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Highlights 34 

 Modelling shows that connectivity within hot zone tracks change of 35 

conscious state 36 

 Separately, frontoparietal connections support maintenance of conscious 37 

state 38 

 Strength of frontoparietal connections predicts conscious state in unseen 39 

data 40 

 Both parietal hot zone and frontoparietal connectivity important for 41 

consciousness 42 

 43 

Abstract 44 

In recent years, specific cortical networks have been proposed to be 45 

crucial for sustaining consciousness, including the posterior hot zone and 46 

frontoparietal resting state networks (RSN). Here, we computationally evaluate 47 

the relative contributions of three RSNs – the default mode network (DMN), 48 

the salience network (SAL), and the central executive network (CEN) – to 49 

consciousness and its loss during propofol anaesthesia. Specifically, we use 50 

dynamic causal modelling (DCM) of 10 minutes of high-density EEG 51 

recordings (N = 10, 4 males) obtained during behavioural responsiveness, 52 

unconsciousness and post-anaesthetic recovery to characterise differences in 53 

effective connectivity within frontal areas, the posterior “hot zone”, 54 

frontoparietal connections, and between-RSN connections. We estimate – for 55 

the first time – a large DCM model (LAR) of resting EEG, combining the three 56 

RSNs into a rich club of interconnectivity. Consistent with the hot zone theory, 57 

our findings demonstrate reductions in inter-RSN connectivity in the parietal 58 
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cortex. Within the DMN itself, the strongest reductions are in feed-forward 59 

frontoparietal and parietal connections at the precuneus node. Within the SAL 60 

and CEN, loss of consciousness generates small increases in bidirectional 61 

connectivity. Using novel DCM leave-one-out cross-validation, we show that 62 

the most consistent out-of-sample predictions of the state of consciousness 63 

come from a key set of frontoparietal connections. This finding also generalises 64 

to unseen data collected during post-anaesthetic recovery. Our findings provide 65 

new, computational evidence for the importance of the posterior hot zone in 66 

explaining the loss of consciousness, highlighting also the distinct role of 67 

frontoparietal connectivity in underpinning conscious responsiveness, and 68 

consequently, suggest a dissociation between the mechanisms most prominently 69 

associated with explaining the contrast between conscious awareness and 70 

unconsciousness, and those maintaining consciousness. 71 

 72 
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Significance Statement: 99 

Various connectivity studies have suggested multiple network-level 100 

mechanisms driving changes in the state of consciousness, such as the posterior 101 

hot zone, frontal-, and large-scale frontoparietal networks. Here, we 102 

computationally evaluate evidence for these mechanisms using dynamic causal 103 

modeling for resting EEG recorded before and during propofol-anaesthesia, and 104 

demonstrate that, particularly, connectivity in the posterior hot zone is impaired 105 

during propofol-induced unconsciousness. With a robust cross-validation 106 

paradigm, we show that connectivity in the large-scale frontoparietal networks 107 

can consistently predict the state of consciousness and further generalise these 108 

findings to an unseen state of recovery. These results suggest a dissociation 109 

between the mechanisms most prominently associated with explaining the 110 

contrast between conscious awareness and unconsciousness, and those 111 

maintaining consciousness.  112 
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How hot is the hot zone? Computational modelling 113 

clarifies the role of parietal and frontoparietal 114 

connectivity during anaesthetic-induced loss of 115 

consciousness 116 

 117 

1. Introduction 118 

Several cortical network-level mechanisms have been proposed to 119 

explain human consciousness and its loss, of which two, in particular, have 120 

received an increasing amount of interest and evidence. On the one hand, 121 

empirical studies have suggested that the loss of consciousness (LOC)1 is 122 

associated with disruptions of within- and between-network connectivity in 123 

cortical areas associated with large-scale frontoparietal networks (Bor & Seth, 124 

2012; Laureys & Schiff, 2012). On the other, temporo-parieto-occipital areas – 125 

colloquially named as ‘the posterior hot zone’ – has been shown to be important 126 

in mediating changes in consciousness during sleep (Siclari et al., 2017; Lee et 127 

al., 2019), and in patients with brain damage (Vanhaudenhuyse et al., 2010; Wu 128 

et al., 2015).  129 

 

1 We acknowledge that anaesthetic-induced loss of consciousness (LOC) may 
actually be anaesthetic-induced loss of behavioural responsiveness (LOBR), as e.g. volitional 
mental imagery or dreaming may take place during the anaesthetic state. The participants 
were, however, asked afterwards if they had any recall of dreams etc., which they did not 
report. Thus, here, we follow the typical convention in anaesthesia-literature and refer to 
this state as LOC.  
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In this context, general anaesthetics are a powerful tool to investigate 130 

alterations in brain connectivity during changes in the state of consciousness 131 

(see Bonhomme et al., 2019 for a recent review). Indeed, several previous 132 

studies have utilised anaesthetic drugs in investigating brain dynamics in both 133 

functional and effective/directed connectivity studies and suggested multiple 134 

explanatory mechanisms of the LOC. Note that here, effective connectivity is 135 

defined following (Friston, 2011) and (Razi & Friston, 2016) as a causal 136 

influence (in a control theory sense) of one neural population over another and 137 

functional connectivity as undirected statistical dependencies between distinct 138 

neurophysiological events. Some of these studies have suggested a breakdown 139 

of thalamo-cortical connections and disrupted frontoparietal networks 140 

(Boveroux et al., 2010; Schrouff et al., 2011). Others have found disruptions in 141 

frontal areas (Guldenmund et al., 2016), diminished frontoparietal feedback 142 

connectivity (Lee et al., 2009; Lee, Ku et al., 2015), and increased frontoparietal 143 

connectivity (Barrett et al., 2012). To bring computational evidence to bear 144 

upon this discussion, we adopt one of the most commonly used methods for 145 

understanding effective connectivity, dynamic causal modeling (DCM; Friston, 146 

Harrison & Penny, 2003), to assess cortical network-level mechanisms involved 147 

in the LOC, and evaluate the evidence for the posterior hot zone. 148 

There are relatively few studies assessing resting state effective 149 

connectivity with DCM during anaesthetic-induced unconsciousness, but a 150 

recent fMRI study identified impaired subcortico-cortical connectivity between 151 

globus pallidus and posterior cingulate (PCC) nodes, but no cortico-cortical 152 

modulations (Crone, Lutkenhoff, Bio, Laureys, & Monti, 2017). Boly et al. 153 

(2012) found a decrease in feedback connectivity from frontal (dorsal anterior 154 
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cingulate; dACC) to parietal (PCC) nodes. Both of these studies, however, 155 

evaluated relatively simple models in terms of cortical sources (excluding 156 

subcortical nodes), consisting of only two such nodes – an anterior and a 157 

posterior node. Consequently, they do not allow us to compare the role of the 158 

posterior hot zone to other potential cortical mechanisms underpinning 159 

consciousness. 160 

Here, we address this gap by modelling changes in key resting state 161 

networks (RSN) - the default mode network (DMN), the salience network 162 

(SAL), and the central executive network (CEN), due to unconsciousness 163 

induced by propofol, a common clinical anaesthetic. We employ a novel 164 

methodological combination of DCM for resting EEG cross-spectral densities 165 

(CSD; Friston et al., 2012; Moran et al., 2009) and Parametric Empirical Bayes 166 

