Fig.2 D). Additionally, the absolute angular error 154 

of participants’ guesses was lower than the absolute angular error of the visual hints, meaning that 155 

participants’ guesses were closer to the center of the von Mises distribution compared to the 156 

presented visual hints (paired t-test: t=4.92, p=0.0001, N=20) (Fig.2 E). This shows that 157 

participants were able to combine information across trials and thereby improve their estimates of 158 

the target location, rather than just following the current visual hint. Hence, we can conclude that 159 

participants showed some form of statistical learning during the first ten trials of the hidden target 160 

task. 161 

 162 
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Figure 2: Participants successfully learn the most probable location of the target on a short time scale. (A) The 163 
angular difference between the participants’ guess and the true location of the hidden target was used to measure 164 
learning. (B) Example block. To test learning, we compared the performance in trial 1-5 (first half) to the performance 165 
in trial 6-10 (second half). (C) The absolute angular error in the second half is lower than in the first half (paired t-166 
test: t=7.25, p<0.0001, N=20). (D) Participants’ confidence is higher in the second half than in the first half (paired t-167 
test: t=-4.39, p=0.0003, N=20). (E) The absolute angular error of participants is lower than the absolute angular error 168 
of the visual hints, i.e., participants’ guesses are closer to the center of the von Mises distribution compared to the 169 
presented visual hints (paired t-test: t=4.92, p=0.0001, N=20). 170 

Learning curves are stereotypic across response modalities 171 

To work out whether statistical learning is modality-dependent or not, we contrasted the learning 172 

performance in pro- versus anti-saccade trials in the hidden target task, as well as in the calibration 173 

task. First, we quantified the mean and the standard deviation of the respective angular error 174 

distributions, pooled across participants (Fig.3 A&B and Table 1). We did not find a significant 175 

bias towards a specific direction, either clockwise or counter-clockwise (one-sample t-test; mean 176 

different from zero; N=20; Table 1), for any of the distributions. 177 

 178 

Task Modality Mean SD p-value 

Calibration Pro-saccade -0.1° 6.3° 0.48 

Calibration Anti-saccade 0.7° 9.5° 0.15 

Hidden target Pro-saccade 1.1° 16.9° 0.11 

Hidden target Anti-saccade 0.1° 18.4° 0.99 

Hidden target Hints 0.1° 20.6° 0.60 

 Table 1: Angular error distribution for calibration and the hidden target task. Mean and standard deviation for 179 

distributions shown in Fig. 3A&B. We tested whether the mean of either of the five distributions was significantly 180 

different from zero (one-sample t-test; N=20). The corresponding p-values are shown in the last column. 181 

For both modalities, the standard deviation of the angular error was higher in the hidden target task 182 

than in the calibration task (pro-saccades: paired t-test, t=-11.8, p<0.0001, N=20 / anti-saccades: 183 

paired t-test, t=-10.9, p<0.0001, N=20), which is plausible as in the former task participants were 184 

more uncertain of the target location. Furthermore, the standard deviations of pro- and anti-185 

saccades were only significantly different during the calibration task but not during the hidden 186 

target task (calibration: paired t-test, t=-3.8, p=0.0011, N=20 / hidden target task: paired t-test, t=-187 

1.7, p=0.1108, N=20). To quantify this difference further, we calculated a modality difference 188 

index (described in Materials and Methods section), which was significantly higher in the 189 
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calibration task compared to the hidden target task (paired t-test, t=-6.44, p<0.0001, N=20,  190 

Fig.3 C). These results provide the first evidence that statistical learning is modality-independent. 191 

To see whether there is a difference between pro- and anti-saccades depending on the difficulty of 192 

the task, we next looked at the influence of both experimental factors (pro-/ anti-saccade response, 193 

broad/narrow hint distribution) on participants’ performance. To this end, we conducted a linear 194 

mixed model analysis of the single trial data (i.e., the absolute angular error), with task difficulty 195 

and response type as fixed effects and participant identity as random effect. Using this statistically 196 

more powerful approach, we found a main effect of task difficulty (t=20.6, p<0.0001; contrast: 197 

easy-hard=-8.28°±0.27°(SE), t=-31.2, p<0.0001), as well as response type (t=2.0, p=0.0469; 198 

contrast: pro-anti=-1.32°±0.27°(SE), t=-5.0, p<0.0001). Additionally, an interaction effect was 199 

found between the task difficulty and response type (t=2.2, p=0.0299), indicating that there is only 200 

a difference between pro- and anti-saccade responses in the hard task condition (hard_pro-201 

hard_anti=-1.90°±0.38°(SE), t=-5.035, p<0.0001; easy_pro-easy_anti=-0.74°±0.37°(SE), t=-202 

1.988, p=0.1927). The same pattern was found when we examined participants’ confidence 203 

ratings: participants were more confident in pro-saccade trials and in the easier task condition 204 

(main effect response: t=-4.2, p<0.0001, contrast: pro-anti=0.28±0.03, t=10.3, p<0.0001 / main 205 

effect difficulty: t=-9.25, p<0.0001, contrast: easy-hard=0.47±0.03, t=17.4, p<0.0001 / interaction 206 

effect: t=-4.4, p<0.0001). These results show that there is a small influence of the used visuo-motor 207 

modality on participants’ performance and confidence in the hidden target task, if the hint 208 

distribution is broad (hard task condition). As shown in Fig.3 A-C, this difference is much smaller 209 

than the difference we observed in the calibration task.  210 

To investigate whether the response type had an influence on the statistical learning itself, we 211 

included the trial number as another fixed effect in our linear mixed model (as a continuous 212 

variable). If the response type influenced participants’ performance in a trial-independent manner, 213 

it would act as a general offset. In contrast, if statistical learning were modality-dependent, we 214 

would expect an interaction between the trial number and the response type (pro- versus anti-215 

saccades). Visual inspection of the learning curves for pro- and anti-saccade responses suggested 216 

the former, and the main effect influencing the shape of the learning curves seemed to be the task 217 

difficulty (Fig.3 D-E). For participants’ performance, measured as the absolute angular error, we 218 

found a significant main effect of difficulty (t=21.4, p<0.0001) and a significant interaction 219 

between trial number and difficulty (t=-7.807, p<0.0001), but no significant interaction between 220 
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trial number and response type (t=0.650, p=0.516). Further analysis of the interaction effect 221 

showed that only for blocks with high task difficulty there is a significant effect of trial number 222 

