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Abstract:  Auditory stimuli are often rhythmic in nature. Brain activity synchronizes with 1 

auditory rhythms via neural entrainment, and entrainment seems to be beneficial for auditory 2 

perception. However, it is not clear to what extent neural entrainment in the auditory system is 3 

reliable over time – a necessary prerequisite for targeted intervention. The current study aimed 4 

to establish the reliability of neural entrainment over time and to predict individual differences 5 

in auditory perception from associated neural activity. Across two different sessions, human 6 

listeners detected silent gaps presented at different phase locations of a 2-Hz frequency 7 

modulated (FM) noise while EEG activity was recorded. As expected, neural activity was 8 

entrained by the 2-Hz FM noise. Moreover, gap detection was sinusoidally modulated by the 9 

phase of the 2-Hz FM into which the gap fell. Critically, both the strength of neural entrainment 10 

as well as the modulation of performance by the stimulus rhythm were highly reliable over 11 

sessions. Moreover, gap detection was predictable from pre-gap neural 2-Hz phase. Going 12 

beyond previous work, we found that stimulus-driven behavioral modulation was better 13 

predicted by the interaction between delta and alpha phase than by delta or alpha phase alone, 14 

both within and across sessions. Taken together, our results demonstrate that neural entrainment 15 

in the auditory system and the resulting behavioral modulation are reliable over time. In 16 

addition, both entrained delta and non-entrained alpha oscillatory phase contribute to near-17 

threshold stimulus perception. 18 

 19 

Keywords: Reliability, neural entrainment, auditory perception, auditory entrainment, 20 

frequency modulation (FM), delta frequency, alpha frequency, oscillations, EEG, phase, brain 21 

rhythms.  22 
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Introduction 1 

Auditory stimuli, such as music, speech, and animal vocalizations, are often (quasi-)rhythmic 2 

in nature. As such, one neural mechanism that has received much recent attention for its 3 

contribution to our ability to understand the auditory world is synchronization of brain activity 4 

to the rhythms of sounds: neural entrainment (1). Neural entrainment is the process by which 5 

neural oscillations phase lock to the rhythms of external sensory stimulation, and has been 6 

proposed to be a key mechanism for controlling neural sensory gain (1, 2), attention, and parsing 7 

(3) of sensory information that is extended in time. Since neural oscillations are associated with 8 

rhythmic fluctuations in the excitation-inhibition balance of neuronal populations (4, 5), neural 9 

entrainment by sensory stimulation can modulate perception of physically identical stimuli 10 

depending on their timing relative to the phase of entrained neural activity (6, 7). That is, the 11 

phase of the entrained oscillation determines whether sensory information is selectively 12 

amplified or suppressed (1). 13 

Entrainment to rhythmic environmental stimuli has been described for different sensory 14 

modalities (7-9) and across different species (10, 11). In humans, low-frequency M/EEG 15 

delta/theta activity has been shown to synchronize to the rhythms of speech and music 16 

(quantified as the amplitude envelope of the stimuli), and the success with which this 17 

synchronization between brain rhythms and auditory stimuli occurs seems to be critical for 18 

successful auditory perception (12, 13), in particular in noisy listening situations (14-17).   19 

If neural entrainment does play a critical mechanistic role for auditory perception, improving 20 

the synchrony between brain activity and stimulus rhythms should result in benefits for 21 

perception (during e.g., listening in noise). In fact, recent work has used transcranial electrical 22 

stimulation (TES) with alternating current (tACS) to interfere with entrainment to auditory 23 

stimuli and reported significant modulation of speech comprehension and stream segregation 24 

(18-22). For example, applying tACS with speech envelope has been shown to modulate the 25 

intelligibility of speech in noise, depending on the phase lag between the electrical stimulation 26 

and the speech (21). However, there is some uncertainty in tACS results (see e.g., (23)) and its 27 

effectivity for modulating neural entrainment is still under debate. One untested prerequisite 28 

for effectively using TES as a targeted intervention is the reliability of neural entrainment over 29 

time, i.e., across sessions and days. Establishing the reliability of neural entrainment in the 30 

auditory system is a necessary step towards understanding the role of neural oscillations and 31 

entrainment for perception, and is critical to pave the way for therapeutic applications based on 32 

TES or other noninvasive techniques that target the relationship between neural and 33 
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environmental rhythms. The current study aimed to quantify the reliability of neural 1 

entrainment in the auditory system over time, and moreover to predict individual differences in 2 

auditory perception from neural activity. 3 

Not all stimuli are rhythmic. Thus, multiple neural processing modes have been proposed: 4 

“rhythmic-mode” and “continuous-mode” processing (24, 25), only the former of which relies 5 

on neural entrainment. Even in the case of purely rhythmic stimulation,  lapses of attention have 6 

been related to lapses of entrainment, and are rather associated with periods of high-amplitude 7 

alpha oscillations (2). Higher alpha amplitude has also been related to reduced entrainment-8 

driven behavioral modulation (26). Taken together, these findings suggest that alpha activity 9 

and entrainment represent opposing neural strategies (i.e., continuous-mode vs. rhythmic-10 

mode, or internally vs. externally oriented, respectively), which comodulate behavior. Here, in 11 

addition to examining the influence of entrained neural activity on auditory perception (6, 27), 12 

we attempted to take the influence of alpha activity into account, in order to provide a more 13 

complete picture of the neural mechanisms underlying auditory perception in a vigilance task 14 

utilizing rhythmic stimuli.  15 

We employed a paradigm previously used by (7), where stimulus periodicity was 16 

communicated by frequency modulation (FM). Participants detected brief auditory targets 17 

(silent gaps) embedded in an ongoing 2-Hz FM stimulus (Fig. 1). Each participant took part in 18 

two EEG sessions. Based on previous literature, we expected that the 2-Hz FM stimulus would 19 

entrain delta oscillations in the brain and, as such, gap detection would be modulated by the 20 

phase of both the stimulus and the entrained neural oscillation in which target gaps occurred. 21 

Furthermore, if neural entrainment is reliable over time, both FM-stimulus induced behavioral 22 

modulations and EEG activity should show high inter-session correlations. Our multi-session, 23 

within-subject design provided us with a novel opportunity for testing the reliability of 24 

entrainment, while controlling for stable individual differences such us anatomical variability 25 

or hearing ability. We argue that, while neural entrainment and stimulus-driven behavioral 26 

modulation are indeed highly reliable between sessions, auditory perception cannot be 27 

exclusively explained by entrained low-frequency neural activity. Both entrained delta phase 28 

and non-entrained alpha activity contributed to stimulus-induced modulation of auditory 29 

perception. 30 
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Results 1 

In two different sessions, EEG activity was recorded while listeners detected silent gaps 2 

embedded in 20-s long complex tones that were frequency modulated at 2 Hz (Fig. 1). Based 3 

on previous literature, we predicted that delta oscillations would be entrained by the 2-Hz FM. 4 

We aimed to quantify how reliable that entrainment would be across sessions, both in terms of 5 

entrainment strength and the phase relationship between stimulus and brain. 6 

 7 

 8 
 9 
Fig. 1. Auditory stimuli. Stimuli were 20-s long frequency modulated (FM) sounds whose frequency 10 
fluctuated rhythmically at 2 Hz (bottom), without periodic fluctuations in amplitude (top). Participants 11 
detected short silent gaps (middle left: Gap waveform) embedded in the sound in one of 18 possible 12 
phase bins, uniformly distributed around the 2 Hz FM cycle. Each sound had 3, 4, or 5 gaps. Participants 13 
responded with a button press each time they detected a silent gap. Circular histograms in the figure 14 
(middle right: Distribution of gaps per FM phase bin) show the distribution of gaps per phase bin across 15 
participants, separated by session. S1: session 1; S2: session 2. Hand icon was downloaded from 16 
https://www.stockio.com/. 17 

 18 

Auditory entrainment to FM sounds has high inter-session reliability 19 

We evaluated entrainment using four converging analyses. We considered both total and 20 

evoked amplitudes of EEG data. In addition, we calculated inter-trial phase coherence (ITPC) 21 
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across the full epoch based on complex Fourier output, and in a time-resolved way based on 1 

the output of a wavelet convolution. For evoked amplitude spectra, single-trial time-domain 2 

data were first averaged over trials, and then subjected to a Fast Fourier transform (FFT); this 3 

analysis is particularly sensitive to neural activity that was phase-locked to the stimulus rhythm 4 

across trials. For the total amplitude spectra, the FFT was computed for each single trial, and 5 

then the single-trial frequency-domain signals were averaged; this analysis is mostly sensitive 6 

to high-amplitude neural activity, and is agnostic to whether that activity is phase-locked across 7 

trials. Finally, ITPC was calculated based on the phase (rather than the amplitude) information 8 

from the complex output of a FFT calculated on the full-stimulus epoch (with onset- and offset-9 

responses removed) or using the time-resolved complex output of the wavelet convolution (see 10 