(PEB; Friston et al., 2016), to better estimate model parameters (and their 167 

distributions) and prune redundant connections. Within this framework, we 168 

invert - for the first time - a single large-scale model of EEG, consisting of 14 169 

RSN nodes, in addition to the individual RSNs themselves (figure 1). This 170 

allows us to evaluate the role of different subgroups of intra- and inter-RSN 171 

connections in the modulation of consciousness. Further, we apply robust leave-172 

one-subject-out-cross-validation (LOSOCV) on DCM model parameters, to 173 

evaluate hypotheses about whether specific sets of connections within and 174 

between frontal and parietal nodes are not only able to explain changes between 175 

states of consciousness, but also to predict the state of consciousness from 176 

unseen EEG data. Using this combination of computational modelling, cross-177 

validation and hypothesis testing, we indicate the importance of the posterior 178 

hot zone in explaining the loss of consciousness, while highlighting also the 179 
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distinct role of frontoparietal connectivity in underpinning conscious 180 

responsiveness. Consequently, we demonstrate a dissociation between the 181 

mechanisms most prominently associated with explaining the contrast between 182 

conscious awareness and unconsciousness, and those maintaining 183 

consciousness. 184 

 185 

2. Methods 186 

 187 

2.1 Data acquisition and preprocessing 188 

The data used in the present work were acquired from a previous 189 

propofol anaesthesia study, which describes the experimental design and data 190 

collection procedure in detail (Murphy et al., 2011). The study was approved by 191 

the Ethics Committee of the Faculty of Medicine of the University of Liège, and 192 

written consent was obtained from all the participants. None of the participants 193 

suffered from mental illness, drug addiction, asthma, motion sickness, nor had 194 

a history of mental illness or suffered from any previous problems with 195 

anaesthesia. The data consisted of 15 minutes of spontaneous, eyes-closed high-196 

density EEG recordings (256 channels, EGI) from 10 participants (mean age 22 197 

± 2 years, 4 males) in four different states of consciousness: behavioural 198 

responsiveness, sedation (Ramsay scale score 3, slower responses to command), 199 

loss of consciousness with clinical unconsciousness (Ramsay scale score 5-6, 200 

no response to command), and recovery of consciousness (Ramsay, Savege, 201 

Simpson, & Goodwin, 1974). Note that for the recovery state, the data consisted 202 

of 9 datasets. Participants were considered to be fully awake if the response to 203 
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verbal command (‘squeeze my hand’) was clear and strong (Ramsay 2), and in 204 

LOC, if there was no response (Ramsay 5-6). The Ramsay scale verbal 205 

commands were repeated twice at each level of consciousness. Propofol was 206 

infused through an intravenous catheter placed into a vein of the right hand or 207 

forearm, and the propofol plasma and effect-site concentrations were estimated 208 

with 3.87 ± 1.39 mcg/mL average arterial blood concentration of propofol for 209 

LOC.  Here, we only modelled data from the maximally different anaesthetic 210 

states, behavioural responsiveness and LOC, and used recovery as a test of 211 

DCM model generalisation. These data can be made available after signing a 212 

formal data-sharing agreement with the University of Liège. 213 

Data from channels from the neck, cheeks, and forehead were discarded 214 

as they contributed most of the movement-related noise, leaving 173 channels 215 

on the scalp for the analysis. These 173 electrodes were co-registered to a 216 

template MRI mesh in MNI coordinates, and the volume conduction model of 217 

the head was based on the Boundary Element Method (BEM). The raw EEG 218 

signals were filtered from 0.5 – 45 Hz with additional line noise removal at 50 219 

Hz using a notch filter. The recordings were then downsampled to 250 Hz, and 220 

abnormally noisy channels and epochs were identified by calculating their 221 

normalised variance, and then manually rejected or retained by visual 222 

inspection. Last, the data were then re-referenced using the average reference.  223 

 224 

2.2 Dynamic causal modeling  225 

For the DCM modelling of the high-density EEG data, the first 60 226 

artefact-free 10-second epochs in wakeful behavioural responsiveness and LOC 227 
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were combined into one dataset with two anaesthetic states making up a total of 228 

120 epochs per participant. The preprocessed data was imported in to SPM12 229 

(Wellcome Trust Centre for Human Neuroimaging; 230 

www.fil.ion.ucl.ac.uk/spm/software/spm12).  231 

To analyse effective connectivity within the brain’s resting state 232 

networks, DCM for EEG cross-spectral densities (CSD) was applied (Friston et 233 

al., 2012; Moran et al., 2009). Briefly, with this method, the observed cross-234 

spectral densities in the EEG data are explained by a generative model that 235 

combines a biologically plausible neural mass model with an 236 

electrophysiological forward model mapping the underlying neural states to the 237 

observed data. Each node in the proposed DCM models – that is, each 238 

electromagnetic source – consists of three neural subpopulations, each loosely 239 

associated with a specific cortical layer; pyramidal cells, inhibitory interneurons 240 

and spiny stellate cells (ERP model; Moran, Pinotsis & Friston, 2013). DCM 241 

does not simply estimate the activity at a particular source at a particular point 242 

in time – instead, the idea is to model the source activity over time, in terms of 243 

interacting inhibitory and excitatory populations of neurons.2 244 

The subpopulations within each node are connected to each other via 245 

intrinsic connections, while nodes are connected to each other via extrinsic 246 

connections. Three types of extrinsic connections are defined, each differing in 247 

terms of their origin and target layers/subpopulation: forward connections 248 

 