(hard: slope=-0.84±0.08, t=-10.57, p<0.0001 / easy: slope=-0.12±0.08, t=-1.50, p=0.13). This 223 

result was further supported by the analysis of the confidence ratings, as participants’ confidence 224 

time course (Fig. S1) was also mainly dominated by the influence of task difficulty (interaction 225 

effect trial x difficulty: t=-8.858, p<0.0001) and not by the response type (interaction effect trial x 226 

response: t=-1.006, p=0.315). Together, these results show that both performance and confidence 227 

increase in a modality-independent manner during learning of a spatial prior. 228 

 229 
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Figure 3: Learning curves are stereotypic across response modalities. (A) The distribution of the angular error for 230 
pro- and anti-saccade response in the calibration task. (B) The distribution of the angular error for pro- and anti-231 
saccade response in the hidden target task. (C) Comparison of pro-/anti-saccade performance difference between the 232 
hidden target task and the calibration task. (D) Time course of the absolute angular error for each of the four different 233 
conditions (two response types x two difficulties). Here and in the following panels, except stated otherwise, shaded 234 
areas represent the standard error of the mean (N=20) (E) Time course of the confidence ratings for each of the four 235 
different conditions. (F-J) Participants’ learning curves compared to the lower bound and the limited memory bound. 236 
The lower bound is given by taking the cumulative average of all hints presented so far and adding the error due to 237 
the noise in the motor plans, estimated from the calibration task. The limited memory is similarly calculated, except 238 
that only the latest two hints are used. 239 

Performance is suboptimal 240 

Since at each point in time, participants have only seen a limited number of samples from the 241 

underlying distribution of the target location (in form of visual hints), it is theoretically impossible 242 

to correctly estimate the distribution’s mean, i.e., the hidden target location in our task. In principle, 243 

only for an indefinite number of samples, the sample mean equals the population mean. For the 244 

hidden target task, this means that participants could theoretically only reach zero absolute angular 245 

error if an infinite number of trials were seen. Taking this into account, we can compare 246 

participants’ performance to the time course of the theoretical statistical uncertainty due to seeing 247 

a limited number of samples (i.e., sampling error, see also Materials and Methods section). This 248 

provides a lower bound on participants’ uncertainty, indicated by the variance of angular errors 249 

𝜎2: 250 

1) 𝜎2 = 𝜎𝑚𝑜𝑡𝑜𝑟
2 + 𝜎𝑠𝑎𝑚𝑝𝑙𝑒

2 = 𝜎𝑚𝑜𝑡𝑜𝑟
2 +

𝜎𝑑𝑖𝑠𝑡
2

𝑛
 251 

where 𝑛 is the number of visual hints seen so far, 𝜎𝑑𝑖𝑠𝑡
2  is the variance of the von Mises distribution 252 

and 𝜎𝑚𝑜𝑡𝑜𝑟
2  is the motoric noise measured in the calibration task. We can then calculate the 253 

theoretical optimal performance in terms of the mean absolute angular error from this optimal 254 

variance estimate (see Eq 2 in Materials and Methods section). Comparing participants’ 255 

performance to this lower bound shows that for the first trial in each hidden target block, 256 

participants perform as well as they possibly can (Fig.3 F-J), independent of the task difficulty or 257 

the used response modality – pro- or anti-saccades. However, as soon as they need to combine 258 

multiple samples to estimate the hidden target location, they perform suboptimal (Fig.3 F-J, black 259 

dashed line is optimal). We hypothesized that the reason for this suboptimal behavior is limited 260 

memory, as to perform optimally would mean to remember every single hint which has been 261 

presented so far. So instead of calculating the cumulative mean of all visual hints presented so far 262 

(which results in optimal performance), we calculated the performance estimate for an alternative 263 
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strategy where subjects only average the latest two visual hints (Fig.3 F-J green dashed line). This 264 

limited memory estimate could describe participants’ performance qualitatively better, as it 265 

captured the shallower learning curves for both response types. In summary, the analysis of 266 

different aspects of performance did not show large differences in statistical learning between pro- 267 

and anti-saccades. 268 

Strategy is modality-independent 269 

So far, we have seen that statistical learning in the pro- and in the anti-saccade context is similar 270 

in terms of the absolute performance and the shape of the learning curve. Next, we wanted to test 271 

whether participants use different strategies in the pro- versus in the anti-saccade blocks. The first 272 

candidate strategy would be to only look at the visual hints in each trial, which would mean that 273 

no learning is happening, and that participants’ behavior is only visually-driven. Instead, the 274 

optimal strategy, which would result in the lower bound we calculated before, would be to 275 

calculate the cumulative average of every hint seen so far in each trial. Besides taking into account 276 

the hints, visually presented to the participants, we can also imagine that the behavior is driven by 277 

an internal state that promotes looking close to where one has been looking before, i.e., to follow 278 

previous guesses (Fig.4 A). To test these different hypotheses, we fitted several single predictor 279 

linear regression models, for each proposed strategy. Through a model comparison (see Materials 280 

and Methods for the details) we found that the best single predictor model is the cumulative 281 

average of previous guesses (Fig.4 B). Splitting the data into pro- and anti-saccade blocks and 282 

repeating the analysis showed that the best single predictor model does not depend on the used 283 

response type (Fig.4 C-D). Thus, this provides another piece of evidence that the statistical 284 

learning happening in our task is independent of the response type. 285 

In a second step, we also tested several multi-predictor models to get a more detailed view on 286 

participants’ strategy. We tested multiple combinations of past guesses, and past and present visual 287 

