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A fundamental problem in science is uncovering the effective number of dynamical degrees of
freedom in a complex system, a quantity that depends on the spatio-temporal scale at which the
system is observed. Here, we propose a scale-dependent generalization of a classic enumeration
of latent variables, the Participation Ratio. We show how this measure relates to conventional
quantities such as the Correlation dimension and Principal Component Analysis, and demonstrate
its properties in dynamical systems such as the Lorentz attractor. We apply the method to
neural population recordings in multiple brain areas and brain states, and demonstrate fundamental
differences in the effective dimensionality of neural activity in behaviorally engaged states versus
spontaneous activity. Our method applies broadly to multi-variate data across fields of science.

In many branches of science, complex systems are
characterized by the simultaneous values of a large
number of observables evolving over time. For example,
in cell biology, the operational state of a cell may be
summarized by the expression levels of myriad proteins.
Likewise, in neuroscience, the instantaneous activity
levels of the many neurons in a brain region summarize
the state of the system [1]. The dynamics of these
systems can be much lower dimensional. For example, at
the coarsest scale, the overall dynamics of a brain area
may just be described by a slow fluctuation in the mean
neural firing rate, i.e., by a single dynamical variable
[2, 3]. At some intermediate scale, the same dynamics
could consist of a certain number of characteristic firing
patterns evolving smoothly on a fixed d-dimensional
curved manifold embedded in the state space. If we
knew the underlying dynamical system, we could derive
from first principles the relevant manifold at each scale
of dynamics. But in many of the most exciting complex
systems that are becoming accessible to experimental
study, our goal is to discover the dynamical system, a
task that starts by determining the necessary number of
effective latent variables, i.e., the dimensionality of the
system.

One approach to this problem has its roots in basic
point-set topology. In this approach, we recognize that a
manifold is d-dimensional if we find that the number of
uniformly sampled points within a region of characteristic
length L scales as Ld. This fact leads to definition of the
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capacity dimension D0 [4] in terms of the number n of
Euclidean boxes needed to cover the system’s trajectory
in its embedding space: D0 = limL→0

log n
log(1/L) . This

intuitive notion of dimension is difficult to compute in
more than three dimensions [5], and faces the challenge
that sampling of dynamical systems is often too coarse
to directly estimate the L→ 0 limit [6–8]. A variation on
this idea that is easier to estimate from high dimensional
data is the Correlation dimension Dcorr, [9] which is
determined by the scaling of the number of pairs of
data points with separations less than r, in the r →
0 limit. In this way, the capacity dimension and
the Correlation dimension both give local, fine-scale
measures of dimension [9, 10].

A second class of approaches to the problem of
measuring dimensionality starts with the correlation
matrix between observations. There are many techniques
related to the classic Principal Components Analysis, in
which the effective dimension is defined as the number
of eigenmodes of the correlation matrix of the data
that are sufficient to capture most of the variance. A
substantial literature analyzes how to choose a threshold
that determines when “most” of the variance has been
captured [4, 11], but this choice leads to a certain
arbitrariness, and makes it challenging to define the
dimension associated to different scales of observation
[12, 13]. A more natural way to define a dimension from
the correlation matrix is by computing the Participation
Ratio [1, 14] of the eigenvalues, namely, a ratio of the
square of the first moment and the second moment
of the probability density function of the eigenvalues
[15]. As we will discuss, this quantifies the number of
effective dimensions along which the data are spread. In
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what follows, we will generalize the Participation Ratio
dimension to measure the effective dimension at different
scales of observation, and will show that this quantity
interpolates between the Correlation dimension at small
scales and the Participation Ratio dimension globally.
We will further show that the quantity has an intuitive
meaning when applied to known dynamical systems, and
then use it to extract insights into the structure of neural
population activity in different brain areas and brain
states.
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FIG. 1. Correlation and Participation Ratio dimensions on
benchmark examples. a) Distribution of 105 points sampled
from the Lorentz attractor. b) Scale-dependent Correlation
dimension of the Lorenz attractor. In the small scales
limit, the Correlation dimension matches the expectation
from dynamical system analysis, the Lyapunov exponent 2.05,
while in the opposite limit, it goes to zero. c) Scale-dependent
Participation Ratio dimension of the Lorentz attractor. The
dimension at every scale is averaged over 100 randomly
sampled points. Error bars represent the standard error
over such statistics. Inset: zoomed in scaled version of
the same plot (scaled y-axis, same x-axis). This dimension
is a good estimator of the dimension for several orders of
magnitude. e) Distribution of 105 points sampled from the
the 2d spiral with local 2d noise. This dataset is locally two
dimensional at small scales due to the added noise, then one
dimensional at intermediate scales and finally two dimensional
at larger scales. e) Correlation dimension of the 2d spiral wave
interpolates between 2 to 1 at small scale but then decays to
zero non-monotonously for larger scale. f) Participation Ratio
dimension of the 2d spiral. This quantity provides a good
predictor of the real dimensionality of the system on the full
range of scales that we studied.