2 Here, despite using propofol-anaesthesia to modulate the state of consciousness, 
our aim was to specifically model consciousness, rather than anaesthesia, and to produce 
results comparable with previous DCM EEG work with propofol. Thus, we chose the neural 
mass model according to our aims rather than using neuronal models designed to capture 
the subtleties of anaesthesia from the EEG spectrum (see, for example, Bojak & Liley, 2005; 
Hutt & Longtin, 2010).  
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targeting spiny stellate cells in the granular layer, backward connections 249 

targeting pyramidal cells and inhibitory interneurons in both supra- and 250 

infragranular layers, and lateral connections targeting all subpopulations. This 251 

laminar specificity in the extrinsic cortical connections partly defines the 252 

hierarchical organisation in the brain. Generally speaking, the backward 253 

connections are thought to have more inhibitory and largely modulatory effect 254 

in the nodes they target (top-down connections), while forward connections are 255 

viewed as having a strong driving effect (bottom-up; Salin & Bullier, 1995; 256 

Sherman & Guillery, 1998). 257 

The dynamics of hidden states in each node are described by second-258 

order differential equations which depend on both, the parametrised intrinsic 259 

and extrinsic connection strengths. This enables the computation of the linear 260 

mapping from the endogenous neuronal fluctuations to the EEG sensor spectral 261 

densities, and consequently, enables the modelling of differences in the spectra 262 

due to changes in the underlying parameters; for example, the intrinsic and 263 

extrinsic connections. Here, for straight-forward interpretability, we modelled 264 

changes in extrinsic connections as a result of changes in the state of 265 

consciousness.  266 

 267 

2.3 Model specification  268 

Fitting a DCM model requires the specification of the anatomical 269 

locations of the nodes/sources a priori. Here, we modelled three canonical RSNs 270 

associated with consciousness (see for example Boly et al., 2008; Heine et al., 271 

2012), namely the Default Mode Network (DMN), the Salience Network 272 
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(SAL), and the Central Executive Network (CEN). In addition, we modelled a 273 

fourth large-scale network (LAR) combining all the nodes and connections in 274 

the three RSNs above, with additional inter-RSN connections motivated by 275 

structural connectivity (details below). The node locations of the three RSNs 276 

modelled here were taken from Razi et al. (2017) and are shown in figure 1 with 277 

their respective schematic representations (the node locations in figure 1 and the 278 

effective connectivity modulations in figures 4A, 5A, 6A, and 7A were 279 

visualized with the BrainNet Viewer (Xia, Wang, & He, 2013, 280 

http://www.nitrc.org/projects/bnv/). The MNI coordinates are listed in table 1. 281 

Coincidentally, these same data have been previously source localised to the 282 

same locations as some of the key nodes in the RSNs modelled here (Murphy 283 

et al., 2011). We treated each node as a patch on the cortical surface for 284 

constructing the forward model (‘IMG’ option in SPM12; Daunizeau, Kiebel, 285 

& Friston, 2009). 286 

Nodes in the 3 RSNs were connected via forward, backward, and lateral 287 

connections as described in David et al. (2006, 2005). Thus, each node (in each 288 

RSN-model) were modelled as a point source with the neuronal activity being 289 

controlled by operations following the Jansen-Rit model (Jansen & Rit, 1995). 290 

Note that all our models were fully connected. In addition to preserving the 291 

connections within the nodes of the original 3 RSNs, in the LAR, we 292 

additionally hypothesised potential connections between the 3 RSNs. Previous 293 

structural connectivity studies have identified a highly interconnected network 294 

of RSN hubs that seem to play a crucial role in integrating information in the 295 

brain, often termed the ‘rich-club’ (van den Heuvel & Sporns, 2011). 296 

Specifically, van den Heuvel and colleagues localised a number of these key-297 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.19.423595doi: bioRxiv preprint 

http://www.nitrc.org/projects/bnv/
https://doi.org/10.1101/2020.12.19.423595
http://creativecommons.org/licenses/by/4.0/


 Computational modelling of anaesthetic-induced LOC 
  14 

hubs to regions comprising of the precuneus, superior lateral parietal cortices, 298 

and superior frontal cortex, thus, to some extent overlapping with some of the 299 

key-nodes in our RSN models. Therefore, as a structurally-informed way to 300 

investigate the potential anaesthesia-induced modulations of effective 301 

connectivity between the 3 RSNs, we specified – in addition to the already-302 

specified connections in our RSNs – bi-directional connections between 303 

PCC/precuneus and left/right superior parietal nodes (connecting DMN and 304 

CEN), and between PCC/precuneus and anterior cingulate cortex (connecting 305 

DMN and SAL). 306 

These three different types of connections in each model were specified 307 

in what is referred in the DCM literature as the ‘A-matrix’. In addition, to 308 

explicitly parameterise the effect of the session – i.e. the effect of the anaesthetic 309 

– on the connections, we allowed every connection to change (specified in the 310 

‘B-matrix’). 311 

 312 

Table 1. All the nodes and their corresponding MNI coordinates for the three resting 313 

state networks (adapted from Razi et al., 2017). The large model incorporated all these nodes 314 

as a single model.  315 

  Network        Coordinates (in mm) 316 

Default Mode Network      x    y    z 317 

1 Left lateral parietal    -46 -66 30  318 

2 Right lateral parietal     49 -63 33  319 

3 Posterior cingulate/Precuneus     0 -52 7  320 

4 Medial prefrontal     -1 54 27  321 
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 322 

Salience Network     323 

1 Left lateral parietal    -62 -45 30  324 

2 Right lateral parietal     62 -45 30  325 

3 Dorsal anterior cingulate      0 21 36  326 

4 Left anterior PFC    -35 45 30  327 

5 Right anterior PFC     32 45 30  328 

 329 

Central Executive Network 330 

1 Left superior parietal    -50 -51 45 331 

2 Right superior parietal     50 -51 45 332 

3 Dorsal medial PFC      0 24 46  333 

4 Left anterior PFC    -44 45 0 334 

5 Right anterior PFC     44 45 0 335 

 336 
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 337 

Figure 1. Full model schematics and node locations. A.  Schematic view of the large 338 

DCM model consisting of the 14 nodes and connections combining three RSNs. Inter-RSN 339 

connections were specified between PCC/precuneus and bi-lateral superior parietal nodes, and 340 

between PCC/precuneus and anterior cingulate cortex. B-D. Location of the nodes and the 341 

schematic representation of the full model for DMN, SAL, and CEN, respectively.  342 

 343 
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2.4 Model inversion  344 