Methods); these analyses quantify trial-to-trial consistency (i.e., resultant vector length) but are 11 

mostly insensitive to amplitude information (28).  12 

For evoked spectra, we observed high-amplitude peaks at the stimulus FM frequency and its 13 

first harmonic (i.e., 2 Hz and 4 Hz respectively, Fig. 2a), consistent with neural tracking of the 14 

rhythm of the FM stimulus (6, 7).  Relatively high spectral amplitude was also observed in the 15 

alpha frequency band (7-12 Hz). For all further analyses on alpha activity, we considered 16 

activity between 7 Hz and 12 Hz, because this frequency range best captured the observed 17 

increase in alpha evoked amplitude (Fig. 2a). To test for statistical significance, evoked 18 

amplitudes for 2 Hz, 4 Hz, and alpha (averaged over 7–12 Hz) frequencies, averaged over all 19 

electrodes, were compared to the average amplitude of the neighboring frequency bins (i.e., ±8 20 

frequency bins/0.16 Hz for 2 Hz and 4 Hz and ±100 frequency bins/2 Hz for alpha, see 21 

Methods) similar to previous studies (7, 27). Evoked amplitudes for 2 Hz, 4 Hz, and alpha 22 

frequencies were significantly different than the average amplitude of the neighboring 23 

frequency bins (all p < 2.95e-07, see Methods). Total amplitude spectra showed high amplitude 24 

in alpha frequency band, while 2-Hz and 4-Hz amplitudes were less visible in the spectra due 25 

to the high 1/f power (Fig. S1). Nevertheless, compared to the average amplitude of the 26 

neighboring frequency bins, 2 Hz, 4 Hz, and alpha amplitudes were also significant in the total 27 

amplitude spectra (all p < 0.001). Moreover, the ITPC analysis showed clear peaks at 2 Hz and 28 

4 Hz, again suggesting entrainment at the stimulus FM frequency and its first harmonic (Fig. 29 

2b). In both sessions, ITPC at 2 Hz and 4 Hz was significantly different than the neighboring 30 

frequency bins (same neighboring frequency bins as defined for the evoked amplitude analysis, 31 

all p < 7.74e-08). Finally, time-resolved ITPC at 2 Hz and 4 Hz, averaged over electrodes and 32 

time was significantly different than for the neighboring frequency bins (±8 frequency 33 

bins/0.81Hz, all p < 1.07e-07, Fig. 2b, right). As observed in Fig. 2a, FM-stimulus-evoked 34 
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amplitude at 2 Hz and 4 Hz was mostly observed in a fronto-central cluster including electrodes 1 

F3, Fz, F4, FC1, FC2, C3, Cz, C4, F1, F2, FC3, FC4, C1 and C2 (Fig. 2a, insets). Therefore, 2 

all further analyses involving these frequencies were done first independently by electrode and 3 

then averaged over this subset of electrodes. 4 

 5 

   6 
 7 
Fig. 2. Neural entrainment to 2-Hz FM stimulus. (a) Evoked amplitude spectra from the fast Fourier 8 
transform (FFT) of the time-domain EEG signal. Red solid lines indicate the group average spectrum, 9 
gray lines show single participants’ spectra, averaged over all electrodes. Inset plots show the 10 
topography for the 2 Hz amplitude spectrum averaged across participants, separately for session 1 and 11 
session 2. (b) Inter-trial phase coherence (ITPC) indicating the degree of phase clustering across trials 12 
for each frequency (left), averaged over all electrodes. Gray lines show individual values and red lines 13 
show group average. (right) ITPC shown over time, again averaged across participants and all 14 
electrodes. S1: session 1; S2: session 2. Arrows in (a) and (b) indicate the peaks in amplitude and ITPC 15 
at the 2-Hz FM stimulus frequency and its first harmonic. Rectangles in (a) indicate the frequency range 16 
considered for further alpha analyses. 17 
 18 
 19 

Moving a step past previous literature, we next asked whether FM-induced entrainment is 20 

reliable over time by correlating the amplitude of the stimulus-evoked activity at 2 Hz, 4 Hz, 21 

and in the alpha frequency band, as well as the stimulus-brain lag (i.e., the phase angle of the 22 

2-Hz complex output of the FFT calculated for the full stimulus epoch) across sessions. Inter-23 

session correlations were high and significant for evoked amplitudes at 2 Hz (rho = 0.64, p = 24 

2.71e-05), 4 Hz (r = 0.77, p = 1.21e-08), and in the alpha band (r = 0.78, p = 5.47e-09; Fig. 3a). 25 

No significant difference was observed in the amplitude spectra between sessions for any of the 26 

frequencies of interest. Despite individual variability, stimulus–brain phase lags were not 27 

uniformly distributed as reported in previous work, but were significantly phase clustered for 28 

both sessions (Rayleigh test, session 1: z = 23, p = 9.52e-13; session 2: z = 17, p = 8.78e-09, 29 

Fig. 3b). Moreover, phase lags were reliable across sessions as indexed by the high circular–30 

circular correlation (rho = 0.62, p = 0.004) and a circular distance between sessions clustered 31 

around zero (Rayleigh test, z = 25.72, p = 1.19e-14). Taken together, amplitude spectra and 32 
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phase lags suggested that neural entrainment to FM stimuli is reliable across sessions, which is 1 

the first vital prerequisite for targeted interventions of auditory-cortex neural oscillations.  2 

 3 

  4 
 5 
Fig. 3. Reliability of neural entrainment. (a) Inter-session correlation of 2 Hz (left), 4 Hz (middle) 6 
and alpha (right) amplitudes. Correlation coefficients and associated p-values are given in each plot. 7 
Each dot represents a single participant. The solid black line is the diagonal and the dashed line 8 
represents the best-fit straight line. (b) Circular histograms show neural phase lag relative to the 2-Hz 9 
FM stimulus for session 1 (blue, left) and session 2 (orange, middle). The z-values and associated p-10 
values from the Rayleigh test are given in each plot. Circular distance between phase lags in the different 11 
sessions is shown in the circular histogram in the Right. S1: session 1; S2: session 2.   12 
 13 

Stimulus-induced behavioral modulation is sinusoidal and shows high inter-session 14 

reliability 15 

While listening to the FM sounds, participants responded with a button press each time they 16 

detected a silent gap. Each 20-s long stimulus contained three, four, or five gaps. Gaps were 17 

distributed uniformly around the 2-Hz FM cycle in 18 possible phase positions (Fig. 1). A 18 

response was considered to be a “hit” if a button press occurred within a window of 0.1-1.5 s 19 

after gap onset.  20 

We hypothesized that, as a consequence of the stimulus-induced entrainment of delta 21 

oscillations, hit rates for gap detection would be sinusoidally modulated by the FM stimulus 22 

phase. To go a step past previous studies, we also asked whether this modulation is reliable 23 

across sessions. While several studies have focused on analyzing oscillatory modulation of 24 

perception at the group level by aligning single-participant data to the phase with best or worst 25 

performance (see (29) for recommendations), here we took a different approach and 26 

investigated whether the magnitude of stimulus-driven behavioral modulation and the preferred 27 

(best) FM-stimulus phase were consistent across sessions within an individual.  28 

For each session separately, hit rates were calculated for each FM-phase bin (Fig. 4a, Fig. S2). 29 

Then, we fit a cosine function to hit rates as a function of phase for each participant and each 30 
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session. The resulting amplitude parameter from the cosine fit was taken as an index of the 1 

strength of the behavioral modulation. Significance of the sinusoidal modulation was tested 2 

using a permutation approach, whereby 1000 surrogate datasets were created for each 3 

participant and session by shuffling the single-gap accuracy values (0,1) with respect to their 4 

stimulus-phase labels. Cosine functions were fitted to the surrogate data and the fitted amplitude 5 

from the real data was compared for each participant and session to the surrogate data (see 6 

Methods). Significant behavioral modulation was observed for 32/38 participants in session 1 7 

and 37/38 in session 2 (z-score ≥ 3.2, p < 0.05, Bonferroni corrected, Fig. 4b). Similar 8 

sinusoidal modulation was also observed for the reaction times but with opposite phase lag (i.e., 9 

high accuracy and fast RTs occurred in the same ‘optimal’ stimulus phase; Fig. S3a).  10 

The fitted modulation amplitude values were highly correlated between sessions (r = 0.88, p = 11 

2.22e-13, Fig. 4b), indicating that FM-induced behavioral modulation was reliable. Individual 12 

preferred FM phases (the FM-stimulus phase yielding highest performance) were estimated 13 

from the fitted cosine functions per participant and per session (Fig. 4b). Preferred phases were 14 

not uniformly distributed, but clustered in one half of the FM cycle (Rayleigh test; session 1: z 15 

= 34.4, p = 1e-22; session 2: z = 35.7, p = 1.76e-24). Preferred phases were also highly 16 

correlated between sessions (circular–circular correlation; rho = 0.62, p = 0.036, Fig. 4b). 17 

Moreover, circular distance between preferred phases in session 1 and session 2 was clustered 18 

around zero (Rayleigh test; z = 35.7, p = 1.94e-24), suggesting that preferred phase is also a 19 

reliable attribute of FM-induced behavioral modulation.  20 

We recognized that high reliability in preferred FM phase across sessions may have been at 21 

least partially attributable to clustering of preferred phases across participants in the first place 22 