hints. Models based on the previous three guesses or the current and previous three visual hints 288 

did not perform as well as the best single predictor model. In contrast, models which relied on 289 

combinations of external and internal information, i.e., the visual hints and previous guesses, 290 

performed as well as the best single predictor model, even if they only looked three time steps in 291 

the past (Fig.4 B). Again, splitting the data into pro- and anti-saccade blocks did not affect the 292 

main trend (Fig.4 C-D). 293 
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Lastly, to find the exact weighting participants put on their previous guesses and the current and 294 

previous hints, depending on the used response type, we fitted a model with all three previous 295 

guesses, the current and three previous hints, and the response type as predictors. We found that 296 

participants used external information only from the current trial, ignoring the hints from previous 297 

trials (Fig.4 F). Instead, to combine information across trials they relied on their internal 298 

estimations from the past (Fig.4 E). We obtained similar results when models that only included 299 

either the past guesses or the past visual hints were tested (Fig. S5). Including the response type in 300 

the model allowed to estimate separate regression weights for pro- and anti-saccades. Again, we 301 

didn’t find any significant difference in the weighting participants put on their own guesses versus 302 

given hints, depending on whether they use pro- or anti-saccades for response (Fig.4 E-H; paired 303 

t-test: n.s.). In summary, we found that participants used the same strategy, regardless of the 304 

response type, to solve the task, which provides further evidence for the modality-independent 305 

learning hypothesis. 306 
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307 

Figure 4: Strategy is modality-independent. (A) Different predictors used to explain the participants’ single trial 308 

estimates. (B) Model comparison between various single and multiple predictor models. Shown are the weights ω, 309 

which represent the probability that a model is the best among the ones considered. (C-D) Same as (B) but performed 310 

on two different data sets, one consisting only of pro-saccade response trials, the other consisting only of anti-saccade 311 

response trials. (E-H) Regression weights for a model including participants’ last three guesses and the current and 312 

last three visual hints. (E) Regression weights put on the last three guesses. (F) Regression weights put on the current, 313 

as well as the last three hints. (G-H) Participants put similar weight on guesses and hints in pro- and anti-saccade 314 

response trials (paired t-test; n.s.). 315 

 316 

Drop in performance after response switch 317 

Despite the similarity in performance and observed strategy, hinting at a general algorithm used 318 

for statistical learning in our task, it is still possible that learning happens for each visuo-motor 319 
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modality in a very specific manner and that both just look similar in terms of performance and 320 

strategy. In this case, it would not be possible to generalize between modalities. To test this, we 321 

included trial eleven until twenty where participants had to continue looking for the same hidden 322 

target (and were also instructed that all twenty trials belong to one hidden target), but had to use 323 

the other visuo-motor modality than in trial 1 until 10 (Fig.5 A). We considered two alternative 324 

hypotheses. The first states that participants learn in a modality-independent fashion and store the 325 

acquired knowledge in an abstract form, which allows a complete transfer of previous experience 326 

to a new response modality after a switch (Fig.5 B, black solid line). The second hypothesis would 327 

be that participants perform trial eleven until twenty as if there was no previous experience, which 328 

would suggest a modality-specific implementation of the learned knowledge (Fig.5 B, gray dashed 329 

line). To test which of these hypotheses is true, we compared the performance in trial 10 (last trial 330 

before response switch) to the performance in trial 11 (first trial after response switch). We found 331 

that the performance is significantly worse in trial 11 than trial 10 (paired t-test, t=-6.5, p<0.0001, 332 

Fig.5 C). The performance decrease in trial 11 was consistent across all 4 conditions (Fig.5 F). 333 

This shows that there is no direct transfer of knowledge across response types. After ruling out the 334 

modality-general implementation, we wanted to test if there is any measurable interaction between 335 

the first ten trials and the second ten trials. For this, we compared the starting points of each 336 

learning curve – trial 1 and trial 11 (Fig.5 D), as well as the end points of each learning curve – 337 

trial 10 and trial 20 (Fig.5 E). There was no significant difference between these, suggesting that 338 

the learning curves are identical. These results were corroborated by analyzing confidence ratings, 339 

as we also observed a drop in confidence at trial 11 compared to trial 10, in line with our results 340 

on performance (paired t-test trial 10 - trial 11, t=3.7, p=0.0016, Fig. S1&S2)  341 
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342 
Figure 5: Drop in performance after response switch. (A) To test the knowledge transfer hypothesis, we analyzed all 343 
trials within a block, encompassing trials before and after the switch. We specifically focused on the difference 344 
between trial 10 (before response switch) and trial 11 (after response switch). (B) If knowledge is transferred, we 345 
expect similar performance in trial 11 as in trial 10. In contrast, if no knowledge is transferred, we expect trial 11 to 346 
show similar performance to trial 1. (C) Performance in trial 11 is worse than in trial 10 (paired t-test, t=-6.5, 347 
p<0.0001). (D) Performance in trial 11 is similar to performance in trial 1 (paired t-test; n.s.; N=20). (E) Performance 348 
in trial 10 is similar to performance in trial 20 (paired t-test; n.s.; N=20). (F) Performance time course for different 349 
difficulty levels and pro-/anti-saccade orders. To illustrate the difference due to statistical learning only, we subtracted 350 
the motor error estimated from the calibration task. Insets show the result for the same statistical test as in (C-E), but 351 
performed separately on the data of each condition. 352 

 353 

 354 
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No knowledge transfer between visuo-motor modalities 355 