Consider a set of T observations of N observables
x(i = 1..T ) sampled from an underlying probability

distribution M. In a dynamical systems context,
x(i) could be the ith point generated by an iterative
process x(t + τ) = F(x(t)) with fixed or varying initial
conditions. But, more generally, M is the distribution
of the data regardless of how it was generated. The
empirical covariance matrix Σ over the observations x(i)

is Σ = 1
T−1

∑T
i=1(x(i)− x̄)(x(i)− x̄)T a N ×N matrix,

where the average x̄ = 1
T

∑T
i x(i). The eigenvalues of

the covariance matrix Σ are λi=1..N and the associated
spectral density in the continuous limit is ρ(λ). The
Participation Ratio dimension, DPR, is defined as the
ratio between the second and the first moment of the
spectral density [15]:

DPR =
Tr(Σ)2

Tr(Σ2)
=

(
∑N
j=1 λj)

2∑N
i=1 λ

2
j

=
(
∫
λ ρ(λ) dλ)2∫
λ2 ρ(λ) dλ

(1)

This object is a measure of concentration of the
eigenvalue distribution and quantifies how many
eigenmodes are necessary to significantly capture the
overall distribution of observationsM, similarly to using
the number of eigenmodes of Σ that are sufficient to
capture most of the variance.

To extend DPR to a measure of dimensionality at
different scales, we first compute, for each point xi,
the local covariance matrix of points up to a distance,
r. In local Principal Components Analysis (lPCA),
the dominant eigenvectors of this matrix determine the
local subspace in which the distribution M is localized.
Computing the Participation Ratio dimension of this
local covariance gives a measure of local dimension.
Averaging this measure over all starting points yields the
averaged quantityDPR(r) which is an effective dimension
of the manifold up to the scale r.

We can compare this scale-dependent notion of
effective dimension to another notion that arises from
a generalization of the Correlation dimension that is
defined as follows [16, 17]. Let dij = ||xi − xj || be
the distance between any two sampled observations, with
the correlation integral at distance r defined as C(r) =
limT→∞

1
T (T−1)

∑
i 6=j H(r−dij) =

∫ r
0
P (x) dx , where H

is the Heaviside step function and P (x) is the distribution
of pairwise distances. We expect that C(r) ∝ rd, at least
for small values of r, where d is the dimension of the
manifold which supports the data distribution M. Thus

we defined Dcorr = limr→0
log C(r)

log r . Although Dcorr is
defined in the r → 0 limit, this quantity is sometimes
extended for a general r as the log-log derivative of the
correlation

Dcorr(r) =
d log C(r)

d log r
=

d

dv
log C(ev) , (2)

where v = log r [4].
In practice, for empirical observations where the

number of measurements T is finite, a robust estimate of
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the Correlation dimension requires a test of covergence.
When the dimension is relatively stable across a range
of scales, one looks for a plateau in Dcorr(r) [16].
This definition of dimension has been very successful in
treating strange attractors in chaotic systems in the sense
that the Correlation dimension (i.e., limr→0Dcorr(r))
agrees with the well-known Lyapunov dimension which
controls dynamical properties of the system [18, 19]. If
we apply the generalization (Eq. (2)) across scales r > 0
we encounter a sampling challenge when the manifold is
high dimensional. Because of this, even if the manifold
has a fixed dimension across scales, it can be difficult
to find the plateau in Dcorr(r) that is a sign of robust
estimation [6, 8, 20]. The problem is compounded if we
expect the effective dimension to vary with scale in the
first place because we would then need enough data to
compute a bootstrap measure of the reliability of the
scale-dependent estimate of dimensionality.