– since preferred phases were significantly clustered across participants, we wanted to be 23 

careful not to overinterpret similar mean preferred phase across sessions as reflecting within-24 

participant reliability. In order to test this possibility, we conducted a permutation test in which 25 

the order of participants in session 2 was permuted 1000 times relative to the session-1 order, 26 

and the circular–circular correlation between individual preferred phases in session 1 and 27 

(permuted) 2 was computed. If inter-session correlations are driven by the similarity between 28 

participants, permuting the participant order in session 2 should not have affected inter-session 29 

correlations. However, demonstrating the reliability of preferred phase, the inter-session 30 

correlation in the original data was significantly higher than inter-session correlations on the 31 

permuted samples (z = 3.66; p < 0.001, Fig. S3b).  32 
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In addition to the fitted amplitude parameters and preferred FM phases for gap-detection 1 

performance, hit rates (over the entire session), false-alarm rates, reaction times, and threshold 2 

gap durations were also highly correlated across sessions (Rho ≥ 0.5, p ≤ 0.002, Fig. 4c). When 3 

each of the dependent measures were directly compared across sessions, a significant difference 4 

was observed only for the gap duration (Wilcoxon signed rank test, z = 2.99, p = 0.003). 5 

Individually adjusted gap durations estimated using our threshold procedure were shorter in 6 

session 2 than in session 1. Since hit rates were not significantly different between sessions, the 7 

decrease in threshold gap duration suggests that participants experienced some degree of 8 

learning or practice effect, and could recognize shorter gaps in session 2.  The reduction in 9 

threshold gap duration between session 1 and 2 was significantly correlated with music 10 

perceptual abilities (Rho = 0.39, p = 0.017), as measured with the Goldsmiths Musical 11 

Sophistication Index (Gold-MSI, (30)), very tentatively suggesting that individuals with 12 

stronger music skills might have experienced a greater benefit of repeated exposure across 13 

session.  14 

 15 

 16 

 17 
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Fig. 4. Stimulus-driven behavioral modulation and its reliability. (a) Hit rates as a function of 2-Hz 1 
FM stimulus phase. Dashed blue and orange lines represent the fitted cosine functions for sessions 1 and 2 
2, respectively. Numbers on top of each graph show the mean hit rate across phase bins for each session. 3 
Each graph shows data for a different single participant. In all panels, blue represents session 1 (S1) and 4 
orange represents session 2 (S2). (b) The plot on the left shows the distribution and spread of the z-5 
scores of the amplitude of the observed sinusoidal modulation for each session. The box plot shows 6 
median (black horizontal line), 25th and 75th percentiles (box edges) and extreme datapoints (whiskers). 7 
Each circle represents a single participant. Horizontal dashed line marks the significance threshold of z 8 
= 3.2 (Bonferroni corrected z-score value for 76 comparisons -i.e., 38 subjects x 2 sessions). Scatter plot 9 
in the middle shows the correlation between the fit amplitudes for the 2 sessions. Solid line is the 10 
diagonal and dashed line shows the best-fit straight line. Circular histograms on the right of the panel 11 
show individual preferred phases (i.e., phase in the cosine fit with highest hit rate) separated by session 12 
(left and middle histograms) and the circular distance between the two (right histogram). Z and P-values 13 
in the plots refer to the results from the Rayleigh test. (c) Scatter plots show inter-session correlations 14 
for hit rates, reaction times, false alarms rates, and gap durations. Solid lines are the diagonal and dashed 15 
lines show the best-fit straight lines. 16 
 17 

Pre-stimulus neural 2-Hz phase predicts gap detection 18 

In the previous sections, we showed that the 2-Hz FM stimulus entrained neural activity at the 19 

modulation frequency and that gap-detection performance was sinusoidally modulated by FM 20 

phase. Therefore, we expected that pre-gap brain activity should also predict gap-detection 21 

performance. We examined the effects of the neural phase and amplitude in the FM stimulus 22 

frequency band (2 Hz), as well as the neural phase and amplitude in the alpha frequency band 23 

(7-12 Hz), extracted from the pre-gap time window (see Methods). Both entrained 2-Hz and 24 

non-entrained alpha activity were taken into account since our initial FFT analysis showed 25 

stimulus-driven modulation of both (Fig. 2a). Five logistic regression models were fitted to the 26 

individual data using different combinations of regressors aiming to predict trial-based gap 27 

detection performance (hit/miss). For model selection, Akaike’s information criterion (AICc, 28 

corrected for small samples) values were averaged across participants separated by session 29 

(Table S1). In both sessions, the smallest AICc values were obtained for the model that 30 

included pre-gap neural 2 Hz phase, pre-gap neural alpha phase and pre-gap alpha amplitude. 31 

Note however, that the difference in AICc values between models was small in some cases. To 32 

further test the significance of each predictor at the group level, the individual beta estimates 33 

were compared to the mean beta estimates obtained from fitting the same model to surrogate 34 

datasets (see Methods). For each subject and session, 1000 surrogate datasets were created by 35 

shuffling the dependent variable, single-gap accuracy values (0,1), while keeping all 36 

independent regressors fixed. 37 

Gap detection was significantly modulated by pre-gap 2-Hz phase (S1: t (37) = 3.31, p = 0.01; 38 

S2: z = 3.14, p = 0.01, Fig. 5a). No significant effect of alpha phase was observed (uncorrected 39 

p > 0.16, S1 and p > 0.38 S2, Fig. 5a). The effect of alpha amplitude was significant although 40 
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it did not survive Bonferroni correction (S1: z (37) = 2.17, p = 0.03, uncorrected; S2: t (37) = 1 

2.2, p = 0.03, uncorrected, Fig. 5a). Note that although alpha phase and amplitude were not 2 

considered significant predictors of gap-detection performance using this permutation strategy, 3 

they did contribute to the best-fitting logistic regression model, as indexed by AICc. No 4 

significant difference was observed between the two sessions for any of the predictors.  5 

 6 

 7 
 8 
Fig. 5. Effect of pre-gap activity on gap detection. (a) Beta estimates (including distribution and 9 
spread) for 2-Hz phase (left), alpha phase (middle), and alpha amplitude (right) from the winning 10 
individual logistic regression models fitted to the EEG data. Box plots show median (black horizontal 11 
line), 25th and 75th percentiles (box edges) and extreme datapoints (whiskers). Black crosses represent 12 
outlier values. Each circle represents a single participant. Horizontal dotted lines mark the median of 13 
the beta estimates obtained from the logistic regressions fitted to the surrogate datasets, against which 14 
the beta estimates from the true data were compared. P-values are Bonferroni corrected and show the 15 
significant effect at the group level for a given predictor. (b) Effect of 2-Hz pre-gap phase. For 16 
visualization, the pre-gap neural phase at 2 Hz was grouped in 18 equally spaced bins and hit rates were 17 
calculated for each bin according to its pre-gap 2-Hz phase. The figure shows the average across 18 
participants. Two cycles are shown for illustration purposes. Solid lines represent the actual data and 19 
dashed lines represent the fitted cosine function. (c) Similar to (b), but the data were binned according 20 
to pre-gap alpha phase. (d) Preferred neural 2-Hz phase separated by session (left, middle) and circular 21 
distance between the two sessions’ preferred phases (right). (e) Same as in (d) but for pre-gap alpha 22 
phase. S1: session 1 (blue); S2: session 2 (orange). 23 
 24 

 25 

Next, we evaluated the clustering across participants of preferred neural 2-Hz and alpha phases 26 

and tested the reliability of preferred neural phases across sessions. Trials were sorted and 27 

binned according to the instantaneous neural phase at 2 Hz (Fig. 5b) or in the alpha frequency 28 

band (7-12 Hz, Fig. 5c), using 18 equally spaced phase bins. Hit rates were calculated for each 29 
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bin and cosine functions were fitted to each individual participant’s data in order to estimate 1 

preferred neural phase, similar to the behavioral analysis. Rayleigh tests did not show any 2 

significant deviation from uniformity for 2-Hz preferred phases within either session (all Z < 3 

2.7, p > 0.0.07). In line with this lack of consistency, we observed a nonsignificant clustering 4 

of circular distances between preferred phases across sessions (Z = 1.8, p = 0.16, Fig. 5d) and 5 

a nonsignificant correlation between preferred phases across sessions for the optimal 2-Hz 6 

neural phase for gap detection (circular-circular correlation Rho = 0.12, p = 0.44). In contrast, 7 

Rayleigh tests showed significant clustering of preferred alpha phases across participants in 8 

both sessions (Z > 6, p < 0.002). Moreover, circular distances between preferred alpha phases 9 

across sessions were significantly clustered (Z = 4.6, p = 0.009, Fig. 5e), although preferred 10 

alpha phases did not significantly correlate across sessions (Rho = 0.24, p = 0.12). Thus, while 11 

2-Hz preferred neural phases were randomly distributed across participants and were not stable 12 

between sessions, preferred alpha phase was more consistent across participants and sessions. 13 

Gap-evoked potentials (ERPs) can be seen in supplemental results and Fig. S5.  14 

