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Abstract

Recent studies proposed that active sites induce long-range evolutionary constraints in enzymes. The
physical origin of such long-range evolutionary coupling is unknown. Here, I study physical and evolutionary
couplings in a diverse data set of monomeric enzymes, using a biophysical model of enzyme evolution. I
show that evolutionary coupling is not universally long-range, but range varies widely among enzymes,
from 2Å to 20Å. This cannot be explained by variations of physical coupling, which is short-range for all
enzymes. Rather, the variation of evolutionary coupling range among enzymes is determined by a huge
variation among them of functional selection pressure.

As enzymes evolve, different sites evolve at differ-
ent rates. The main reason for such variation of evo-
lutionary rate among sites within proteins is selection
for stability [1–4]. Until recently, activity constraints
were thought to affect just the few residues directly
involved in catalysis and their immediate neighbours
[1, 5]. However, recent studies have reported that
active sites influence evolutionary rates at long dis-
tances, slowing down the evolution of residues as dis-
tant as 30 Å [6–10]. It seems reasonable to assume
that such long-range evolutionary coupling could re-
sult from long-range physical couplings, such as those
involved in allosteric mutations [11, 12]. This would
align with the notion that enzymes are evolution-
arily designed to optimize long-range coupling [13–
15]. However, except perhaps for a few allosteric
residues, I would expect physical coupling to be the
typical short-range exponentially decreasing function
of distance expected for indirect through-the-contact-
network couplings [14, 16–20]. If this is the case, it
would leave long-range evolutionary coupling begging
explanation.

The aim of this work is to verify whether, as I ex-
pect, physical coupling is short-range and, in that

case, to study how such a short-range physical cou-
pling may give rise to a long-range evolutionary cou-
pling. To this end, I use the stability-activity model
of enzyme evolution, MSA [21]. I previously showed
that this model reproduces quantitatively the ob-
served slow increase of evolutionary rate with dis-
tance from the active site that led to the proposal
of long-range evolutionary couplings [7]. This makes
MSA suitable for exploring the physical underpin-
nings of long-range evolutionary coupling.

Before describing the model, I start with some def-
initions. The evolutionary rate, K, is the number of
amino-acid substitutions per unit time along an evo-
lutionary trajectory; K0 is the rate for the case in
which all mutations are neutral; ω = K

K0
is the rate

relative to the neutral rate; and 1−ω = K0−K
K0

is the
relative slowdown with respect to the neutral evolu-
tion case. As selection pressure increases, evolution
slows down: K and ω decrease, and 1 − ω, the rel-
ative slowdown, increases. K, ω, and 1 − ω contain
exactly the same information. Therefore, in what fol-
lows, to measure the effect of selection on evolution,
I will mostly use 1− ω, the evolutionary slowdown.

With the help of the MSA model, I define physi-
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cal and evolutionary coupling measures, and derive
the formula that relates them. (The MSA model is
described in detail in the Supporting Material docu-
ment (SM), in SM Section 1 and SM Section 3, and in
[21].) MSA predicts that the evolutionary slowdown
of an enzyme residue r due to selection on stability
and activity is given by (Eq. S19):

1−ω(r) = 1−〈min(1, e−aS∆∆G(r)) min(1, e−aA∆∆G∗(r))〉
(1)

where ∆∆G(r) and ∆∆G∗(r) are, respectively, mu-
tational changes of folding free energy and activation
free energy; aS and aA are positive parameters that
represent selection pressure on stability and activity,
respectively; and 〈· · · 〉 stands for averaging over mu-
tations. Eq. 1 relates the evolutionary slowdown of
residue r to the effects of mutating this residue on
stability and activity. Since here I am only inter-
ested on selection on activity, I consider a hypothet-
ical scenario in which selection on stability is turned
off. Replacing aS = 0 into Eq. 1 it follows that the
evolutionary slowdown of site r due to selection on
activity is given by (Eq. S20):

1− ωA(r) =< min(1, e−aA∆∆G∗(r)) > (2)

The mutational activation free-energy change
∆∆G∗(r) is due to the distortion of the active-
site caused by mutating residue r [21] (Eq. S45,
SM Section 1.1, and SM Section 3.3). Therefore,
∆∆G∗(r) represents the physical coupling between
the enzyme’s active site and residue r. This causes
the slowdown 1 − ωA(r), which, therefore, can be
considered a measure of evolutionary coupling. Thus,
Eq. 2 governs how evolutionary coupling (1 − ωA)
depends on physical coupling (∆∆G∗) and functional
selection pressure (aA). (For notational simplicity, I
will drop the explicit reference to residue r whenever
possible.)