We can get an intuitive understanding of the
Correlation dimension Dcorr(r) and of the Participation
Ratio DPR(r) by evaluating them on two known
examples, the Lorentz attractor and the 2d Spiral with
added local 2d noise (Fig. 1) [4]. In the case of the
Lorentz attractor, both DPR(r) and Dcorr(r) recover an
effective dimension just bigger than 2 locally (i.e. as
r → 0), matching expectations from dynamical systems
analysis [19]. However, as the scale, i.e. r, increases, we
see that the two measures have very different behavior.
At large scales the Correlation dimension declines to
0. This is because the Lorentz attractor is a compact
manifold and if we examine it naively at very large scales
it looks pointlike. At a technical level, this follows from
the derivative with respect to the scale r of the correlation
integral in the definition of the Correlation dimension
(Eq. (2)). By contrast the participation ratio dimension
remains roughly constant across scales. This is because
this quantity includes correlations between every pair
of datapoints up to the scale r, and not just at this
scale, and then includes an adaptive rescaling of lengths
(the denominator of the definition in (Eq. (1)), so that
the effective dimension remains comparable across scales.
We see a similar pattern in the analysis of spiral with
local noise in Figs. 1d to 1f, where again the Correlation
dimension declines to zero at large scales while the
Partiticipation Ratio dimension correctly captures the
essentially two-dimensional structure. The effective
rescaling that leads to a finite Participation Ratio
dimension even at large scales is especially important
for analyzing high dimensional, finite size datasets. In
this case, the data is always sub-sampled simply because
it is difficult to explore a large number of dimensions,
and thus it is hard to be certain whether the Correlation
dimension is small because the data manifold is really low
dimensional, or because of the asymptotic effect of Dcorr

going to zero at large r. Thus the Participation Ratio
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FIG. 2. a) (Left) scale-dependent Correlation dimension
and (Right) scale-dependent Participation Ratio of the
multidimensional isotropic Gaussian distribution. Different
lines correspond to increasing dimension d, cf. legend. b)
(Left) scale-dependent Correlation dimension and (Right)
scale-dependent Participation Ratio for the two-dimensional
skewed gaussian distribution. The first eigenvalue of
the diagonalized covariance matrix Σ of this distribution
is λ1 = 1 while the second varies according to the
legend determining the elongation of the distribution. c)
(Left) scale-dependent Correlation dimension and (Right)
scale-dependent Participation Ratio of the multidimensional
Gaussian distribution with scale-free power law spectrum.
Different lines correspond to increasing dimension d, cf.
legend. In this last case, the dimensions have eigenvalues
which are distributed according to a power-law with α = −4
so that the k-th eigenvalue is λk = k−α. For each case under
study, 50000 points were randomly sampled.

dimension is likely to give more useful information.

To understand the relation between DPR and Dcorr,
it is helpful to consider these quantities at small
data separations r, in which case we take a tangent
space approximation to the data manifold. The data
themselves will be distributed on this tangent space (or
narrowly around it if there is noise). Additionally, both
DPR andDcorr are constructed from the second moments
of data. Thus, locally, we can consider a second order
moment approximation of the data

M ≈ MGauss = (2π)−N/2|Σ|−1/2e−
1
2 (x−µ)Σ(x−µ)

where µ is the mean of the distribution and Σ the
covariance matrix. Let us consider the rotated and
centered coordinate system where µ ≡ 0 and Σ is
diagonal. In this presentation, sampled vectors xi have
coordinates xa=1..N

i that are normally distributed xa ∼
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N (0, λa) where λa is the eigenvalue of the covariance Σ
corresponding to axis a. Thus the Participation Ratio
dimension is DPR = (

∑
a λa)2/

∑
a λ

2
a.

To compare this to the Correlation dimension we
want to compute the distribution P (x2) of squared

Euclidean distances d2
ij =

∑N
a d

2
a between sampled

points xi and xj . Note first that the difference squared
d2
a along the ath axis of vectors xi,xj sampled from
M is distributed according to a Gamma distribution:

Γ(k, θa)(x) = xk−1e−x/θ

θkΓ(k)
with x > 0 where k = 1/2 and

θa = 2λa. The overall distribution of Euclidean squared
distances, P (x2), is then the convolution of independent
Gamma distributions. It is approximately [21, 22] a
Gamma function with parameters (ks, θs) given by the
Welch-Satterthwaite equations [23, 24] which simplify in
our case to:

ks =
1

2

(
∑
a θa)

2∑
a θ

2
a

θs =

∑
a θ

2
a∑

a θa
. (3)

The correlation integral is then C(r) =
1

Γ(ks)

∫ t
0
uks−1e−u du where t = r2/θs. Then, for

r � θs, the exponential is approximately 1, and we

obtain that Dcorr = limr→0
1

log r log r2ks

ksΓ(ks)θ
ks
s

= 2ks.