 15 

Stimulus-driven behavioral modulation is better predicted by the interaction between 16 

entrained 2-Hz and non-entrained alpha phase effects than by either frequency band alone 17 

Our analyses up to this point demonstrated that single-trial gap-detection performance was 18 

mostly predictable from 2-Hz pre-gap phase. However, in the logistic regression models, 2 Hz 19 

and alpha phase effects were modelled independently and therefore no phase–phase interaction 20 

between frequency bands was tested. Therefore, we next asked whether single-trial gap-21 

detection performance was co-modulated by pre-gap neural 2 Hz phase and pre-gap alpha 22 

phase, which could potentially explain the inconsistency in 2-Hz preferred phases both within 23 

and across sessions. Specifically, we next asked whether the stimulus-driven sinusoidal 24 

modulation of hit rates could be explained better by entrained 2-Hz phase, by ongoing alpha 25 

phase, or the interaction between the two (Fig. 6).  26 

For each gap, we determined the pre-gap 2-Hz neural phase and the pre-gap neural alpha phase 27 

and assigned each to 1 of 18 bins, as in the analyses described above. Then, 3 detection 28 

probabilities were assigned to the gap: 1) the participant-and-session-specific hit rate for the 29 

corresponding 2-Hz neural phase bin, 2) the hit rate for the corresponding alpha neural phase 30 

bin, and 3) the product of the two hit rates (i.e., the interaction; Fig. 6a, see Methods). Gaps 31 

were then binned by FM-stimulus phase and 3 predicted performance functions were created 32 

by averaging the predicted probabilities across all gaps within a FM-stimulus bin for the 3 33 
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models based on 2-Hz neural phase (pred2Hz), alpha phase (predα), and the interaction (pred2Hz*α) 1 

predictions (Fig. 6a). Then, the true hit-rate profiles as a function of FM-stimulus phase were 2 

correlated with the three predicted functions so that we could determine which of the 3 

predictions most closely matched the data.  4 

 5 

   6 
 7 
Fig. 6 Predicting FM-stimulus induced behavioral modulation from 2-Hz and alpha neural phase. 8 
(a) For each gap, pre-gap 2-Hz and alpha neural phases were calculated and detection probabilities 9 
(P('yes’)) were assigned based on 1) the hit rate calculated for the corresponding pre-gap neural 2-Hz phase 10 
bin, 2) the hit rate calculated for the corresponding pre-gap neural alpha phase bin, and 3) their 11 
interaction (multiplication). Circle colors (magenta and cyan) denoting the pre-gap neural phase for the 12 
specific gaps in step 1 correspond to the same bins marked in the average hit-rate plots in step 2. For 13 
each FM-stimulus phase bin (18 bins), three predicted functions were calculated by averaging detection 14 
probabilities across gaps using the 1) 2-Hz neural phase predictions, 2) the alpha neural phase 15 
predictions and 3) their interaction. (b) For each participant and session, the true hit-rate profiles as a 16 
function of FM-stimulus phase (HR) were correlated with the three predicted functions (pred2Hz, predα, 17 
pred2Hz*α) so that we could determine which of the predictions most closely matched the data. Bar 18 
graphs show the mean correlation coefficients across participants. Error bars denote standard error of 19 
the mean. * p<0.05, ** p<0.01, Bonferroni corrected. Note that the plots show Pearson’s correlation 20 
coefficients but statistical comparisons where performed on the fisher’s r-to-z transformed values. (c) 21 
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same as in (b) but correlation coefficients were computed by correlating the individual hit rate by FM-1 
stimulus phase bin observed in session 2 with the functions predicted in session 1 (S1 predà S2 HR, 2 
left) and by correlating the individual hit rates as a function of FM-stimulus phase bin observed in 3 
session 1 with the functions predicted in session 2 (S2 predà S1 HR, left). 4 

 5 

In both sessions, observed FM-stimulus-driven modulation of hit rates significantly correlated 6 

with all predicted functions (one sample t-test on Fisher’s r-to-z transformed correlation 7 

coefficients from true vs. mean correlation coefficients from surrogate data, all t (37) > 5.34 p 8 

< 2.93e-05, Bonferroni corrected for 6 comparisons, Fig. 6b). No significant differences were 9 

observed between sessions for any of the predictors (uncorrected p > 0.37). In general, 10 

correlation values were higher for pred2Hz*α than for pred2Hz or predα alone, and this difference 11 

was significant for session 1 for the comparison predα vs. pred2Hz*α (t (37) = -3.12, p = 0.02, 12 

Bonferroni corrected for 6 comparisons) and session 2 for pred2Hz vs pred2Hz*α (t (37) = -2.83, 13 

p = 0.04) and predα vs pred2Hz*α (t (37) = -3.82, p = 0.002, all Bonferroni corrected for 6 14 

comparisons, Fig. 6b).  15 

In addition, we asked whether the modulation of hit rates by 2-Hz and alpha phase from one 16 

session could predict the same in the other session. Stimulus-driven behavioral modulation was 17 

significantly correlated with the predictor functions from the opposite session for all three 18 

predictors (all t (37) > 3.66; p < 0.005, Bonferroni corrected for 6 comparisons, Fig. 6c). As 19 

before, there was a trend to higher correlation values for the interaction predictor pred2Hz*α 20 

compared to pred2Hz and predα although it did not survive multiple comparisons correction 21 

(predictors session 1 to HR session 2: predα vs. pred2Hz*α; t (37) = -2.01; p = 0.02, uncorrected; 22 

predictors session 2 to HR session 1: pred2Hz vs. pred2Hz*α; t (37) = -2.6; p = 0.01, uncorrected 23 

predα vs. pred2Hz*α; t (37) = -2.19; p = 0.03, uncorrected). Taken together, these results show 24 

that 2-Hz neural phase and alpha neural phase effects both explain the FM-stimulus induced 25 

behavioral modulation. However, the interaction between 2-Hz and alpha phase was the best 26 

predictor of behavior. Moreover, behavioral modulation could be predicted regardless of 27 

whether predictive functions were derived from the same or the opposite session, which 28 

suggests that this is also reliable across sessions.  29 

Control Experiment: Gap detection is modulated by the FM rate.  30 

Here, we found that preferred FM phases were clustered in one half of the FM cycle (although 31 

we did observe some variability across participants). This was somewhat surprising because 32 

previous studies using the same stimuli and task reported preferred phases to be uniformly 33 
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distributed around the FM cycle (7). The one major difference between the two studies was the 1 

FM frequency: 3 Hz in the previous study (7) and 2 Hz in the current study. We hypothesized 2 

that individual variability in stimulus-driven behavioral modulation might be influenced by the 3 

FM frequency: slower FM frequencies (in this case 2 Hz) should be easier to track and therefore 4 

participants should synchronize to such stimuli more similarly, while individual differences are 5 

more pronounced for higher FM frequencies, which might be more difficult to track and 6 

therefore result in phase slips.  7 

To test this hypothesis, in a control experiment, 16 participants performed the same gap-8 

detection task as in the main experiment, but FM frequency varied between blocks and took on 9 

values of 1.5 Hz, 2 Hz, 2.5 Hz, or 3 Hz (see Methods, Fig. S4) Overall hit rates were 10 

significantly modulated by FM rate (repeated measures ANOVA, F (3,45) = 8.49, p = 0.0001) 11 

with smaller hit rates observed for higher FMs (Fig. S4a). However, FM rate did not 12 

significantly affect the amplitude of the stimulus-induced behavioral modulation (F (3,45) = 13 

1.72, p = 0.18). Most importantly here, to test whether the clustering of individual preferred 14 

phases was dependent on the FM rate, individual preferred phases were estimated from cosine 15 

fits (Fig. S4b) and the resultant vector length across participants was calculated for each FM 16 

rate (Fig. S4c). A linear model was fitted to the resultant vector length including intercept and 17 

a linear term for FM rate as the predictor. A significant fit for the linear term would suggest 18 

that indeed, phase clustering significantly decreased (or increased) with increasing FM rate. 19 

Significance was evaluated using permutation tests. The permutation distribution was created 20 

by 1) computing resultant vector lengths over 1000 iterations (in each iteration the FM rate 21 

labels where permuted for each participant) and fitting the same linear model to the simulated 22 

vector lengths as for the original data. The t-value calculated for the effect of FM rate on vector 23 

length in the original data was compared to the distribution of t-values obtained with the 24 

permuted datasets. Using this approach, no significant effect of FM rate on vector length was 25 

observed (z = -0.52, p = 0.3). After visual inspection of the data, we tested a second linear 26 

model incorporating, in addition to the intercept and linear term, a quadratic term (FM rate ^2). 27 

Significance of each function was evaluated using permutation tests, as already described for 28 

the linear-only model. In brief, t-values obtained for the linear and quadratic terms were each 29 

compared to the random t-values distributions obtained, for each term, by fitting the same linear 30 

model to the shuffled datasets. The t-values from the linear and quadratic fits to the original 31 

data were significant at trend level compared to the simulated permutation distributions (linear 32 

fit: z = -1.61, p = 0.054; quadratic fit: z = 1.51, p = 0.066).  33 
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Gap detection is also influenced by stimulus carrier and time of occurrence 1 