As modeling showed that participants rely on their previous guesses rather than previously seen 356 

visual hints (Fig.4 E), we wished to test whether this is also the case across the time that a response 357 

switch occurs. For this, we calculated the regression weights on previous guesses in a time-358 

dependent manner (Fig.6 A). If knowledge is not transferred between different visuo-motor 359 

modalities we would predict: 1) Participants highly rely on the visual hint in trial 11 and do not 360 

use previous guesses to inform their decision. 2) They are also not able to use previous guesses 361 

further in the past, if these guesses were obtained before the response switch. Our analysis showed 362 

that indeed these were the case. We found that participants’ estimates in trial 11 (after response 363 

switch) are independent of their guess in trial 10 (before response switch). In contrast, at all other 364 

time points they used previous guesses to inform their current decision (Fig.6 B). As participants 365 

did not use their previous experience in trial 11, we expected that they instead rely highly on the 366 

hint presented in trial 11. Regression analysis confirmed this hypothesis (Fig.6 C), although we 367 

found that in three out of the four conditions the weight on the current hint in trial 11 is lower than 368 

in trial 1. Only for the easy task difficulty level and the ordering of first anti-saccades and then 369 

pro-saccades, the weight on the presented hint at trial 11 was as high as at the beginning of the 370 

block (Fig.6 C red dashed line). Also inspired by the initial modeling results on participants’ 371 

strategies (Fig.4), we tested the influence of previous guesses further in the past (two trials (D) 372 

and three trials (E)). Again, we found that there is no knowledge transfer across the response 373 

switch. In summary, these results show that participants were unable to use their past estimates, 374 

made with another response type, to inform their current guess.  375 

One possible explanation for these results is that participants had difficulties in understanding that 376 

the hidden target location had remained the same across first and second 10 trials (or between trial 377 

10 to 11). To rule out this possibility, we performed a second experiment with an independent set 378 

of participants (N=20) where we further emphasized that the target location was the same across 379 

the two halves of the experiment. Furthermore, we asked the participants at the end of each block 380 

whether they were aware that all twenty trials performed so far belonged to the same hidden target. 381 

We obtained overall similar results in this experiment (Fig. S3), as learning performance, as well 382 

as information transfer and confidence were disturbed after the response switch between trial 10 383 

and 11, despite the fact that participants were explicitly instructed that all twenty trials belonged 384 

to the same hidden target and that they were also aware of this rule (Fig. S3 B). This indicates that 385 
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the inability to transfer knowledge between response types is not because of a cognitive 386 

misunderstanding of the task.  387 

 388 

Figure 6: No knowledge transfer between visuo-motor modalities. (A) To test if there is any knowledge transferred 389 
from the experience with one response type to the other, we regressed the current guess against previous 390 
guesses/current hint. (B) Participants’ estimates at trial 11 (after response switch) are independent of the estimates at 391 
trials 10 (before response switch). In contrast, at every other time point, participants use previous experience to inform 392 
their current guess. (C) At trial 11, participants highly rely on the information coming from the current hint. (D-E) 393 
Besides transfer from one trial to the next (B), there is also no transfer from trials further in the past across the response 394 
switch. 395 
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Discussion  396 

The aim of the current study was to characterize the dynamics of prior learning and its dependence 397 

on the type of motor response used to report choices. We found that participants could learn a 398 

sensorimotor prior within a few trials, with the learning time course being independent of the 399 

response type (pro- or anti-saccades). By using a model-comparison approach, we further 400 

demonstrated that participants relied more on their own guesses from previous trials compared to 401 

visual hints provided in previous trials – again – independent of the response type. This suggests 402 

that prior knowledge is represented in terms of previous motor actions and not incoming, external 403 

information provided by the visual hints. To verify this hypothesis, we tested whether participants 404 

could generalize their learned prior knowledge from one motor context to the other – a switch from 405 

pro- to anti-saccades or vice versa. We found that switching the response type caused participants 406 

to reset to naïve levels of performance, indicating that experience from one response type could 407 

not be generalized to the other. This was the case even despite explicit instructions and 408 

participants’ awareness that pro- and anti-saccade trials belonged to the same hidden target 409 

location. Our results suggest that humans learn sensorimotor priors through monitoring their 410 

previous motor decisions rather than external sensory hints. The dependence of learning on past 411 

motor decisions discourages generalization of the learned knowledge to conditions where a 412 

different visuo-motor mapping is needed.  413 

Our findings suggest that prior knowledge is represented in a motor specific manner during early 414 

learning, which is in line with previous studies reporting motor specific priors in different 415 

paradigms [15,16]. We could furthermore identify one potential reason for why generalization is 416 

not possible in such contexts, as we found that participants do not memorize the external 417 

information from previous trials (visual hints in our case), but instead they memorize their own 418 

actions in each trial (Fig.4 E-F). As our task required an estimation in every trial, indicated by 419 

either a pro- or an anti-saccade, the memory of each trial’s decision was probably represented as 420 

the motor action taken to indicate the guess. This could also explain why tasks which do not require 421 

an explicit response via a motor action are more generalizable [15]. In these cases, the memory 422 

from previous trials is potentially formed in a more abstract way, as participants only have to 423 

‘think’ about their decision, but not perform any specific action. The finding that prior knowledge 424 

is built on internal decisions, compared to external cues, could therefore unify some previous 425 

controversial findings about prior generalization. 426 
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Despite the suggested motor specific formation of prior knowledge, the algorithm to combine 427 

previous experiences to inform the current decision seemed to be similar for both tested response 428 

contexts (Fig.4 E-H). This suggests that there is a general procedure for how humans combine 429 

previous experiences. However, whether prior knowledge can generalize or not depends on the 430 

specific manner through which previous experience or decisions are stored in memory (e.g., in 431 

terms of motor actions or more abstract decisions). In other words, although at an algorithmic level 432 

learning is independent of the response modality, the learned information is stored with a format 433 

that is specific for each modality. This explanation is in line with the previously proposed 434 

dissociation between learning a policy versus knowledge [16], and further narrows the space of 435 

testable predictions regarding the neural implementation of these different types of learning, as the 436 

well-described neuronal machinery of pro- and anti-saccades [18,19] could allow a 437 

characterization of how the two types of learning occur in the brain, for instance through using 438 

neuroimaging techniques.   439 

Our study is different from previous studies as it does not test prior learning in a condition where 440 

there is also sensory uncertainty [5,17]. In these general task designs, participants are asked to 441 

perform a task trial-by-trial and are not explicitly told to combine information from previous trials. 442 