In DCM, model inversion refers to fitting the models to best explain the 345 

empirical data of each participant’s dataset, and thereby inferring a full 346 

probability density over the possible values of model parameters (with the 347 

expected values and covariance). Here, we first modelled the effects of propofol 348 

in terms of changes in connectivity that explained the differences in the 349 

empirical data observed in LOC as compared to behavioural responsiveness 350 

baseline (figure 3A). The EEG data used contained considerable peaks at the 351 

alpha range (8-12 Hz), and the default parameter settings in DCM for CSD 352 

failed to produce satisfactory fits to these peaks when inspected visually (see 353 

van Wijk et al., 2018, p. 824). To address this issue, we doubled the number of 354 

maximum iterations to 256 and estimated the models with two adjustments to 355 

the hyperparameters: first, we set the shape of the neural innovations (i.e. the 356 

baseline neuronal activity) to flat (-32) instead of the default mixture of white 357 

and pink (1/f) components (Moran et al., 2009). Second, we increased the noise 358 

precision value from 8 to 12 to bias the inversion process towards accuracy over 359 

complexity (see Friston et al., 2012 and Moran et al., 2009 for a detailed 360 

description of DCM for cross-spectral densities). In addition, for LAR the 361 

number of spatial modes was increased to 14 instead of the default of 8. The 362 

modes here refer to a reduction of the dimensionality of the data (done for 363 

computational efficiency) by projecting the data onto the principal components 364 

of the prior covariance, such that a maximum amount of information is retained 365 

(David et al., 2006; Fastenrath, Friston, & Kiebel, 2009; Kiebel, Garrido, 366 

Moran, & Friston, 2008). 367 
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These adjustments led to our full models (i.e. DMN, SAL, CEN, and 368 

LAR) converging with satisfactory fits (inspected visually) to the spectrum for 369 

30/40 subject model instances (similar fits to what can be seen as the end result 370 

in figure 2). We then applied Bayesian Parameter Averaging (BPA) for each of 371 

the full models separately, averaging over the posteriors from the subject model 372 

instances that did converge and setting these averaged posteriors as new priors 373 

for the respective non-converged subject model instances. Estimating these 374 

subject model instances again with these BPA-derived priors produced 375 

satisfactory fits for all 10 remaining instances. Finally, we estimated all the full 376 

models again for all the participants with setting the posteriors from the earlier 377 

subject model estimations as updated priors, but this time with the neural 378 

innovations and noise precision set back to default settings. In doing so, all the 379 

models produced satisfactory fits with the default parameter settings for all of 380 

the participants (see figure 2).  381 

To validate that the priors we used in the final inversion were suitable, 382 

we compared the group-level model evidence obtained with and without the 383 

adjusted noise levels. With all full models, the default hyperparameter settings 384 

with the updated priors generated better model evidence (difference in free 385 

energies for LAR, DMN, SAL, and CEN were +47260, +9440, +15700, and 386 

+660, respectively). To qualitatively assess the model fits, the observed and 387 

model-predicted cross-spectra were visually compared in each participant and 388 

judged to be sufficiently similar. To be sure about our conclusions, we also 389 

performed the PEB modelling (see below) leaving out the fitted subject model 390 

instances that produced the worst fits (1-2 per model); this had no notable 391 

influence on the interpretation of the results. The same approach was followed 392 
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when inverting the full models separately for individual states of consciousness 393 

(figure 3B); in addition to the full models, here the BPA was also restricted to 394 

the same state of consciousness. The model-predicted and original spectral 395 

densities averaged over participants are shown in figure 2A, B, C, and D for 396 

LAR, DMN, SAL, and CEN, respectively. 397 

 398 

 399 

Figure 2. Average model fits. A-D. Subject-averaged power spectra of the observed 400 

EEG channel-space data, juxtaposed with that predicted by the fitted DCM models of each 401 

RSN, in normal behavioural responsiveness and LOC. Individual lines reflect spatial modes. 402 

 403 

2.5 Parametric Empirical Bayes 404 

In DCM, a variational Bayesian scheme called Variational Laplace is 405 

used to approximate the conditional or posterior density over the parameters 406 
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given by the model inversion process, by maximizing a lower bound (the 407 

negative free energy) on the log-evidence (Friston et al., 2007). The Parametric 408 

Empirical Bayes (PEB) framework is a relatively recent supplement to the DCM 409 

procedure used, for example, to infer the commonalities and differences across 410 

subjects (Friston et al., 2016). Briefly, the subject-specific parameters of interest 411 

(here, effective connectivity between nodes in a DCM model) are taken to the 412 

group-level and modelled using a General Linear Model (GLM), partitioning 413 

the between-subject variability into designed effects and unexplained random 414 

effects captured by the covariance component. The focus is on using Bayesian 415 

model reduction (BMR) – a particularly efficient form of Bayesian model 416 

selection (BMS) – to enable inversion of multiple models of a single dataset and 417 

a single hierarchical Bayesian model of multiple datasets that conveys both the 418 

estimated connection strengths and their uncertainty (posterior covariance). As 419 

such, it is argued that hypotheses about commonalities and differences across 420 

subjects can be tested with more precise parameter estimates than with 421 

traditional frequentist comparisons (Friston et al., 2016). 422 

A particular advantage of PEB is that as part of the BMR process – when 423 

no strong a priori hypotheses about the model structure exist, as in the present 424 

study – a greedy search can be used to compare the negative free energies for 425 

the reduced models, iteratively discarding parameters that do not contribute to 426 

the free energy (originally ‘post-hoc DCM analysis’, Friston & Penny, 2011; 427 

Rosa, Friston & Penny, 2012). The procedure stops when discarding any 428 

parameters starts to decrease the negative free energy, returning the model that 429 

most effectively trades-off goodness of fit and model complexity in explaining 430 

the data. Last, a Bayesian Model Average (BMA) is calculated over the best 431 
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256 models weighted by their model evidence (from the final iteration of the 432 

greedy search). For each connection, a posterior probability for the connection 433 

being present vs. absent is calculated by comparing evidence from all the 434 

models in which the parameter is switched on versus all the models in which it 435 

is switched off. Here, we applied a threshold of >.99 posterior probability, in 436 

other words, connections with over .99 posterior probability were retained.  437 

For the DCMs that were fitted to the contrast between two states of 438 

consciousness using the procedure described in the previous section, we used 439 

PEB for second-level comparisons and Bayesian model reduction to find the 440 

most parsimonious model that explained the contrast by pruning away 441 

redundant connections. The focus was explicitly on the group-level comparison 442 

of the connectivity modulations (B-matrix). The whole sequence of steps is 443 

summarized in figure 3A. 444 

 445 
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 446 

Figure 3. Modelling pipelines. A. The pipeline for inverting the DCM models in 447 

terms of changes in connectivity that explain the differences in the empirical data observed in 448 

LOC as compared to wakeful consciousness baseline. The DCM model inversion was 449 

followed by PEB modelling with BMR to find the most parsimonious model and the 450 

modulatory effects on the group-level effective connectivity. B. The pipeline for inverting the 451 