Although we tried to minimize the possibility that the FM phase effects may have unknowingly 2 

been driven by acoustic confounds, we nonetheless tested which stimulus characteristics 3 

beyond FM phase influenced gap-detection hit rates. Fitting logistic regression models to 4 

individual participants data, we examined the extent to which single-trial gap detection 5 

accuracy in the main experiment was influenced by 1) FM phase, 2) global experiment time 6 

(when the gap occurred over the whole experiment, quantified as the gap number within a 7 

session, 1–864), 3) local time (when the gap occurred within a stimulus), 4) the center carrier 8 

frequency of the stimulus in which the gap was presented and 5) the interaction of FM phase 9 

with global time (quantifying the extent to which stimulus-driven behavioral modulation 10 

changed over the course of the experiment).  11 

   12 

  13 
 14 
Fig. 7. Effect of stimulus properties on gap detection. (a) Distribution plots showing the beta 15 
estimates resulting from the individual logistic regression models. (*) denote the significant effect at the 16 
group level for a given predictor, after performing one-sample T-tests compared to the mean beta 17 
estimates for surrogate datasets. (*) denote significant difference between sessions after performing 18 
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paired samples T-test. All *<0.05 after Bonferroni correction. A significant difference between sessions 1 
was only observed for the main effect of phase, which was strongest in session 2. Box plots show median 2 
(horizontal solid black line), 25th and 75th percentiles (box border), extreme values (whiskers) and 3 
outliers (black cross). (b) Visualization of the main effects shown in (a), i.e., main effect of global time 4 
(top) and main effect of stimulus center carrier frequency (bottom). (c) Global time*phase interaction 5 
effect. Data were grouped in 4 linearly spaced bins (1: blue; 2: red; 3: purple; 4: black) according to the 6 
time of occurrence within the session (global time). Hit rates were calculated for each bin and each FM 7 
phase (solid lines, Left). Cosine functions were fitted to each bin data (dashed lines, Left). Mean fit 8 
amplitude values are given in the bar plots in the Right. S1: session 1; S2: session 2. 9 

 10 

Significance at the group level was estimated using one-sample (significant effect for each 11 

session) and dependent-sample (comparison between sessions) t-tests on the individual beta 12 

estimates (see Methods). One-sample t-tests were performed comparing the individual beta 13 

estimates obtained from the logistic regression on the original data with the mean beta estimates 14 

obtained when fitting the same models to surrogate datasets. For each subject, 1000 surrogate 15 

datasets were created by shuffling each time the dependent variable, single-gap accuracy values 16 

(0,1), while keeping all independent variables (stimulus parameters) fixed.  17 

As already described, in both sessions, gap-detection performance was significantly modulated 18 

by FM-stimulus phase (S1: t (37) = 7.04, p = 3.55e-07; S2: t (37) = 7.42, p = 1.1e-07 Bonferroni 19 

corrected). A significant influence on hit rates was also observed, in both sessions, for global 20 

experiment time (S1: t (37) = -5.26, p = 8.89e-05; S2: t (37) = -7.06, p = 3.33e-07, Bonferroni 21 

corrected) and the center carrier frequency of the stimulus (S1: t (37) = 3.77, p = 0.008, 22 

Bonferroni corrected). The interaction FM phase*global time was significant only in session 1 23 

(t (37) > 7.84 p < 4.02e-08, Bonferroni corrected, Fig. 7a) but it did not survive correction for 24 

multiple comparisons in session 2. Significant difference between sessions was observed only 25 

for the effect of FM phase, which was strongest in session 2 (t (37) = -3.6, p = 0.006, Bonferroni 26 

corrected). Regarding the main effect of the stimulus center carrier frequency, post-hoc 27 

exploration showed that hit rates decreased with increasing carrier frequency (Fig. 7b). The 28 

main effect of global time was explained by a decreased of hit rates over time, as it would be 29 

expected from fatigue (Fig. 7b). Further visual exploration of the FM phase*global time 30 

interaction term in session 1 showed that while hit rates decreased over time within the session, 31 

the amplitude of the sinusoidal modulation increased over time. The later could represent some 32 

sort of strategy change happening within the first session, when participants were more naïve 33 

to the experiment (Fig. 7c). Additional logistic regression models were fitted to the individual 34 

data using other combination of parameters (e.g., including the carrier frequency at the exact 35 

time the gap was presented, taking into account the sinusoidal modulation) but such models 36 
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showed higher corrected Akaike's Information Criterion (AICc) values than the winning model, 1 

suggesting that they were less representative of the data (Table S2). Interestingly, the model 2 

with the highest AICc (and therefore worst performance) was the one including acoustic 3 

parameters but excluding FM stimulus phase information, suggesting that in fact, FM phase 4 

was the best predictor of gap detection accuracy.  5 

 6 

Discussion 7 

In the present study, we investigated the test–retest reliability of neural entrainment and its 8 

relevance for auditory perception. Participants detected silent gaps embedded in 2-Hz FM 9 

stimuli while EEG activity was recorded in two separate sessions. We showed that: 1) neural 10 

activity was entrained by the FM stimuli, and perception was modulated in a sinusoidal manner 11 

by both stimulus and brain phase; 2) both entrainment strength and the magnitude of stimulus-12 

driven behavioral modulation were reliable across sessions; 3) pre-gap delta and alpha activity 13 

predicted moment-by-moment fluctuations in performance, within and across sessions. 14 

Neural entrainment is reliable over time 15 

Over the past years, a great deal of attention has been paid to entrainment, and arguments range 16 

from the existence of entrainment per se (1, 31, 32) to its role for auditory perception 17 

specifically (33-35). Neural entrainment to rhythmic stimuli has been observed across a range 18 

of sounds, including simple stimuli such as tone sequences, amplitude-modulated, or 19 

frequency-modulated sounds, and more complex auditory stimuli such as music and speech (6, 20 

7, 9, 10, 12, 13, 19, 26). However, until now, little attention has been paid to the reliability of 21 

neural entrainment. This is despite the fact that the reliability of entrainment is of paramount 22 

importance both for understanding its contribution to auditory perception and for developing 23 

effective targeted interventions. Here, we showed that neural entrainment to FM sounds is 24 

reliable over time: we observed high inter-session correlations for metrics of entrainment 25 

strength, such as the spectral amplitude of neural activity at the stimulus frequency, and perhaps 26 

more importantly, the phase lag between stimulus and brain. The fact that entrainment 27 

signatures are stable over time (at least for FM sounds) confirms that rhythmic auditory 28 

stimulation is a valid tool for the external manipulation of narrow-band brain activity and as 29 

such might be useful for restoring or facilitating oscillatory brain dynamics (36, 37). Moreover, 30 

rhythmic auditory stimulation could be used to test the causal role of brain rhythms for different 31 

brain functions, either alone or in combination with other non-invasive stimulation techniques 32 
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(e.g., transcranial alternating current stimulation or transcranial magnetic stimulation); 1 

manipulating the relationship between the FM stimulus and the electrical stimulation could in 2 

principle be used as a direct manipulation between the electrical manipulation and brain 3 

activity.  4 

Entrained delta and ongoing alpha activity influenced gap-detection performance 5 

Here, we observed that trial-by-trial gap-detection performance was mainly predicted by pre-6 

gap neural 2-Hz phase. Moreover, both delta and alpha phase predicted the observed FM-driven 7 

behavioral modulation, with their interaction providing stronger predictive power than either 8 

predictor considered alone. These results are in line with previous studies showing that the 9 

phase of neural oscillations prior to target occurrence predicts perception in different sensory 10 

domains (8, 38-41). For example, enhanced detection or faster reaction times have been 11 

reported for sensory stimuli presented at the optimal phase of delta (42), theta (43, 44), or alpha 12 

oscillations (39, 44). Our results also showed that, in a rhythmic listening context, gap-detection 13 

performance was not just a product of the entrained delta activity but also depended on non-14 

entrained (ongoing) alpha activity. Comodulation of behavior by different frequencies have 15 

previously been reported (6). Critically, such comodulation was specific to the entrained 16 

frequencies, which led the authors to conclude that environmental rhythms reduce 17 

dimensionality of neural dynamics. Here we expand this view by showing that both entrained 18 

and ongoing brain oscillations could potentially comodulate behavioral performance. We 19 

interpret the contributions of both entrained and ongoing activity to perception as potentially 20 

reflecting an interplay between stimulus driven (sensory, bottom-up) and internally driven (top-21 

down) processes. Although our paradigm was not designed to provide a time-resolved look at 22 

the interplay between delta and alpha oscillations, our results are consistent with alternating 23 

influences that might occur as a result of “lapses” of entrainment during which alpha 24 

oscillations might have a stronger effect on perception (10). It is possible that when entrainment 25 

is high, auditory perception is mostly modulated by the entrained activity, however, during 26 

entrainment lapses, perception is shaped by internal ongoing activity. Or conversely, 27 

participants could have adopted the strategy of trying to ignore the rhythm in order to perform 28 

the task, but as their alpha–attention system lapsed, they were forced into a rhythmic–29 

entrainment mode.  30 

Quite a bit of previous work has demonstrated the importance of alpha activity for “gating” 31 

near-threshold stimuli into awareness (8, 45), which goes beyond the idea of alpha activity 32 

indexing lapses of entrainment. However, the vast majority of these studies have been 33 
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conducted in the visual modality (46-48), and it has been argued that alpha activity does not 1 

contribute to near-threshold auditory perception (49). Thus, one open question relates to the 2 

precise role of alpha oscillations in shaping near-threshold auditory perception, in particular in 3 

a rhythmic auditory context. Answering this question requires respecting the observation of 4 

different alpha rhythms with different neural generators (e.g., (50-53)). Moreover, several 5 

studies linking alpha oscillations to attention have suggested that alpha oscillations could play 6 

at least two different roles: i.e., a facilitatory role where it can enhance target processing, or a 7 

suppressive role where alpha activity can suppress the processing of distractors (54-56). We 8 

hypothesize that the alpha-phase effect observed in our study is reflecting something like 9 

distractor suppression. While delta oscillatory activity entrained to the FM stimulus facilitates 10 

target processing at the optimal delta phase, we speculate that ongoing alpha activity might play 11 

a role in suppressing the distracting stimulus itself (complex noise), in an attempt to also 12 

maximize target detection. In this case, stimulus-induced sinusoidal behavioral modulation 13 

would be best predicted by the interaction of both mechanisms, in line with the current results.  14 