Prior learning in these cases is therefore implicit and potentially unconscious. Furthermore, 443 

learning is mostly observed by analyzing how participants combine the noisy sensory information 444 

in a given trial with the formed prior. It is therefore not directly possible to resolve which of the 445 

two is learned, as observed changes in this combination could potentially come from a changed 446 

likelihood distribution, from a changed prior distribution, or from changes in both distributions. 447 

Because of these limitations, we designed our task such that the sensory information in each trial 448 

was given by a clearly visible hint. We then explicitly asked the participants to combine the 449 

information across trials to find the hidden target location. Compared to previous prior learning 450 

studies [5], we could therefore directly look at the ability to learn statistical regularities over trials. 451 

This more general statistical learning context has also been studied previously, for example 452 

showing that learning can happen rapidly within a dozen trials if feedback is provided [20]. 453 

However, to our knowledge, pure statistical learning, without trial-by-trial feedback, together with 454 

generalization has not been studied in this context.  455 

The two different task contexts we investigated in this work are distinct to previous studies, as we 456 

did not test generalization from one effector to another, such as performing a task with the right 457 
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hand and switching to the left [11,21], or switching from a motor to a perceptual task [16]. Instead, 458 

our two contexts represent two distinct cue-action mappings, though performed with the same 459 

modality (oculomotor system). By cue-action mapping we mean that participants had to indicate 460 

their guess (the internal cue) with two different response types – pro- and anti-saccades (the 461 

actions), dependent on the task context. Potentially, generalization could be easier between 462 

modalities compared to generalization between different cue-action mappings. Given the specific 463 

design of our task, we cannot differentiate whether participants form a motor independent spatial 464 

prior, which is aligned to the given cue-action mapping, or whether they form their prior directly 465 

at the motor level. In both cases generalization would fail, matching our experimental observation. 466 

Potentially, participants learn a spatial representation in the pro-saccade context, where the correct 467 

estimate lies close to their performed motor action endpoint. Then, in the anti-saccade context, 468 

they don’t follow this estimate and solely invert their motor plan, but instead they form a ‘pro’ 469 

representation of the hidden target location in this new context, where again the performed motor 470 

action endpoint is close to the acquired spatial estimate. In this interpretation, anti-saccades are 471 

not really anti-saccades, but pro-saccades relative to the participants’ estimates and only visual 472 

information is inverted. What speaks for this interpretation is the fact that participants seemed to 473 

be closer to the optimal learning performance in the anti-saccade condition (Fig.3 F-G), although 474 

this was only the case when the visual hints were narrowly distribution. 475 

Our setup allowed us to simultaneously evaluate participants’ performance, as well as their 476 

confidence in their given estimation. Interestingly, confidence also decreased after the response 477 

type switch, suggesting that participants were aware that they cannot generalize between both 478 

contexts. On the other hand, a control experiment, where we explicitly asked participants to 479 

indicate after each block whether they were aware that both response type contexts belonged to 480 

the same hidden target estimation, showed that that they knew that information could be combined 481 

across both contexts (Fig. S3 B). Together, these results suggest that participants’ inability to 482 

transfer knowledge from one response context to the other was not due to conscious 483 

misunderstanding, but more likely due to the specific mechanisms of how the prior is formed 484 

unconsciously. 485 

Although our results, especially the inability to generalize across different motor contexts, suggest 486 

that statistical learning is implemented in a low-level, motor-dependent way (Fig.5&6), there 487 

might be potentially alternative explanations for why we could not see generalization in our 488 
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experiment. In the following we will discuss these alternative interpretations. One potential 489 

explanation for the lack of generalization could be an interference between the internal memory of 490 

the target location, which is disturbed by the information slide, presented between trial 10 and 11 491 

indicating response switch (Supplementary Video 1). Another possibility is that the short 492 

timescale of only ten trials is not enough to form a general representation of the estimated target 493 

location. Potentially, initial learning is motor-dependent, but over time this is transformed to a 494 

motor-independent knowledge, which can then be transferred to other motor contexts. Another 495 

possibility is that participants would need to train on our task for more than one session, such that 496 

they can learn to adapt their way of forming the prior to something which allows for generalization 497 

across response contexts. Finally, one major reason for a motor-context dependent learning could 498 

be that we did not provide external feedback to guide the learning process (unsupervised learning). 499 

Instead, participants had to rely solely on their internal feedback, potentially coming from the 500 

motor system.  Future studies will be needed to test these possible explanations. 501 

Spatially directed movements such as saccadic eye movements and reaching are an integral part 502 

of our daily activities and acquired skills (e.g., imagine a cellist or a tennis player). Both types of 503 

movements are profoundly influenced by statistical priors [1,22]. Furthermore, saccadic eye 504 

movements provide detailed sensory information about a scene and are tightly linked to the 505 

allocation of attention, hence being instrumental for active vision [23,24].  Typically, the effect of 506 

statistical priors on saccadic eye movements is investigated by using a fixed set of potential target 507 

locations, where the probability of target appearing in some locations (hence the uncertainty of 508 

that location) is more than the others. The typical finding of these studies [22,25] is that saccade 509 

latencies became shorter with increasing prior probability of the corresponding target location. 510 

One novel aspect of the current study is to test how spatial priors can be learned through eye 511 

movements under more complex settings where the possible target locations are not fixed, and 512 

probabilities could only be inferred through tracking noisy information over time. In comparison 513 

to the saccadic eye movement, reaching movements have enjoyed a more rigorous characterization 514 

of the learning dynamics [5,12,14,16]. Inspired by these studies, we characterized the dynamics of 515 

statistical learning through eye movements, that are a more accessible motor plan to be tested in 516 

the laboratory, and the learned information acquired through their execution can directly impact 517 

the very way that the brain samples the sensory information [26].  518 
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Materials and Methods 519 