DCM models separately for individual states of consciousness. This was done as a 452 

prerequisite for the LOSOCV classification with PEB modelling. 453 

 454 

2.6 Leave-one-out cross-validation paradigm 455 

As a crucial form of validation of our modelling framework, we 456 

investigated which network connections are predictive of the state of 457 
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consciousness in unseen data. We adapted a standard approach in computational 458 

statistics, leave-one-subject-out cross-validation (LOSOCV; spm_dcm_loo.m). 459 

Here, we iteratively fitted a multivariate linear model (as described in detail in 460 

Friston et al., 2016) to provide the posterior predictive density over connectivity 461 

changes, which was then used to evaluate the posterior belief of the explanatory 462 

variable for the left-out participant: in the present case, the probability of the 463 

consciousness state-class membership.  464 

To conduct LOSOCV analysis, the DCM models were now fitted to each 465 

state of consciousness separately, as shown in the procedure visualised in figure 466 

3B. To cross-validate a fitted DCM model, both datasets from one participant 467 

were left-out each time before conducting PEB for the training data set, and the 468 

optimised empirical priors were then used to predict the state of consciousness 469 

(behavioural responsiveness/LOC) to which the datasets from the left-out 470 

participant belonged (see Friston et al., 2016 for details). This procedure, 471 

repeated for each participant, generated probabilities of state affiliation, which 472 

were used to calculate the Receiver Operating Characteristic (ROC) curves and 473 

Area Under the Curve (AUC) values with 95% point-wise confidence bounds 474 

across the cross-validation runs (see MATLAB perfcurve). In addition, the 475 

corresponding binary classification accuracy was calculated as the sum of true 476 

positives and true negatives divided by the sum of all assigned categories, i.e. 477 

(TP+TN) / (TP+TN+FP+FN), where TP = true positive, TN = true negative, FP 478 

= false positive, and FN = false negative. 479 

We first estimated LOSOCV metrics for all connections in all models. 480 

Next, LOSOCV metrics of subsets of hypothesis-driven connections were 481 

tested; the connections preserved by BMR were divided into frontal, parietal, 482 
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frontoparietal, and between-RSN subsets, based on the anatomical location of 483 

the connected nodes. The rationale was to investigate where in the brain the 484 

most consistent inter-subject-level effects were located, in addition to the largest 485 

effect sizes identified by the PEB analysis. 486 

Finally, we extended our validation of the DCM models by introducing 487 

a more difficult classification problem: we used the DCM parameters from 488 

responsiveness and LOC for training, and then tested them on unseen data 489 

collected during the post-drug recovery state of each subject (recovery state 490 

prediction). Again during training, both datasets (behavioural 491 

responsiveness/LOC) from one participant were left-out each time before 492 

conducting PEB, and the optimised empirical priors were then used to predict 493 

the state of consciousness to which the recovery-dataset from the left-out 494 

participant belonged. We hypothesised that if our modelled effects are valid, it 495 

should classify the recovery state as behavioural responsiveness rather than 496 

LOC - even though recovery is not identical to normal wakeful responsiveness, 497 

it is clearly closer to normal responsiveness than LOC. Here, we used recall - 498 

as calculated by (true positive) / (true positive + false positive) - and mean 499 

posterior probability for responsiveness to quantify classification performance. 500 

The 95% CIs were calculated over the posterior probabilities using a simple 501 

approximation for the unbiased sample standard deviation (Gurland & Tripathi, 502 

1971). 503 

 504 

3. Results 505 

 506 
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3.1 Dynamic causal modeling and parametric empirical Bayes 507 

Our goal was to investigate the effective connectivity modulations 508 

caused by anaesthesia-induced loss of consciousness on three resting state 509 

networks together and separately. We modelled time-series recorded from two 510 

states of consciousness – wakeful behavioural responsiveness and loss of 511 

consciousness (LOC) – with DCM for CSD at a single-subject level, followed 512 

by PEB at the group-level. In doing so, we estimated the change in effective 513 

connectivity with RSNs during LOC, relative to behavioural responsiveness 514 

before anaesthesia. For the DMN, we estimated 12 inter-node connections, and 515 

for both SAL and CEN 16 connections. With LAR, in addition to including all 516 

the connections in each RSN, additional connections were specified to model 517 

the modulatory effects of anaesthesia on between-RSN connections, increasing 518 

the estimated inter-node connections to fifty.  519 

Following the inversion of the second-level PEB model, a greedy search 520 

was implemented to prune away connections that did not contribute 521 

significantly to the free energy using BMR. This procedure was performed for 522 

LAR and for all the three resting state networks separately. The most 523 

parsimonious model (A) and estimated log scaling parameters (B) for LAR, 524 

DMN, SAL, and CEN are shown in figures 4-7, respectively. Here, we applied 525 

a threshold of >.99 for the posterior probability; in other words, connections that 526 

were pruned by BMR and connections with lower than .99 posterior probability 527 

with their respective log scaling parameter are faded out (figures 4B-7B). 528 

Of the fifty connections in the large model (figure 4), five were pruned 529 

away by BMR. The results indicate that typically effective connectivity 530 
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decreased going from behavioural responsiveness to LOC between nodes in the 531 

DMN, with parietal connections showing consistent and large decreases. 532 

Similarly, between-RSN parietal connections linking DMN and CEN also 533 

decreased. Backward connections between the dACC and PCC/precuneus, 534 

linking the DMN and SAL, increased slightly. A clear majority of connections 535 

forming the SAL and CEN networks increased. 536 

On inverting the DMN separately (figure 5), we found that no 537 

connections were pruned away by BMR. In other words, all of the effective 538 

connectivity in the DMN was modulated by the loss of consciousness. In 539 

particular, forward connectivity to and from PCC/precuneus largely decreased, 540 

whereas direct parietofrontal forward connectivity from lateral parietal cortices 541 

to the medial prefrontal cortex was increased. Backward connectivity between 542 

all the sources was increased. 543 

In contrast, seven connections out of 16 were pruned away from the full 544 

SAL model when it was inverted separately (figure 6). These consisted of all 545 

but one lateral connections between both, the lateral prefrontal nodes and lateral 546 

parietal nodes, and all but one backward connection originating from the dACC. 547 

The strength of change in connectivity within the SAL was lower than in DMN, 548 

and all but one of the retained connections showed an increase in strength when 549 

losing consciousness. 550 

When inverting the CEN separately, two connections were pruned away 551 

(figure 7). Most of the retained connections showed a small increase in strength, 552 

with the largest effects in frontoparietal connections from the dmPFC to the left 553 
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superior parietal cortex. Further, right hemisphere frontoparietal connections 554 

showed more modulatory changes than left hemisphere connections. 555 

 556 

 557 

Figure 4. Estimated model parameters for LAR. A. Effective connectivity modulations 558 

on the most parsimonious LAR model. 5 connections were pruned away by BMR and a further 559 