This yields:

Dcorr = 2ks =
(
∑
a θa)2∑
a θ

2
a

=
(
∑
a λa)2∑
a λ

2
a

= DPR(r) . (4)

We conclude that the Participation Ratio DPR coincides
with the system’s Correlation dimension Dcorr at small
scales. In this sense DPR(r) agrees with a well-accepted
local definition of dimension and generalizes this notion
across scales in a different manner than the extension
Dcorr(r) in (Eq. (2)).

To illustrate the relationship between the two studied
measures we numerically computed Dcorr(r) and DPR(r)
as a function of the scale r for isotropic multidimensional
Gaussians, validating the analytical results (Fig. 2a and
Fig. S1). While Dcorr decreases at larger scales, DPR

remains constant. Furthermore we see how, limiting the
sampled statistics to N = 50000 points it is not possible
to achieve a plateau in Dcorr , even for a dimensionality
of 10 – so that evaluating the dimensionality of the
system from the plot of the Correlation dimension in
Fig. 2a(left) is difficult if not impossible. In the case of
a two dimensional Gaussian with increasing elongation
along one of the two coordinate axes, Fig. 2b, the
Correlation dimension captures well the local dimension
of 2 for r → 0 but doesn’t allow one to quantify the
increasing skewness of the distribution. Similarly DPR

allows the quantification of both its local dimension of 2
and its skewness, which induces a lower dimension at
larger scales. A third important example, Fig. 2c, is
the case of a scale-free system where the distribution
of eigenvalues of the correlation matrix is power-law.

Systems with such properties are often deemed to be
near criticality and are studied in a number of contexts.
In this case DPR is more effective than Dcorr as it
saturates at a finite value that depends only on the
power law coefficient of the scale-free spectrum, while
the Correlation dimension doesn’t display any plateau.
Plugging a scale-free spectrum, λa = βa−α , into the
formula for DPR we find:

DPR =
(
∑N
i λi)

2∑N
i λ

2
i

=
(
∑N
a βa

−α)2∑N
a βa

−2α
=
ζ(α)2

ζ(2α)
, (5)

where ζ(α) denotes the Riemann Zeta function evaluated
in α. For these systems DPR and −α are in one to one
correspondence, Fig. S2. The higher is the value of α,
the smaller is the dimensionality DPR of the system [25].

Dcorr vs DPR across brain regionsa
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FIG. 3. State dependent dimensionality of neural activity. a)
Scale-dependent dimensionality analysis across brain regions.
For each brain region the scale dependent Correlation
dimension and Participation Ratio has been computed and
averaged across sessions (cf. Suppl.Mat.). The scale varies
from local scale (value of 0) to global scale (value of 1).
Each line represents a separate condition as reported in the
legend. Shaded areas represent 95% confidence interval across
experimental sessions. b) Dimensionality for different brain
regions. Error bars represent 95% confidence interval across
experimental sessions. c) Scale-dependent dimensionality
modulation ∆AB between conditions A and B across brain
regions. Shaded areas represent 95% confidence interval. The
blue line represents ∆AB with A equals to engaged and B
equals to spontaneous, while the green line represents the
conditions A, spontaneous, and B, passive.

We applied our method of quantifying scale-dependent
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system dimensionality to the neural activity of thousands
of simultaneously recorded neurons [26]. Massive neural
recordings of this kind are becoming possible because of
technological advances [27, 28], and a pressing question
is how to uncover and characterize the dimensionality of
the underlying neural dynamics [1, 25, 29]. However,
it has not yet been determined whether the relevant
dimensionality differs across scales. Here, we illustrate
how the scale-dependent Participation Ratio dimension
DPR(r) reveals the differences in dimensionality across
scales, brain areas, and brain states.

To this end, we analyzed multielectrode Neuropixels
recordings in four brain regions: visual thalamus, visual
cortex, frontal cortex and midbrain. The first two
are primarily sensory areas while the second two are
involved in decision making [26, 30, 31]. We compared
across two conditions: (i) spontaneous, where the animal
was awake but with no specific task, (ii) engaged,
where the animal performed a two-alternative forced
choice task (cf. Suppl.Mat.) [26]. For each of the
37 recording sessions we analyzed the activity of all
neurons, subdividing them in groups of 100 neurons
each to allow comparison across recording sessions which
sampled variable numbers of neurons. For each region
and group of neurons we computed vectors of neural
action potential counts in 100 ms bins. We then analyzed
Dcorr(r) and DPR(r) with varying scale parameter r
(Fig. 3a).