In this study, we report the results of two experiments investigating how a spatial prior is learned 520 

under different oculomotor response contexts. The second experiment was identical to the first and 521 

served as a control for ensuring that participants were aware of how the location of the learned 522 

prior varied across blocks of the experiment (see the description of the Experimental design). We 523 

therefore, describe the methods common to both experiments and mention the difference where 524 

they apply. 525 

Participants 526 

In total, 41 participants were recruited for this study. 21 participants (age range 22-38 years, 527 

M=26.05, SD=3.80, 10 females) took part in the first experiment. All participants had normal 528 

(N=9) or corrected-to-normal vision (N=12). One participant was excluded from the data of the 529 

first experiment as the post-experiment questionnaire indicated that the participant had 530 

misunderstood the task. 20 participants (age range 23-38 years, M=28.95, SD=5.07, 11 females) 531 

took part in the second experiment (with no exclusion) and all had normal (N=16) or corrected-to-532 

normal vision (N=4). Participants were recruited from the general population of the city of 533 

Göttingen, Germany, using flyer and online advertisement and received cash financial 534 

compensation for their participation. Participation was voluntary; all participants were informed 535 

about the study procedure and gave written consent prior to the test session. The study was 536 

approved by the local ethics committee of the “Universitätsmedizin Göttingen” (UMG), under the 537 

proposal number 15/7/15.  538 

Experimental setup 539 

The stimuli were presented at the center of a calibrated ViewPixx/EEG monitor (VPixx 540 

Technologies, QC Canada, dimension: 53 x 30 cm, refresh rate: 120 Hz) with a resolution of 1920 541 

x 1080 pixels at a viewing distance of 60 cm. All experiments were scripted in MATLAB, using 542 

Psychophysics toolbox [27]. Eye movements were measured using the Eyelink1000+ eye tracking 543 

system (SR Research, Ontario, Canada) in a desktop mount configuration, recording the right eye, 544 

with a sampling rate of 1000 Hz. A chin rest was used to stabilize the participant’s head. The 545 

EyeLink camera was controlled by the EyeLink toolbox in MATLAB [28]. At the beginning of 546 

each experiment, as well as after every 10 blocks of the Hidden Target Task (see the Experimental 547 

design), the eye tracking system was calibrated using a 13-point standard EyeLink calibration 548 

procedure. Calibration was repeated until an average error of maximum 0.5 visual degrees was 549 

achieved and the error of all points was below 1. If the calibration accuracy dropped during the 550 
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experiment, e.g., due to the subjects’ movement, the experimenter recalibrated the eye tracking 551 

system again. 552 

Experimental design 553 

The experiment comprised two tasks: a calibration task (to estimate the motor error of pro- and 554 

anti-saccades) and the main task, referred to as the ‘hidden target task’ (Fig.1). There were in total 555 

four blocks of the calibration task (n=20 trials in each block) and forty blocks of the hidden target 556 

task (n=20 trials in each block). Each experiment started with a block of the calibration task 557 

followed by one training block for the hidden target task (n=10 trials in this block). The data from 558 

this training phase was not analyzed. Thereafter, the experiment proceeded to the main task where 559 

participants performed 10 blocks of the hidden target task followed by 1 block of the calibration 560 

task. This sequence was repeated 4 times (Fig.1 E). 561 

In a second experiment, we used the exact same experimental design but enforced the instruction 562 

that the location of the hidden target remained the same across a block of 20 trials although the 563 

response type changed halfway through (from anti- to pro-saccade or vice versa). For this, we 564 

adapted the information slides shown during the experiment (Supplementary Video 1&2). 565 

Furthermore, we asked the participants after every twenty trials of a hidden target whether they 566 

were aware that the last twenty trials belonged to the same hidden target. Participants then had to 567 

press a button to indicate their response, either yes or no. 568 

Hidden Target Task 569 

Participants were instructed to look for a ‘hidden treasure’ location on a ring with a radius of 7.5°, 570 

centered in the middle of the screen (Fig.1 A). The word ‘hidden treasure’ was used in our 571 

instructions to the participants to make the task more realistic and engaging, however we will refer 572 

to the task as the ‘hidden target’ task throughout. Each trial started with a fixation period, where 573 

participants had to fixate for 0.5 s on the white cross (size = 0.1875°, color: white, displayed on a 574 

half-grey background) in the middle of the screen (Fig.1 B). After that, a white line (length =1.125, 575 

color: white) was presented and participants had 3 s to estimate the hidden target location for this 576 

trial and indicate their guess either by looking at it (pro-saccade) or by looking opposite of it (anti-577 

saccade) and fixate their estimated location for 0.5 s. Thereafter, participants rated their level of 578 

confidence in their guess on an discrete scale from 1 to 6, where 1 means very uncertain and 6 579 

means very certain about the target location. The confidence rating had to be done within 4 580 

seconds.   581 
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Participants were told that they had twenty trials to guess the location of the hidden target, after 582 

which a new hidden target had to be found. To estimate the hidden target location participants had 583 

to closely monitor the location of a line that was presented in every trial and served as a visual 584 

hint. The hidden target location was the mean of a von Mises distribution and each visual hint was 585 

a sample drawn from this distribution (see below) [17].  Hence, by paying attention to the location 586 

of the hint across trials, participants were able to infer the underlying distribution of the hidden 587 

target location. Participants indicated their estimates by looking either at where they thought the 588 

hidden target was located on the ring (pro-saccade), or at a location directly opposite to it (anti-589 

saccade). Ten consecutive trials of a block of twenty trials required pro-saccade responses, and the 590 

other ten anti-saccade responses. The type of the required response (either pro- or anti-saccade) 591 

was visually indicated by an instruction display presented every ten trials. Participants were 592 

instructed to perform the same type of response for ten trials in a row, until the response type 593 

changed. 594 

In total, there were forty hidden target blocks. The target location of each block, which is the mean 595 

of the von Mises distribution, was randomly drawn from a fixed set of twenty locations evenly 596 

distributed on the circle. Thus, each location only appeared twice during the experiment. To 597 

familiarize the participants with the connection between the hints and the hidden target location, 598 

ten training trials were performed in the beginning of each experiment. After the ten training trials, 599 

participants saw all the ten lines together on the screen, as well as the correct hidden target location. 600 