Behavioral entrainment consistency depends on modulation rate 15 

In the current study, we were surprised to observe that the preferred stimulus phase that yielded 16 

best gap-detection performance was consistent across participants. In previous work, preferred 17 

stimulus phase was uniformly distributed across participants, and this observation was critical 18 

to our argument that stimulus-driven behavioral modulation was the result of neural 19 

entrainment and not an artifact of stimulus acoustics (7). The primary difference between the 20 

current study and previous work was the FM rate, which was slower here (2 Hz) than in previous 21 

work (3 Hz). This led us to conduct a control experiment where we examined gap-detection 22 

performance for stimuli with FM rates varying between 1.5 and 3 Hz (in 0.5-Hz steps). We 23 

found that preferred phase became less consistent as FM rate increased (but only when a 24 

quadratic term was also included as a predictor).  25 

Humans prefer to listen to and interact with auditory stimuli that are characterized by rhythmic 26 

structure in delta band, with a mode around 2 Hz (57-60). This rate overlaps with the modal 27 

periodicities of the human body (61), the most common period for the beat rate in Western 28 

music (61), and to common speech rates as quantified by inter-stress and inter-word levels in a 29 

variety of languages (62) and EMG data during speaking (63). We hypothesize that because the 30 

2-Hz stimuli in the current study better aligned with preferred rate for humans, they may have 31 

been more consistently tracked by listeners compared to faster stimuli that were less likely to 32 

correspond to preferred rates and may have led to more phase slips / precession (64) and 33 
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therefore less consistency across participants. We note that there is evidence that favored rates 1 

for different types of stimuli may differ (e.g., speech vs. music (65); auditory vs. visual rhythms 2 

(66, 67)). Moreover, behavioral preferred rates change over the lifespan (60, 68), as does neural 3 

entrainment to different stimuli (FM/AM) (26). Human participants also differ in their output 4 

frequency e.g., when asked to talk or tap at a comfortable rate (69, 70), which is interpreted as 5 

individual differences in optimal frequencies for producing or processing incoming sensory 6 

information. The interaction between stimulus rate and individual differences in neural 7 

oscillator properties, including resonance frequency, is still a matter for empirical work. 8 

However, the results of our behavioral study, taken together with previous behavioral (60) and 9 

electrophysiological work (63, 64) suggest that neural entrainment is more successful and 10 

consistent when stimulus rates more closely match individual preferred rates.  11 

Conclusion 12 

Taken together, our results showed that FM stimuli entrained neural activity and sinusoidally 13 

modulated near-threshold target detection: both signatures of entrainment as well as its 14 

behavioral consequences were reliable across sessions. This demonstration is a critical 15 

prerequisite for research lines focused on targeted interventions for entrainment but has to our 16 

knowledge gone untested until now. Moreover, gap-detection performance was predicted by 17 

entrained neural delta phase, ongoing alpha phase and their interaction, suggesting that delta 18 

and alpha phase underpin different but potentially simultaneously active neural mechanisms 19 

and together shape perception.  20 

 21 
Methods 22 

Main experiment 23 

Participants 24 

Main study. Forty-one healthy participants took part in the study. Three participants were 25 

excluded from further analysis due to noisy EEG data (1 participant) and poor task performance 26 

(i.e., detection rate <0.25, 2 participants). Results presented in this manuscript include data from 27 

38 participants (21 females, four left-handed, mean age: 26.03 with SD = 4.6 years old). Each 28 

participant took part in two sessions separated by 2–42 days (median: 7 days). All participants 29 

self-reported normal-hearing and normal or corrected-to-normal vision. All participants were 30 

either native German speakers (n=37) or spoke German with high proficiency (n=1). At the 31 
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time of the experiment no participant was taking medication for any neurological or psychiatric 1 

disorder.  2 

Participants received financial compensation for their participation in the study. Written 3 

informed consent was obtained from all participants. The procedure was approved by the Ethics 4 

Council of the Max Planck Society and in accordance with the declaration of Helsinki. 5 

Stimuli 6 

Auditory stimuli were generated by MATLAB software at a sampling rate of 44,100 Hz. 7 

Stimuli were 20-s long complex tones frequency modulated in at a rate of 2 Hz and a center-to-8 

peak depth of 67% (Fig. 1). The center frequency for the complex carrier signals was randomly 9 

chosen for each stimulus within the range of 1000-1400Hz. The complex carrier comprised 30 10 

components sampled from a uniform distribution with a 500-Hz range. The amplitude of each 11 

component was scaled linearly based on its inverse distance from the center frequency; that is, 12 

the center frequency itself was the highest-amplitude component, and component amplitudes 13 

decreased with increasing distance from the center frequency. The onset phase of the stimulus 14 

was randomized from trial to trial, taking on one of eight values (0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 15 

7π/4) with the constraint that each trial would always start with a phase different to its 16 

predecessor. All stimuli were rms amplitude normalized. Three, four, or five silent gaps were 17 

inserted into each 20-s stimulus (gap onset and offset were gated with 3-ms half-cosine ramps) 18 

without changing the duration of the stimulus. Each gap was chosen to be centered in 1 of 18 19 

equally spaced phase bins into which each single cycle of the frequency modulation was 20 

divided. No gaps were presented either in the first or the last second of the stimulus. A minimum 21 

of 1.5 s separated consecutive gaps.  22 

Procedure 23 

The experiment was conducted in an electrically shielded and acoustically isolated chamber 24 

and under normal-illumination conditions. Sound-level thresholds were determined for each 25 

participant according to the method of limits. All stimuli were then presented at 55 dB above 26 

the individual hearing threshold (55 dB sensation level, SL).  27 

Gap duration was individually adjusted to detection threshold levels using an adaptive-tracking 28 

procedure comprising two interleaved staircases and a weighted up-down technique with 29 

custom weights. During this procedure, participants detected a gap within a 4-s sound. Except 30 

for the duration, the sound had the same characteristics as in the main experiment. The 31 
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descending staircase started with a gap duration of 150 ms and the ascending staircase started 1 

with a gap duration of 1 ms. If the participant detected the gap, gap duration was decreased by 2 

some percent (5% for 10 ms ≤ gaps ≤ 35 ms, 20% for 35 ms < gaps ≤ 70 ms, or 50% for 70 ms 3 

< gaps || gaps < 10 ms) in the following trial of the current staircase. On the contrary, if the 4 

participant did not detect the gap, gap duration was increased by some percent (following the 5 

same convention as before) of the current gap duration, in the following trial of the current 6 

staircase. Each staircase ended when four reversals occurred in a span of six trials. The mean 7 

final gap duration across the two staircases was chosen for presenting the gaps in the main task.  8 

Before starting the main experiment, participants performed practice trials to make sure they 9 

understood the task. For the main experiment, EEG was recorded while listeners detected gaps 10 

embedded in the 20-s long FM stimuli. Listeners were instructed to respond as quickly as 11 

possible when they detected a gap via button-press. Overall, each listener heard 216 stimuli (27 12 

per starting phase). The number of gaps per stimulus was counterbalanced (72 stimuli each 13 

included 3 gaps, 4 gaps, and 5 gaps) for a total of 864 gaps. For each of the 18 FM-phase bins, 14 

48 gaps were presented. Including the EEG preparation, each experimental session lasted about 15 

3 hours.  16 

Data Acquisition and Analysis 17 

Behavioral data. Behavioral data were recorded online by MATLAB 2017a (MathWorks) in 18 

combination with Psychtoolbox. Sounds were presented at a rate of 44.1kHz, via an external 19 

soundcard (RME Fireface UCX 36-channel, USB 2.0 & FireWire 400 audio interface) using 20 

ASIO drivers. Participants listened to the sounds via over-ear headphones (Beyerdynamic DT-21 