I studied the relationship between physical and
evolutionary couplings on a data set of monomeric en-
zymes used previously [21] (SM Section 1.2). Briefly,
for each protein, I calculated ∆∆G and ∆∆G∗ for
all mutations at all sites using the Linearly Forced
Elastic Network Model (LFENM). Then, I obtained
the model parameters aS and aA by fitting MSA pre-
dictions to empirical rates. Finally, I calculated evo-

lutionary couplings (1 − ωA) and physical couplings
(〈∆∆G∗〉) for all sites. (For details of the calculation,
see SM Section 1.1.) I consider MSA to be validated
in a previous study [21]. However, for completeness,
in SM Section 2 I show the excellent agreement be-
tween MSA predictions and empirical rates (SM Sec-
tion 2.1) and I discuss the adequacy of using LFENM
to calculate ∆∆G and ∆∆G∗ (SM Section 2.2). In
what follows, I focus on the study of physical and
evolutionary couplings.

For clarity, I start by considering three illustrative
examples (Figure 1). I measure coupling range us-
ing d1/2, the distance at which coupling is half the
maximum. Physical coupling (< ∆∆G∗ >) is similar
for the three cases, it decreases exponentially with
increasing distance, and it is very short range (d1/2

is 2.1 Å, 2.0 Å, and 2.0 Å for 1OYG, 1QK2, and
1PMI, respectively, Figure 1A). In contrast, evolu-
tionary coupling (1−ωA) varies among the examples,
it is not an exponential but a sigmoid, and its range
varies widely (d1/2 is 5.4 Å, 8.7 Å, and 15.6 Å for
1OYG, 1QK2, and 1PMI, respectively; Figure 1B).
As I will show below, this variation of evolutionary
coupling range is due to the variation of functional se-
lection pressure (aA, is 29.2, 80.2, and 800 for 1OYG,
1QK2, and 1PMI, respectively).

Figure 2 shows the distance-dependence of phys-
ical and evolutionary couplings for all the enzymes
studied. Physical coupling is a short-range exponen-
tial decline with distance, very similar for all cases
(Figure 2A). In contrast, the distance-dependence of
evolutionary coupling varies among proteins, from a
short range exponential decline to a long-range sig-
moidal decline (Figure 2B). Because physical cou-
pling is very similar for all enzymes, from Eq. 2 it
follows that the variation among enzymes of evolu-
tionary coupling must be determined by the selec-
tion parameter aA. This is confirmed in Figure 2C,
that shows that evolutionary coupling range is inde-
pendent of physical coupling range, and Figure 2D,
that shows that the variation of evolutionary coupling
range is almost completely explained by the selection
pressure parameter aA.

Thus, according to Figure 2, evolutionary coupling
range varies widely among enzymes, from 1.9 Å to
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Figure 1: Coupling between the active site and other residues for three illustrative examples.
The three cases shown are the enzymes with PDB IDs 1OYG, 1QK2, and 1PMI. A: physical coupling,
as measured by the change in activation free energy that results from mutations; each point corresponds
to a protein site; a site’s < ∆∆G∗ > is the average over mutations; the smooth line is an exponential
fit < ∆∆G∗ >= b0e

−b1d, where d is the distance from the closest active-site residue; the point for which
coupling is 1/2 of its maximum is displayed in black; the insets show the 3D protein structures coloured
from yellow to red according to increasing physical coupling. B: evolutionary coupling, as measured by the
relative slowdown of evolution due to selection on activity, 1− ωA; each point corresponds to a protein site;

the smooth line is a function 1 − ωA = 1 − e−c0e
−c1d

, fit to the points; these lines are coloured according
to the functional selection pressure parameter aA; the point for which coupling is 1/2 of the maximum
is displayed in black; the insets show the 3D protein structures coloured from yellow to red according to
increasing evolutionary coupling. For the sake of comparison, couplings are scaled so that the smooth fits
are 1 at d = 0. 3D images were made with https://3dproteinimaging.com/protein-imager [22].