8 had lower than .99 posterior probability of being present. Colour shows modulation strength 560 

and direction. B. The log scaling parameters for the connections in the large model after BMR 561 

and BMA. Connections that were pruned by BMR and connections with lower than .99 562 

posterior probability with their respective log scaling parameter are faded out. 563 

 564 
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 565 

Figure 5. Estimated model parameters for DMN. A. Effective connectivity 566 

modulations on the most parsimonious DMN model. Colour of connections show strength and 567 

direction of modulation. None of the connections were pruned away, and only one connection 568 

had lower than .99 posterior probability. B. The log scaling parameters for the connections in 569 

DMN after BMR and BMA. The below-threshold posterior probability connection with its 570 

corresponding log scaling parameter is faded out. 571 

 572 
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 573 

Figure 6. Estimated model parameters for SAL. A. Effective connectivity modulations 574 

on the most parsimonious model for SAL. 7 connections were pruned by BMR. B. The log 575 

scaling parameters for the connections in SAL. Several connections were pruned away (faded 576 

out). The retained connections were almost all positive modulations, but smaller in strength 577 

than in the DMN. 578 

 579 
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 580 

Figure 7. Estimated model parameters for CEN. A. Effective connectivity modulations 581 

on the most parsimonious model for CEN. 2 connections were redundant in addition to 2 582 

connections having lower than .99 posterior probability for being switched on. B. The log 583 

scaling parameters for the connections in CEN. Pruned connections and low posterior 584 

probability connections with the corresponding log scaling parameters are faded out. Effects 585 

on the remaining connections were almost all positive modulations, with strengths in-between 586 

those observed in the SAL and DMN. 587 

 588 

3.2 Leave-one-subject-out cross-validation 589 

To conduct LOSOCV, the DCM models were inverted again, this time 590 

for each state of consciousness in each subject separately. With the states 591 

modelled separately, PEB was conducted repeatedly (on the training set in each 592 

cross-validation run) alongside LOSOCV analysis to generate AUC values (see 593 

Methods). The AUC/ROC values for all full models are shown in figure 8A, 594 
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and table 2 shows all tested AUC values with accuracy for all tested sets of 595 

connections. The results indicate that leave-one-subject-out cross-validated 596 

predictions based on the LAR and SAL models had accuracy significantly 597 

different from chance, i.e. with the lower bound of the 95% CI of the AUC 598 

above chance. However, for predictions based on the DMN and CEN, the lower 599 

bound of the 95% CI of the predictions did not exceed chance. 600 

To understand whether specific connections within cortical brain 601 

networks were driving changes in consciousness, we evaluated the predictive 602 

power of four different hypothesis-driven subsets of connections – frontal, 603 

parietal, frontoparietal, or between-RSN – to predict the two states of 604 

consciousness in left-out subjects. As shown in figure 8B, frontoparietal 605 

connectivity in LAR, DMN, and SAL produced the best predictions of the state 606 

of consciousness with LOSOCV. Further, the posterior subset in the SAL 607 

performed statistically better than chance. None of the subsets in the CEN 608 

reached statistical significance. 609 

Finally, the predictive power of these RSN connectivity subsets were 610 

tested in a more difficult classification problem: each model subset was trained 611 

on behavioural responsiveness and LOC, and then tested on the previously 612 

unseen ‘recovery’ state, the data which was collected after the participant 613 

regained consciousness. In figure 9A and B each data point represents one 614 

participant. Figure 9A shows the mean posterior probabilities of the recovery 615 

state being correctly classified as behavioural responsiveness when using all 616 

connections in a model as predictors. Figure 9B shows the same results for the 617 

frontal, parietal, frontoparietal, and between-RSN connections as predictors. 618 

When predicting with all connections, only classifications based on all 619 
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connections in LAR performed significantly better than chance. With the 620 

hypothesis-driven subsets of connections, frontoparietal connectivity within the 621 

DMN generalised best to the recovery state. Only one other subset – parietal 622 

connections in SAL – performed significantly better than chance, and almost as 623 

well as frontoparietal DMN connectivity (.82 vs. .79 posterior probability). All 624 

subsets with LAR performed statistically better than chance, however, with poor 625 

mean posterior probability values in comparison to DMN frontoparietal and 626 

SAL parietal connections. Table 2 shows the mean posterior probabilities and 627 

the corresponding recall values for all the tested connection sets and for all 628 

models. We verified that the predictive accuracy (of the unseen recovery state) 629 

was not driven by subject effects or bias, as evident in the individual posterior 630 

probabilities plotted in figures 9C and 9D. 631 

  632 

 633 

Figure 8. The AUC values for classifying the state of consciousness in LOSOCV 634 

paradigm. A. For the full models, only predictions based on LAR and SAL performed 635 

statistically better than chance (red dashed line), with classifications based on the connections 636 

in SAL reaching the overall best prediction. The error bars represent the 95% point-wise CI 637 

calculated using leave-one-out cross-validation for both A and B (MATLAB perfcurve). 638 

B. AUC values for hypothesis-driven connections for all models in LOSOCV paradigm. The 639 

DMN is missing frontal connections as it had only one anterior node. Best prediction 640 
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performance was obtained with frontoparietal connections in LAR, DMN, and SAL. Further, 641 

predictions based on posterior SAL connections reached statistical significance. 642 

 643 

 644 

Figure 9. Mean posterior probabilities for prediction of recovery data. On panels A and 645 

B the individual data points represent individual participants. A. Predictions based on all 646 

connections in LAR performed better than chance (red dashed line). Data points representing 647 

participants are laid over a 1.96 SEM (95% confidence interval over posterior probabilities) in 648 

red with the black lines marking the mean. B. Mean posterior probabilities for hypothesis-649 

driven connection subsets of all models in the recovery state: top labels refer to frontal (Fr), 650 

frontoparietal (Frp), parietal (P), and between-RSN (bRSN) connections. DMN frontoparietal 651 

connectivity had the best performance across all sets and all models. Parietal connections in 652 
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SAL performed statistically better than chance but with lower posterior probability value in 653 

comparison to DMN frontoparitetal connections. All subsets with LAR performed statistically 654 

better than chance, however, with poor posterior probability values in comparison to DMN 655 

frontoparietal and SAL parietal connections. C-D. Posterior probabilities predicted for 656 

individual datasets, based on all connections (C) and on hypothesis-driven subsets (D). In 657 