Furthermore, after each hidden target block, participants saw where the actual hidden target 601 

location was, but they did not receive feedback about their performance on a trial-by trial basis. 602 

As such, in our experiments learning was unsupervised. 603 

Four different experimental conditions, counter-balanced across blocks, were tested. Each block 604 

was either easy or hard, controlled by adapting the concentration of the von Mises distribution, 605 

and either ordered with first pro-saccade then anti-saccade, or first anti-saccade then pro-saccade 606 

response (Fig.1 F). For the easy task condition the concentration of the von Mises distribution 607 

(defined by к which is a measure of dispersion, where 1/к is equivalent to the variance σ2
dist of the 608 

distribution) was 30 (σdist~10°), for the hard task condition it was 5 (σdist~26°) and for the training 609 

it was 80 (σdist~6°). As the concentrations of these distributions are relatively large, we could treat 610 

the von Mises distribution as a normal distribution and use standard statistics. 611 
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Calibration Task   612 

The aim of this task was to quantify the participant-specific motor error of the visually-driven pro- 613 

and anti-saccades. Each block of this task consisted of twenty trials, from which the first ten were 614 

pro-saccades and the last ten were anti-saccades. On each trial, one out of ten equally distributed 615 

locations on the circle (same circle as in the hidden target task) were selected and a target line was 616 

presented at that location (Fig.1 C). Participants were instructed to look either directly at the 617 

displayed line (pro-saccade in the first ten trials), or directly opposite to where it appeared (anti-618 

saccades, second ten trials). Additionally, it was highlighted that this task is completely 619 

independent of the hidden target task. Each trial consisted of an initial fixation phase, where 620 

participants had to fixate on the white cross in the middle of the screen for 0.5 s. After that, a white 621 

line appeared and participants had to either look at it or opposite of it (Fig.1 D). In the beginning 622 

of a block of ten trials, participants received an instruction display indicating whether they had to 623 

perform pro- or anti-saccades during the upcoming trials.  624 

Successful response 625 

For both tasks, a successful response was defined as follows. Participants had to move their gaze 626 

from the central fixation point towards a peripheral location on the ring. As soon as they moved 627 

away from the fixation and crossed a circular threshold of 5.375° a successful response was 628 

possible. To complete the response, participants furthermore had to fixate on one specific point on 629 

the screen, by holding their gaze for 0.5 s within an area with a radius of 1 . 630 

Analysis 631 

Data pre-processing 632 

The recorded raw eye movement data was transformed to MATLAB files by using a MATLAB 633 

library for eye movement analysis [29]. Participants' estimates in each trial were calculated offline 634 

by averaging the eye movement data of the last 100 ms, out of the total 500 ms necessary for a 635 

successful response. The main eye movement parameter that we analyzed was the angular distance 636 

between the participant's estimate and the true hidden target location (Fig.2 A). Failed trials were 637 

excluded from the analysis. A trial could fail in several ways. Firstly, there could have been a 638 

disturbance with the eye tracking system or the participant's calibration so that the gaze position 639 

was not correctly detected, which made it necessary to re-calibrate the eye tracker. Secondly, the 640 

participant could have been too slow to indicate their guess in time (3 s). Thirdly, to exclude 641 

erroneous pro- instead of anti-saccades and vice versa, we analyzed the distribution of angular 642 

errors and found a bimodal distribution (Fig. S4). We set a threshold at 100°, which separated both 643 
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modes (Fig. S4). Thus, every trial with an absolute angular error bigger than 100° was categorized 644 

as failed because of the wrong response type. 645 

Data analysis 646 

Statistical analyses were done using R and Python. To evaluate learning we used paired, two-sided 647 

t-tests to compare several parameters within a participant. We did not use circular statistics as 648 

subjects’ responses where highly localized on the ring (Fig.2 A-B & S4). Learning was assessed 649 

by measuring the decrease in the absolute angular error between the participant's estimate and the 650 

true hidden target location across trials. Given the assumptions that the participant’s estimates are 651 

normally distributed and centered around zero, the mean absolute angular error can be related to 652 

the variance of the Gaussian distribution by: 653 

2) 𝑀𝑒𝑎𝑛(|𝑥|) =  √
2

𝜋
 𝑆𝐷(𝑥) 654 

To compare the performance difference between pro- and anti-saccades, we calculated a ‘modality 655 

difference index’ (Fig.3 C). For this, we first calculated the median of the absolute angular error 656 

for pro-saccade and anti-saccade response trials. The modality difference index is then given by 657 

the difference between the two medians, divided by their sum. We started our analysis by only 658 

using the data from the first ten trials of each block (Fig.1-4). Only when we looked at the transfer 659 

between modalities, we used all twenty trials of each block (Fig.5-7). 660 

Theoretical bounds for learning performance  661 

To evaluate participants’ performance, we computed the theoretical lower bounds on the absolute 662 

angular error they could potentially achieve by using all the information that was available to them. 663 

Participants could use the previously seen visual hints and their memory of their previous motor 664 

actions (referred to as the previous guess) to infer the most probable location of the target on each 665 

trial. These sources of information are error-prone since on each trial participants had only seen a 666 

limited number of visual hints (i.e., sampling error) and their previous responses contained motoric 667 

noise. We assumed that these two sources of error are independent. The error due to the limited 668 

number of visual hints was calculated as the cumulative mean of all hints seen so far, which 669 

represents an optimal way of combining samples over time to estimate the mean of a distribution. 670 

A constant motor error, measured for each participant during the calibration task, was used to 671 

represent the motoric noise. The variance of the joint estimate, derived from combining visual 672 

hints and motor actions, was then calculated by adding the variance of the two sources, based on 673 
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the assumption of their independence (cf. Eq.1). In addition, we also calculated a suboptimal, 674 