19.7 Å, as a result of the variation of parameter aA
over more than 4 orders of magnitude, from 6× 10−2

to 2 × 103. This huge variation of aA represents a
variation of the functional selection pressure under
which enzymes evolve (SM Section 2.3). This vari-
ation can be explained by Eq. 2, that non-linearly
maps a short-range exponentially decreasing physical
coupling into a sigmoidally decreasing evolutionary
coupling whose range increases with selection pres-
sure (SM Section 2.4). In summary, the fundamental
finding of this work is that long-range evolutionary
coupling is not due to enzymes being particularly
well-designed for long-range physical coupling, but
it is a consequence of the non-linear amplification of
physical coupling under strong functional selection
pressure.

The previous findings provide a mechanism that
explains how functional constraints slow down en-
zyme evolution. A priori, the decrease of the rate of
evolution with increasing selection pressure could be
uniformly distributed among all residues. However,
the present findings imply a different picture: increas-
ing functional selection pressure increases range of in-
fluence of the enzyme’s active site on other residues
(Figure 2 D); as this range increases, more sites be-
come functionally constrained (Figure 3A and the ac-
tive site becomes more tightly coupled to the rest of
the protein (Figure 3 B); as a result, the enzyme’s
evolution slows down (Figure 3 C). In this work,
I have derived aA from patterns of rate variation
among sites within proteins. However, the model
predicts that aA should also influence rate variation
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Figure 2: Evolutionary coupling range increases with selection pressure on activity. The data
set consists of 157 monomeric enzymes of diverse sizes, structures, and functions. A: physical coupling,
as measured by the activation-free energy change averaged over mutations; each line is the smooth fit
< ∆∆G∗ >= b0e

−b1d for one protein of the data set, where d is the distance from the closest active-site
residue. B: evolutionary coupling, as measured by 1−ωA, the relative slowdown due to selection on activity;

each line is the smooth fit 1−ωA = 1−e−c0e
−c1d

for one protein of the data set; lines are coloured according
to the value of parameter aA, that measures functional selection pressure. Couplings are scaled so that all
smooth fits are 1 at d = 0. C: range of evolutionary coupling, measured by the distance at which 1 − ωA

becomes half of its maximum, vs. range of physical coupling, measured by the distance at which < ∆∆G∗ >
becomes half of its maximum. D: range of evolutionary coupling, measured by the distance at which 1−ωA

becomes half of its maximum, vs. functional selection pressure, measured by model parameter aA. In C and
D ρ is Spearman’s correlation coefficient, p its p-value, and the blue lines are local regression fits.

among proteins, which would connect rate variation
within proteins with rate variation among proteins.
Further work is needed to test this important predic-
tion.

To finish, I mention another two research directions
suggested by this work. First, for enzymes, func-
tional selection pressure depends on metabolic role
[23–26]. Specifically, the main functional constraints
are enzyme-specific metabolic flow and enzyme essen-
tiality [24]. Therefore, these properties should corre-
late with parameter aA of the present work, and, as a
consequence, metabolic role should affect evolution-
ary coupling range. This prediction should be veri-
fied. Second, the present findings indicate the intrigu-
ing possibility of manipulating evolutionary coupling
range by adjusting selection pressure, which could be
explored using enzyme evolution experiments.
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Figure 3: Increasing evolutionary coupling range slows down enzyme evolution. A: Increase
of the fraction of functionally constrained sites; the number of activity-constrained residues was calculated
using nA = e−

∑
r pr ln pr , where r denotes residue and pr = (1 − ωr

A)/
∑

r (1− ωr
A). So defined, nA, which

varies between 1 and the total number of sites, measures how distributed over sites 1−ωA is. B: Increase of
overall enzyme coupling, measured by the average-over-sites of 1− ωA. C Predicted decrease of the protein
rate of evolution, measured by the average over sites of the relative rate ω, with increasing evolutionary
coupling range. The blue lines are local regression fits.
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