Panel D, the individual bars depict different connection subsets: frontal, frontoparietal, 658 

parietal, and between-RSN in LAR, frontoparietal and parietal in DMN, and frontal, 659 

frontoparietal, and parietal in SAL and CEN. 660 

 661 

Table 2.  AUC (accuracy) values calculated with LOSOCV, and mean posterior 662 

probabilities (recall) in the recovery state, for all connections, all hypothesis-driven 663 

connection subsets (frontal, parietal, frontoparietal, and between-RSN connections), and all 664 

models. No values are given if no such connection-subsets exist for the model. 665 

Accuracy/recall values were not calculated for connection subsets with performance close to 666 

chance (between 0.4 - 0.6). * indicates significance estimated at 95% confidence intervals in 667 

both AUC and posterior probability. 668 

 669 

Model   Responsiveness/LOC  Recovery 670 

    AUC (Accuracy)   Mean PP. (Recall) 671 

All connections    All connections 672 

Large network   0.78 (0.80)*    0.67 (0.78)*  673 

Default mode network  0.71 (0.70)    0.59 (--)  674 

Salience network   0.82 (0.80)*    0.61 (0.78)  675 
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Central executive network  0.68 (0.70)    0.61 (0.89)  676 

 677 

Frontal  Parietal   Frontal  Parietal 678 

Large network   0.42 (--)  0.70 (0.65)  0.62 (0.89)* 0.57 (--)* 679 

Default mode network  --  0.61 (.65)  --  0.59 (--)  680 

Salience network   0.72 (0.65) 0.76 (0.65)*  0.61 (.89) 0.79 (0.89)* 681 

Central executive network  0.56 (--)  0.46 (--)   0.47 (--)  0.60 (--) 682 

 683 

Frontoparietal BRSN   Frontoparietal BRSN 684 

Large network   0.79 (0.80)* 0.38 (0.55)  0.61 (1.00)* 0.55 (--)* 685 

Default mode network  0.84 (0.85)* --   0.82 (0.89)* -- 686 

Salience network   0.81 (0.75)* --   0.60 (--)  -- 687 

Central executive network  0.75 (0.70) --   0.49 (--)  -- 688 

  689 

 690 

 691 

4. Discussion 692 

We computationally evaluated the evidence for the posterior hot zone 693 

theory of consciousness by modelling the relative contributions of three resting 694 

state networks (DMN, SAL, and CEN) for propofol-induced LOC. Using the 695 

recently introduced PEB framework, we characterised modulations in effective 696 

connectivity accompanying the loss of consciousness within and between these 697 

key RSNs. We found a selective breakdown of posterior parietal and medial 698 
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feedforward frontoparietal connectivity within the DMN, and of parietal inter-699 

network connectivity linking DMN and CEN. These results contribute to the 700 

current understanding of anaesthetic-induced LOC, and more generally to the 701 

discussion of whether the neural correlates of consciousness have an anterior 702 

contribution (Del Cul, Dehaene, Reyes, Bravo, & Slachevsky, 2009), are 703 

predominantly frontoparietal (Bor & Seth, 2012; Chennu et al., 2014; Chennu, 704 

O’Connor, Adapa, Menon, & Bekinschtein, 2016; Laureys & Schiff, 2012), or 705 

posterior (Koch et al., 2016; Koch et al., 2016b; Siclari et al., 2017). 706 

We used a novel DCM-based cross-validation to establish the predictive 707 

validity of our models, addressing an issue commonly present in DCM studies, 708 

including previous consciousness-related DCM studies - that the best model 709 

identified by BMS is only the best model among the models tested. Significant 710 

generalisation performance with cross-validation increases the level of 711 

confidence we can ascribe to our results. This analysis highlighted that 712 

frontoparietal effective connectivity consistently generated accurate predictions 713 

of individual states of consciousness. Furthermore, we demonstrated 714 

generalisation of this predictive power by showing that effective frontoparietal 715 

connectivity within the DMN and parietal connectivity within the SAL 716 

predicted the state of consciousness in unseen data from the post-anaesthetic 717 

recovery state.  718 

With the large model combining all 3 RSNs, we observed consistent and 719 

wide-spread decreases in connectivity between posterior DMN nodes and 720 

between parietal connections linking DMN and CEN (figure 4). With the 721 

individual RSNs, we observed a selective breakdown of the DMN, specifically, 722 

decreases in feedforward connectivity to and from PCC/precuneus (figure 5). It 723 
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is worth highlighting that the largest decreases in effective connectivity - both 724 

when the RSNs were modelled individually and as one large network - were 725 

between nodes located within the posterior hot zone, and related specifically to 726 

PCC/precuneus – a key structure in the hot zone (Koch et al., 2016; Siclari et 727 

al., 2017). In other words, the network-level breakdown characterising the 728 

difference between behavioural responsiveness and LOC was mostly located 729 

within the parietal hot zone.  730 

In the SAL and CEN networks, when fitted on their own, several 731 

connections were pruned away by BMR, with small increases in the majority of 732 

preserved connections; ¼ of the connections in CEN and almost half of the 733 

connections in SAL (7 out of 16) were pruned, in contrast to the DMN in which 734 

no connections were pruned (figures 6 and 7). The same pattern was present, 735 

although to a smaller degree, when the three RSNs were estimated together 736 

(LAR): fewest of the connections pruned were in the DMN, when compared 737 

with the SAL and CEN networks. This highlights the relative importance of the 738 

DMN over the SAL and CEN in explaining differences between states of 739 

consciousness and is consistent with the previous evidence from disorders of 740 

consciousness (Crone et al., 2011; Fernández-Espejo et al., 2012; Laureys, 741 

2005; Laureys et al., 1999), anaesthesia (Boveroux et al., 2010), and sleep 742 

(Horovitz et al., 2009).  743 

We found that PCC/precuneus-related feedforward connectivity in the 744 

DMN is impaired during LOC. This is in contrast to two previous DCM studies 745 

of propofol anaesthesia, which have suggested either selective impairments in 746 

frontoparietal feedback connectivity from dACC to PCC (Boly et al., 2012), or 747 

subcortico-cortical modulations from globus pallidus to PCC (Crone et al., 748 
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2017). However, there are major methodological differences between the 749 

present study and the previous two that could explain these different results. 750 