‘limited memory’ lower bound to account for the information loss across time. This model makes 675 

use of the latest two visual hints, instead of all, to infer the statistical distribution of the target. To 676 

understand how participants used these sources of information to make decisions on a trial-by-trial 677 

basis, we employed a detailed model-comparison approach as described below. 678 

Modeling participants’ behavior 679 

We used linear regression models to analyze the single subject behavior. Four potential strategies 680 

we wanted to test were: 1) looking directly at the visual hints in each trial, 2) estimating the 681 

cumulative average of all visual hints so far, 3) looking at the same location as in the previous trial, 682 

4) estimating the cumulative average of all previous guesses (as  given by their saccadic responses) 683 

(Fig.4 A). Strategy (2), calculating the cumulative average of all hints seen so far is directly linked 684 

to the lower bound on performance described above. This is an optimal statistical strategy to 685 

combine all observed hints and therefore produces the optimal performance. In principle, strategy 686 

(2) is also equivalent to a Bayesian optimal strategy, as in our case each hint has objectively equal 687 

certainty and should therefore be weighed equally.  688 

We started with the four described single predictor models to see which of the four mentioned 689 

strategies best describes participant's behavior. The dependent variable was the angular error of a 690 

participant’s estimate in a certain trial. The independent variable was the angular error of the 691 

estimate, given by one of the above-mentioned strategies. Only the data from trial 4 onward was 692 

included to test all models on the same data, since we wanted to test the influence of up to three 693 

trials in the past on the current trial. In a second stage, we tested linear regression models with 694 

multiple independent variables. We included previous guesses from up to three time steps in the 695 

past, as well as the visual hints from the current and up to three time steps in the past. Each of the 696 

described regression models was fitted to the single subject data. To compare these models, we 697 

calculated BIC, delta BIC, and Bayesian weights [30], to assess the likelihood of each model being 698 

the best fit to the data (cf. Evaluating model performance). Since these values are normalized, they 699 

can be used to determine the model that on average best fits the participants’ data. 700 

Evaluating model performance 701 

To compare the different linear regression models presented above we used a model comparison 702 

evaluation based on Bayesian weights [30]. For this, we firstly calculated BIC values for each 703 

model. Each BIC value was rescaled by calculating ΔBCI, which is calculating the difference to 704 
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the smallest BIC value in the group of models considered. This forces the best model to have 705 

ΔBCI=0 and the other models to have positive values. We then calculated Bayesian weights ω 706 

with: 707 

3) 𝜔𝑖 =
𝑒−0.5ΔBICi

∑𝑛−1
𝑁  (−0.5ΔBICn)

 708 

The Bayesian weights of all tested models in Fig.4 B sum up to 1 and define the probability of 709 

being the best model, among the one tested. 710 

 711 
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Supplementary figures 785 

 786 

 787 
 788 
Figure S1: Confidence time course. 789 
 790 
 791 
 792 

 793 
Figure S2: Confidence drops after response switch.  794 

Figure S1 and S2 are supplementary to Fig.5 in the main text. The confidence ratings demonstrated the same results 795 
as observed by analysing the absolute angular errors of the eye movements, as there was a decrement in confidence 796 
between trials 10 and 11 as shown in S1-A) for Experiment 1, as well as in S1-B) for Experiment 2, for all experimental 797 
conditions. The drop in confidence between trial 10 and 11 was significant (S2-A). The confidence of trial 11 was not 798 
different from trial 1 (S2-B), and the last trial of a block of 20 trials was not significantly better than trial 10 (S2-C). 799 
These results support the observation that after a switch in response modality, learning starts from a naïve level. 800 

801 
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 802 

Figure S3: Second experiment with reinforced instructions shows similar results. 803 

This figure is supplementary to Fig.5 and Fig.6 in the main text. These results demonstrate that we obtained similar 804 
results, when participants were explicitly instructed that the location of the hidden target remains the same after a 805 
switch. Additionally, participants had to report whether they were aware of this rule, thus reinforcing the instructions. 806 
A) Also in this experiment, performance dropped to naïve levels after a switch in response type. B) The majority of 807 
participants reported to be aware of the rule. C) The weighting of previous guesses dropped between trial 10 and 11 808 
(when the switch occurred) and D) instead more weight was put on visual hints. 809 
  810 
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 811 
 812 

 813 
 814 
 815 
Figure S4: Threshold for failed pro-/anti-saccades and subject-wise directional bias. 816 

This figure is supplementary to Fig.3 in the main text. It demonstrates the rationale for excluding erroneous pro- and 817 
anti-saccades. A) Data of Calibration Task. B) Data of Hidden Target task. In both panels, subjects’ estimates are 818 
shown without excluding 'wrong' saccades due to pro-/anti-saccade error. As shown in A and B, there is a bimodal 819 
distribution of angular errors, especially in the hidden target task. The peaks at ±180° error represents the failed pro-820 
/anti-saccades, meaning trials where pro-saccades should have been made but the subject responded with anti-saccades 821 
and vice versa. We set a threshold at 100 degree to distinguish correctly aimed pro- or anti-saccades. C) Distribution 822 
of the mean angular error across participants indicates that there was no directional (CCW or CW) bias. 823 

 824 
 825 

 826 

 827 
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 828 

Figure S6: Memory traces for previous guesses and hints. 829 

This figure is supplementary to Fig.4 in the main text. Here, we quantified how much weight is put on previous hints 830 
or guesses, tested in separate models each including either only the guesses or only the visual hints. A) Regression 831 
weights of the model including previous guesses as a predictor B) Same as A for a separate model including visual 832 
hints as a predictor 3) comparison of the model shown in A against the model shown in B. It can be seen that the 833 
previous guess models consistently outperformed the visual information/hints models, confirming the finding that 834 
subjects’ behavior is better predicted by previous actions than external visual information D&E) Same as A&B, but 835 
showing the single subject regression weights instead of the average weights. 836 
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