770 Pro 80 Ohms, Closed-back Circumaural Dynamic Diffuse field equalization Impedance: 22 

80 Ohm SPL: 96 dB Frequency range: 5–35,000 Hz). Button presses were collected using a 23 

Cedrus response pad (RB-740). Hits were defined as button-press responses that occurred no 24 

earlier than 100 ms and no later than 1.5 s after the occurrence of a gap. Hit rates and RTs were 25 

calculated separately for each of the 18 FM-phase bins. To estimate the FM-induced sinusoidal 26 

modulation of gap detection behavior, a cosine function was fitted to hit rates as a function of 27 

FM-phase for each participant and each session. From the fitted function, the amplitude 28 

parameter quantifies the strength of behavioral modulation by 2-Hz FM phase, while the phase 29 

parameter indexes the FM-stimulus–brain lag. Significance of the sinusoidal modulation was 30 

tested using a permutation approach, whereby 1000 surrogate datasets were created for each 31 

participant and session by shuffling the single-gap accuracy values (0,1) with respect to their 32 

stimulus-condition labels. Cosine functions were also fitted to the surrogated datasets. Each 33 
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participant’s amplitude parameter was converted to z-score using the mean and standard 1 

deviation of the individual participant surrogate datasets. Gap detection was considered to be 2 

sinusoidally modulated for each participant if the z-score of the fitted amplitude parameter 3 

exceeded z = 3.2 (i.e., p<0.05, Bonferroni corrected for 76 comparisons -i.e., 38 subjects x two 4 

sessions). Preferred FM-phase was defined as the instantaneous phase of the fitted function 5 

with the highest hit rate.  6 

In order to test the effect of stimulus characteristics and time on gap detection, logistic 7 

regression models were fitted individually for each participant and session using the MATLAB 8 

function ‘fitglm’, using binomial distribution and logit as the link function. Collinearity between 9 

regressors was assessed using the MATLAB function “collintest”. Different models were tested 10 

evaluating whether gap detection could be predicted as a function of 1) FM-phase, 2) stimulus 11 

center carrier frequency (1000-1400Hz), 3) stimulus center carrier at gap onset, 4) global time 12 

(1-864, indicating the gap position within the whole experiment), 5) local time (1-12 time bins, 13 

indicating gap location within the 20-s stimulus) and the interactions of 6) FM-phase by 14 

stimulus center carrier frequency, 7) FM-phase by global time and 8) FM-phase by local time. 15 

Five different models were fitted, each including a different combination of regressors (Table 16 

S2) and the best model was selected using the Akeike’s information criterium corrected for 17 

small samples (AICc). Before running the models, all predictors involving circular data (phase 18 

angles) were linearized by calculating their sine and cosine. The overall beta estimate for the 19 

final predictor (b) was then calculated by combining the beta estimates of the sine (sinb) and 20 

cosine (cosb) predictors: 21 

b = √(𝑠𝑖𝑛𝑏! + 𝑐𝑜𝑠𝑏!) 22 

To test the effect of each predictor at the group level, 1000 surrogate datasets were created for 23 

each participant and session by shuffling the single-gap accuracy values (0,1) while keeping 24 

the stimulus conditions the same. The same regression models were fitted to the surrogate 25 

datasets and the mean beta estimate for each regressor was taken as the random distribution 26 

mean. One-sample t-tests against the random distribution mean were conducted to assess the 27 

significance of each regressor at the group level, separately for each session.  Dependent sample 28 

t-tests were conducted to compare between sessions. P-values were corrected for multiple 29 

comparisons using Bonferroni method.    30 

Control study. Sixteen participants took part in the control experiment (12 females, mean age 31 

27.1 (SD = 5)). Ten participants had also been recruited for the main study, they received 32 
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financial compensation and signed written informed consent. The other six participants were 1 

colleagues in our research group (including one author-YCC) and participated voluntarily 2 

without compensation).  3 

Unless otherwise specified, stimuli and procedures were defined as for the main experiment. In 4 

contrast to the main experiment, gap thresholds were not individually defined but gap duration 5 

was fixed at 16 ms (mean threshold in session 2 in the main experiment) for all participants. 6 

FM-stimuli were created as for the main experiment but modulated at four different frequencies, 7 

i.e., 1.5, 2, 2.5, and 3 Hz. Gaps could be presented at 15 different bins of the FM cycle. Subjects 8 

heard 224 stimuli (56 per FM) for a total of 932 gaps (233 per FM rate). Stimuli were presented 9 

in 8 different blocks (2 per FM rate) of 28 stimuli each. Each block comprised only one FM 10 

rate but the FM order was randomized within session and across participants. The number of 11 

gaps per stimulus (3, 4, or 5) was randomized. For each of the 15 FM-phase bins*FM rate 12 

combination, 14-16 gaps were presented.  13 

Hits were defined as button-press responses that occurred no earlier than 100 ms and no later 14 

than 1.5 s after the occurrence of a gap. Hit rates were calculated separately for each of the 15 15 

FM-phase bins and each FM rate. To estimate the FM-induced sinusoidal modulation of gap 16 

detection behavior, a cosine function was fitted to hit rates as a function of FM-phase for each 17 

participant. For each participant and FM rate, the mean hit rate (i.e., fitted intercept), the fitted 18 

amplitude parameter and the preferred phase (same definition as in the main experiment) were 19 

estimated. The effect of FM rate on hit rates and amplitude parameters was tested using a one-20 

way Analysis of Variance (ANOVA). To test whether individual preferred phases were more 21 

randomly distributed with increasing FM rate, resultant vector lengths were computed for each 22 

FM rate using the individual preferred phases. Two linear models were fitted to the resultant 23 

vector length by FM rate data. The first one included intercept and linear (FM rate) terms while 24 

to second also included a quadratic term (FM ^2). Both models were fitted to the data using the 25 

Matlab function “fitglm” and statistical significance was estimated using permutation tests. For 26 

comparison, the test distribution was created by computing 1000 resultant vector lengths 27 

calculated with the individual preferred phases while swapping the FM rate information at the 28 

individual level. 29 

Electroencephalogram data. The EEG was recorded with an actiCAP active electrode system 30 

in combination with Brainamp DC amplifiers (Brain Products GmbH). The electrode system 31 

included 64 Ag–AgCl electrodes mounted on a standard cap, actiCAP 64Ch Standard-2 (Brain 32 

Products GmbH). Signals were recorded continuously with a passband of 0.1 to 1000 Hz and 33 
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digitized at a sampling rate of 1000 Hz. For recording, the reference electrode was placed over 1 

FCz and the ground electrode over AFz. For better stimulus marking, in addition to standard 2 

EEG triggers from the LPT port, stimulus markers were also sent via soundcard and collected 3 

in the EEG using a Stimtrak (Brain Products GmbH).  Electrode resistance was kept under 20 4 

kΩ. All EEG data were analyzed offline by using Fieldtrip software 5 

(www.ru.nl/fcdonders/fieldtrip; version 20200130), and custom MATLAB scripts.  6 

Two different preprocessing pipelines were implemented. One was tailored to assess 7 

entrainment characteristics and reliability and focused on the complete 20-s stimulus periods; 8 

the second pipeline was tailored to test the effect of pre-target (pre-gap) activity on gap 9 

detection, and focused on the periods around the gap’s occurrence. In the first preprocessing 10 

pipeline, the continuous EEG data were high-pass filtered at 0.6 Hz. Filtered data were then 11 

epoched into 21.5-s trials (1 s before stimulus onset and 0.5 s after stimulus offset). The trial 12 

data were low-pass filtered at 80 Hz and the 50 Hz line noise was removed using discrete 13 

Fourier transform (dft) with spectrum interpolation as implemented in Fieldtrip. Data were re-14 

referenced to the average reference. Extreme artifacts were removed based on visual inspection. 15 

Noisy electrodes were then interpolated (1 electrode in 3 participants and 2 electrodes in one 16 

participant). Eye-blinks, muscle, heartbeat, and remaining line noise or faulty contact artifacts 17 

were removed using ICA. Next, data were low pass filtered to 30 Hz and trials for which the 18 

range exceeded 200 uV were automatically removed. If more than 30% of the trials had to be 19 

removed because of artifacts, the participant was removed for further analysis (1 participant). 20 

Preprocessed data were resampled to 500 Hz.  21 

The second preprocessing pipeline included the same steps excepting the initial high-pass filter. 22 

To maximize comparability with the first pipeline, all the same trials and ICA components that 23 

were identified based on the first pipeline were removed in the second pipeline. After all 24 

preprocessing steps and before resampling, 3 s long trials were defined around each gap onset 25 

(i.e., 1.5 s before and 1.5 s after gap onset). Trials exceeding a range of 200 uV were excluded 26 

and data were resampled to 500 Hz.  27 

Frequency and time-frequency analysis of full-stimulus periods. Full-stimulus epochs were 28 

analyzed in the frequency and time-frequency domains to examine brain responses entrained 29 

by the 2-Hz stimulation. Since the starting phase of the FM stimulus was randomized from trial 30 

to trial, before conducting frequency-domain analyses, single-trial brain responses were 31 

realigned so that the FM stimulus phases would be perfectly phase-locked across trials after the 32 

realignment. A fast Fourier transform (FFT) was performed on the trial-averaged time-domain 33 
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data, after multiplication with a Hann window. Evoked amplitude in each frequency band was 1 

calculated as the absolute value of the complex output, while the phase angle of the complex 2 