Firstly, the examined model space was different. Secondly, both previous 751 

studies used models with only two cortical nodes summarising activity of 752 

frontal and parietal regions. They did not implement a wide search over a large 753 

model space using BMR and instead focused on evaluating a small number of 754 

hypothesis-specific models. We adopted a broader approach to model 755 

formulation and evaluation. In doing so, we expand upon these previous results 756 

by suggesting a selective breakdown of PCC/precuneus-related forward 757 

connectivity within the DMN. Our results differed from Boly et al. (2012) even 758 

when the direct connections between dACC and PCC/precuneus were modelled 759 

(in LAR) – we found an increase in feedback connectivity from dACC to 760 

PCC/precuneus and a small, low probability decrease in feed-forward 761 

connectivity. Our results are, however, in line with previous studies showing 762 

increased frontoparietal connectivity with partial directed coherence 763 

(Maksimow et al., 2014) and with Granger Causality (Barrett et al., 2012; 764 

Nicolaou, Hourris, Alexandrou, & Georgiou, 2012) during anaesthesia. 765 

It is noteworthy that impaired feedforward connectivity has been 766 

suggested to be the main modulation caused by propofol-anaesthesia in a recent 767 

DCM study with TMS-evoked potentials by Sanders et al. (2018). Their models 768 

consisted of 6 cortical sources (bilateral inferior occipital gyrus (IOG), bilateral 769 

dorsolateral PFC, and bilateral superior parietal lobule (SPL). They found 770 

predominantly impaired feedforward connectivity from right IOG to right SPL 771 

(specifically with theta/alpha-gamma coupling). Although they suggested that 772 

resting state activity was driven by feedback connectivity, while induced 773 
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responses were driven by feedforward connectivity, it may be that restricting 774 

modulations to just two free parameters (connections) in the cortex simplifies 775 

the effects of propofol-induced LOC to the degree that they differ from 776 

estimations of more complex models. 777 

Finally, the observed increase in effective connectivity between specific 778 

nodes (especially front-to-back) has been suggested previously to be due to the 779 

drug-specific effects of propofol rather than changes in states of consciousness 780 

(Långsjö et al., 2012; Maksimow et al., 2014). Hence, it may be that the 781 

relatively uniform increases in connectivity in the SAL and CEN, and the 782 

increased feedback connectivity in the DMN, were specific to propofol. 783 

While the results of the LOSOCV cross-validation should be interpreted 784 

with caution given the limited number of participants in our study, the results 785 

indicated that, when using all connections, the above-chance prediction 786 

performance of conscious state was only obtained with LAR and SAL, with the 787 

latter performing the best (figure 8A). With smaller, hypothesis-driven subsets, 788 

we found that the frontoparietal connections provided consistently the most 789 

accurate predictions in all models except the CEN (figure 8B). When predicting 790 

the unseen state of recovery (figure 9B), frontoparietal DMN connections 791 

performed the best, followed by parietal connections in SAL. It is worth 792 

highlighting that the frontoparietal DMN and parietal SAL connections predict 793 

the state correctly, even when the state actually differs from the true training 794 

state; recovery differs from normal wakeful responsiveness not only 795 

behaviourally, but also in terms of the residual propofol in the blood. However, 796 

the participants are conscious and responsive, and thus, recovery is considered 797 

as a state clearly closer to normal wakeful responsiveness than LOC. 798 
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Taken together, our prediction results highlighted an important role for 799 

frontoparietal connections. This is perhaps not surprising, as wakeful awareness 800 

is known to recruit the DMN (Raichle & Snyder, 2007);  maintaining a state of 801 

conscious responsiveness requires an interaction between the posterior hot zone 802 

(the role of which is highlighted when modelling the change between states) 803 

and frontal areas, mediated by the frontoparietal connections. Previous literature 804 

has suggested dynamic changes in connectivity between brain networks during 805 

cognitive control (Cocchi, Zalesky, Fornito, & Mattingley, 2013; Leech, Braga, 806 

& Sharp, 2012) and anaesthetic-induced loss of consciousness (Luppi et al. 807 

2019). The importance of frontoparietal connections in the present study when 808 

predicting states of behavioural responsiveness  – a state of higher integration 809 

than LOC – is consistent with the notion that conscious, behavioural 810 

responsiveness requires a brain-wide “global workspace” supported by the 811 

frontoparietal network (Baars, 1997; Dehaene & Changeux, 2011;  Dehaene, 812 

Changeux & Christen, 2011; Mashour, Roelfsema, Changeux, & Dehaene, 813 

2020). Hence, it is perhaps no surprise that the role of frontoparietal connections 814 

became prominent when we predicted individual states of consciousness rather 815 

than the contrast between them. 816 

Lastly, a number of previous studies have suggested a pivotal role of 817 

subcortical structures in transitions to unconsciousness (e.g. Baker et al., 2014; 818 

Liu et al., 2013; White & Alkire, 2003). Crone et al. (2017) reported a 819 

breakdown of connectivity between the globus pallidus and posterior cingulate 820 

cortex connectivity during LOC, followed by a reversal at recovery. It remains 821 

a possibility that the effective connectivity modulations found in the present 822 

study – especially in relation to the PCC/precuneus - are driven by subcortical 823 
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structures that we did not model here, given the limitations of scalp EEG signals 824 

(Goldenholz et al., 2009). It might be worthwhile to further investigate the 825 

effects of LOC with fMRI DCMs, including large-scale models combining 826 

cortical and subcortical nodes with PEB with BMR to conduct a wider 827 

exploration of the model space.  828 

In addition to the modelling being limited only to cortico-cortical 829 

connections, some of our results are arguably propofol-specific; for example, 830 

very different alterations have been observed between propofol and ketamine 831 

(Driesen et al., 2013; Sarasso et al., 2015). It may be modelling the cortical 832 

effects of other anaesthetic agents would lead to very different sets of results. 833 

Despite using propofol as the tool to modulate the state of consciousness, we 834 

decided to model the effects using DCM and the standard neuronal model (ERP; 835 

based on the Jansen-Rit model), rather than models designed to better capture 836 

the subtle properties of the EEG spectrum during anaesthesia (see for example 837 

Bojak & Liley, 2005; Hutt & Longtin, 2010). Here, the methods were chosen 838 

based on the aim to model consciousness rather than the subtleties of 839 

anaesthesia. Lastly, as we tested only a pre-specified model space, the 840 

limitations imposed by this scope might have missed important mechanisms of 841 

conscious awareness not modelled here. 842 

Notwithstanding these points, our results highlight a selective 843 

breakdown of inter- and intra-RSN effective connectivity in the parietal cortex, 844 

reinforcing the role of the posterior hot zone for human consciousness. 845 

However, modulations of frontoparietal connections were consistent enough to 846 

predict states in unseen data, demonstrating their causal role in maintaining 847 

behavioural responsiveness.  848 
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