As expected from the analysis above, Dcorr(r)
rapidly converged to 0 when increasing the scale r.
However, DPR was more stable, enabling us to analyze
dimensionality across a wide range of scales. Intriguingly,
this dimensionality depended systematically on scale in
visual cortex, midbrain, and frontal cortex – decreasing
at larger scales (DPR(rmin)/DPR(rmax) = 1.63 ± 0.05
mean ± s.e.m., p=2.9 · 10−4, t-test) – but was roughly
constant across scales in the visual thalamus (Fig. 3a).
We emphasize that r is computed in terms of distances
between neural response vectors, and thus represents a
scale in the functional space of neural activity, rather
than physically on the cortical sheet. Thus, we see that
there are more degrees of freedom separating nearby
vs distant neural responses in many areas, but that
tendency this is not universal in the brain – in the visual
thalamus, responses were instead equally rich across
small and large scales.

Comparing dimensionality across brain regions in the
visual stream (Fig. 3b), we observed that at every
scale we studied the thalamus had a significantly higher
dimensionality than visual cortex (p=2.7 · 10−60, t-test).
Note that while anatomical expansion presumably entails
a higher dimensionality of image representation in visual
cortex than in thalamus [32], here we measured not
the dimensionality of image representations, but instead
the dimensionality of ongoing activity patterns during
conditions with limited visual stimuli. We also found that

frontal cortex had a higher dimensionality than midbrain
in the engaged, but not spontaneous condition – and this
difference was prominent at smaller scales only accessible
by means of our analysis.

To directly compare changes in neural dimensionality
between behavioral conditions, we analyzed the
relative dimensionality difference, defined as
∆DAB

PR = DA
PR −DB

PR, between conditions A (engaged)
and B (spontaneous) (Fig. 3c, blue line). This difference
was significantly different than zero in both frontal
cortex and midbrain (p=2.9 · 10−26 and p=7.0 · 10−27

respectively, t-test). Specifically, task-driven neural
activity was lower dimensional than spontaneous,
and this difference was more prominent at small and
intermediate scales. The same significant difference
was not found in visual areas. To further evaluate the
dependence of dimensionality on behavioral task, we
compared against a third condition, called “passive”.
In this condition, the same stimuli previously presented
during the decision task were presented in randomized
order without any behavioral response from the subject.
The difference ∆DAB

PR between spontaneous and passive
was not significantly different from zero (green line).
This highlighting the stronger dimensionality modulation
induced by task-evoked activity, across a range of scales.

We concluded that our method of quantifying
scale-dependent system dimensionality can extract new
and fundamental features of neural activity patterns
recorded across the brain. Specifically, dimensionality is
not always characterized with a single number, but can
vary systematically with scale across the brain: while
some areas had the same dimensionality across all scales
(Thalamus) others (cortex and midbrain) displayed a
decrease at large scales. Nevertheless, clear hierarchies in
dimensionality across brain areas exist, and hold across
wide ranges of these scales. Finally, we showed how and
where dimensionality varies with state.

Our work establishes the Participation Ratio as a
theoretically grounded measure of dimensionality for
complex systems at all scales. This has the potential
to impact analyses in the many fields of science
that have independently arrived at the Participation
Ratio as a measure of ‘effective’ instrinsic dimension.
In physics this ratio was first introduced in atomic
spectroscopy [33, 34] and then used as a measure
of localization in condensed matter physics [15]. In
quantum information the same quantity is called the
“purity”, and measures the degree of mixedness of
quantum states. In economics and sociology a similar
quantity, the Herfindahl–Hirschman Index, measures the
market concentration of an industrial sector [35, 36]. In
sociology the related Simpson index quantifies diversity
[37], while in politics it is a measure of the effective
number of parties [38]. In machine learning the same
quantity serves as a metric of expressivity for learning
kernels [39], and in neuroscience, this quantity is used
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to measure the dimensionality of neural activity [1, 40,
41]. The ubiquitous use of the Participation Ratio to
measure the effective dimension of a complex dynamical
system underscores its efficacy. However, as we have
emphasized, complex systems have different behavior
if observed at different scales and so their intrinsic
dimension at different scales need not be a constant.
The scale-dependent Participation Ratio as a measure
of “running dimension” capturing the effective number
of latent degrees of freedom required to summarize
the observables at different scales. Our method is
amenable to further theoretical analysis as DPR is a
simple functional of the second order statistics of a
system can be analytically computed in many interesting
theories [41, 42], and can be directly used to analyze
high dimensional data such as the multi-electrode neural
recordings that we studied.
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