FFT output at 2 Hz provided an estimate of stimulus-brain phase lag. An FFT was also applied 3 

on each single trial, and the resulting single-trial amplitude spectra were averaged over trials as 4 

an indicator of total amplitude of neural activity that was not necessarily phase-locked to the 5 

stimulus. Inter-trial phase coherence (ITPC) was calculated as the resultant vector length of 6 

phase angles from the complex FFT output across trials separately for each frequency and 7 

electrode. In addition, the single-trial time-domain data were submitted to a time–frequency 8 

analysis by using the Fieldtrip-implemented version of the Wavelet approach using Fourier 9 

output. Here, wavelet size varied with frequency linearly from three to seven cycles over the 10 

range from 1 to 15 Hz. The resulting complex values were used to estimate time-resolved ITPC 11 

for each channel separately.  12 

To statistically test spectral amplitudes and ITPC at frequencies of interest (2 Hz, 4 Hz, alpha), 13 

nonparametric Wilcoxon signed rank test (in session 1: for 4 Hz ITPC; in session 2: for 2 Hz 14 

amplitude and ITPC and for alpha amplitude) or the parametric equivalent paired-samples t-15 

tests (all other comparisons) were conducted, based on satisfaction of normality assumptions; 16 

whether to use parametric of non-parametric tests for comparisons was decided based whether 17 

the data was normally distributed or not according to the Lilliefors test implementation in 18 

MATLAB (function ‘lillietest’). For each condition, participant, and session, data were 19 

averaged over all channels (and over time for time-resolved ITPC) and amplitudes/ITPC of the 20 

two target frequencies (2 Hz and 4 Hz) were then tested against the average amplitude/ITPC of 21 

the neighboring ±8 frequency bins (0.16Hz) similar to (7, 27). In the case of alpha amplitude, 22 

data were averaged across all bins including frequencies between 7-12 Hz and were tested 23 

against the average amplitude of the neighboring ±100 frequency bins (2 Hz).  24 

Based on the topography of the 2/4 Hz and alpha (7-12 Hz) amplitude spectra, further analyses 25 

involving the extraction of phase and/or amplitude values were done in a cluster of electrodes 26 

including F3, Fz, F4, FC1, FC2, C3, Cz, C4, F1, F2, FC3, FC4, C1, C2 for 2/4 Hz activity and 27 

P8, P6, P4, P2, Pz, P1, P3, P5, P7, PO9, PO10, PO8, PO4, POz, PO3, PO7, O1, Oz, O2 for 28 

alpha activity. 29 

Pre-gap activity. Before analysis of pre-gap activity, single-trial time-domain data around the 30 

gap period (1.5 s before and 1.5 s after) were detrended (using linear regression). It is possible 31 

that the smearing of the evoked response back into pre-stimulus period by wavelet convolution 32 

could produce spurious pre-stimulus phase effects. To minimize this, gap-evoked responses 33 
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were removed from the post-stimulus period by multiplication with half of a Hann window that 1 

ranged between 0 and 50 ms after gap onset and was zero thereafter (6). Next, we applied two 2 

different analysis approaches to quantify neural phase and neural amplitude in the pre-gap time 3 

window. To estimate neural amplitude, the time-domain data were submitted to a wavelet 4 

convolution using Fourier output as implemented in Fieldtrip. Wavelet size varied with 5 

frequency linearly from three to seven cycles over the range from 1 to 15 Hz with 10 ms 6 

temporal resolution. Alpha amplitude as well as 2-Hz amplitude were averaged within the 100-7 

ms time window preceding gap onset.  8 

For extracting the pre-gap instantaneous 2 Hz and alpha phase, single-trial data were first band-9 

pass filtered using a Butterworth filtered as implemented in Fieldtrip (1.5.-2.5 Hz for 2 Hz 10 

activity and 7-12 Hz for alpha activity). Filtered data were subjected to a Hilbert transform and 11 

the phase angle was computed. Time windows for extracting pre-gap 2 Hz and alpha phases 12 

were adjusted to include 1/5 of a cycle of the relevant frequency, i.e., 100 ms preceding gap 13 

onset for 2 Hz phase and 22 ms for alpha (assuming center frequency 9 Hz) phase.  14 

The influence of the instantaneous 2-Hz phase and amplitude, alpha phase and amplitude, and 15 

2-Hz–alpha phase amplitude coupling (PAC) in the pre-gap period on gap detection was 16 

evaluated using logistic regression models at the single-participant level, similar to the 17 

behavioral analysis using the MATLAB function ‘fitglm’, specifying the distribution as 18 

binomial and the link function as logit. Collinearity between regressors was assessed using the 19 

MATLAB function “collintest”. Six different logistic regression models were fitted to the data 20 

including a different combination of the regressors mentioned above and the best model was 21 

chosen based on the AICc value (Table S1). To test the effect of each predictor at the group 22 

level, 1000 surrogate datasets were created for each participant and session by shuffling the 23 

single-gap accuracy values (0,1) across trials while keeping the regressors the same. The same 24 

regression models where fitted to the surrogate datasets and the mean beta estimate for each 25 

regressor was taken as the random distribution mean. One-sample t-tests against the random 26 

distribution mean were conducted to assess the significance of each regressor at the group level, 27 

separated by session. Dependent sample t-tests were conducted to compare between sessions. 28 

P-values were corrected for multiple comparisons using Bonferroni method.    29 

To investigate optimal 2-Hz phase angle for gap detection, trials were sorted according to the 30 

pre-gap 2-Hz phase angles (grouped in 18 equally spaced phase bins) and hit rates were 31 

calculated for each bin. Similarly, to estimate optimal alpha phase angle for gap detection, trials 32 

were sorted according to the pre-gap alpha phase angles (grouped in 18 equally spaced phase 33 
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bins) and hit rates were calculated for each bin. Phase lag was estimated based on a cosine fit 1 

to hit rates binned by either delta or alpha phase. Separately for delta and alpha, best neural 2 

phase was defined as the phase with highest detection rate as estimated from the cosine fit.   3 

Predicting FM-stimulus driven sinusoidal behavioral modulation from neural phase effects. 4 

Three detection probabilities were assigned to each gap: 1) the hit rate calculated for the pre-5 

gap neural 2-Hz phase bin into which the gap fell, 2) the hit rate calculated for the pre-gap 6 

neural alpha phase bin into which the gap fell, and 3) the interaction of the two (their product, 7 

Fig. 6a). Then, gaps were sorted and binned based on their FM-stimulus phase bin (18 bins), 8 

and three predicted functions were calculated by averaging the predicted hit rates across gaps 9 

in each bin. Pearson correlation coefficients were computed between the true individual 10 

observed hit rates by FM-stimulus phase bin and each function predicted in the same session 11 

(within session prediction) or in the opposite session (inter-session prediction). For statistical 12 

analysis, 1000 surrogate datasets per subject and session were created by shuffling the bin labels 13 

in the true hit-rate by FM-stimulus profiles. As with the true profiles, each predicted function 14 

was correlated with the surrogate hit-rate by phase bin profile from the same (within session 15 

prediction) and the opposite session (inter-session prediction). Before further analyses, all 16 

correlation coefficients were z-scored using Fisher’s r-to-z transformation. For each predicted 17 

function, statistical significance was estimated using one-sample t-test (comparing each 18 

predictor vs. the mean Fisher’s z-score from the surrogate data analysis). Significant difference 19 

between sessions and predictors were estimated using paired-samples t-tests. All p-values were 20 

corrected using Bonferroni method.  21 

Questionnaires 22 

To evaluate musical skills, all participants from the main experiment complete the Goldsmiths 23 

Musical Sophistication Index (Gold-MSI) (30). Scores were computed using the documents 24 

and templates provided in https://www.gold.ac.uk/music-mind-brain/gold-msi/download/. 25 

Accordingly, individual scores were extracted indexing five main factors (i.e., active 26 

engagement, perceptual abilities, musical training, emotions, singing abilities) and the general 27 

sophistication index.  28 

Statistical Analysis 29 

Prior to any statistical analysis, data normality was tested using the Lilliefors normality test in 30 

MATLAB. Parametric or equivalent non-parametric tests were then chosen to test for 31 
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significant differences or correlations between variables. The test showed a significant 1 

deviation from normality for the false alarms and final gap size, accordingly non parametric 2 

tests were chosen to test for correlation (Spearman) and significant difference between sessions 3 

(Wilcoxon signed rank test). Unless otherwise specified in the text, all other correlation 4 

analyses were done using Pearson correlation coefficient for linear variables and circular-5 

circular or circular-linear correlation when circular data were involved. Significant difference 6 

between sessions were tested using one-sample or dependent-samples t-test when normality 7 

assumptions were satisfied. For performing statistical comparisons on correlation coefficients, 8 

coefficients were always z-scored using the Fisher’s r-to-z transformation method. Unless 9 

otherwise specified, significant p-values were corrected using Bonferroni method. 10 
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