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Summary  

Understanding how the brain computes choice from sensory information is a central question of 

perceptual decision-making. Relevant behavioral tasks condition choice on abstract or invariant 

properties of the stimuli, thus decoupling stimulus-specific information from the decision variable. 

Among visual tasks, orientation discrimination is a gold standard; however, it is not clear if a mouse – 

a recently popular animal model in visual decision-making research – can learn an invariant orientation 

discrimination task and what choice strategies it would use.  

Here we show that mice can solve a discrimination task where choices are decoupled from the 

orientation of individual stimuli, depending instead on a measure of relative orientation. Mice learned 

this task, reaching an upper bound for discrimination acuity of 6 degrees and relying on decision-

making strategies that balanced cognitive resources with history-dependent biases.  

We analyzed behavioral data from n=40 animals with the help of a novel probabilistic choice model 

that we used to interpret individual biases and behavioral strategies. The model explained variation 
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in performance with task difficulty and identified unreported dimensions of variation associated with 

the circularity of the stimulus space. Furthermore, it showed a larger effect of history biases on 

animals’ choices during periods of lower engagement.  

Our results demonstrate that mice can learn invariant perceptual representations by combining 

decision-relevant stimulus information decoupled from low-level visual features, with the 

computation of the decision variable dependent on the cognitive state.    
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Introduction  

Most of behaviorally relevant information in visual scenes is given by the objects and relationships 

between them rather than the low-level visual features. Accordingly, animals and humans can form 

high-level neural representations invariant to specific peripheral sensory activations (DiCarlo et al., 

2012). These invariant perceptual representations can correspond to relative properties of objects, 

such as spatial arrangement (Krechevsky, 1938; Lashley, 1938), shape and color similarity (Martinho 

and Kacelnik, 2016), relative contrast (Burgess et al., 2017), and relative density or numerosity (Dakin 

et al., 2011).  

In decision-making research, tasks that rely on such invariant relative categories are a valuable tool 

that allows researchers to separate the neural representation of the decision variable from sensory 

representations, which are often encoded by the same neural populations (Akrami et al., 2018; Pho 

et al., 2018; Romo et al., 1999; Steinmetz et al., 2019). In visual tasks of this type, information about 

the correct choice can be given by the difference between easy-to-parameterize features, such as the 

number of light flashes (Constantinople et al., 2019; Scott et al., 2015) or visual objects (Pinto et al., 

2018), or contrast of oriented gratings (Burgess et al., 2017; Steinmetz et al., 2019), with the same 

value of decision variable given by many possible stimulus combinations.  
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Mice are a recently popular model animal for visual decision-making research (Carandini and 

Churchland, 2013); however, their ability to form invariances in an orientation discrimination task – a 

gold standard in vision research – and associated choice strategies have not been demonstrated. 

Although orientation discrimination is highly motivated by the efficiency of psychophysical (Campbell 

and Robson, 1968; Watson et al., 1983) and neural responses (Hubel and Wiesel, 1962), existing 

protocols for mice are based either on change detection (Glickfeld et al., 2013) or target-distractor 

discrimination paradigms (Reuter, 1987; You and Mysore, 2020). Thus, they should be interpreted as 

fundamentally detection tasks since a specific orientation is always either a target or a non-target 

stimulus. An invariant orientation discrimination task would instead rely on a relative orientation 

measure, permitting situations in which the same orientation is a target in one trial and a non-target 

in another.   

Here we trained mice in an orientation discrimination task in which an animal was to indicate the more 

vertical orientation of the two simultaneously presented grating stimuli. Mice (n=40) learned the task, 

all exceeding the performance level of 65% correct, with up to 83% correct. Animals solved the task 

by adopting different strategies, which we captured with a novel behavioral model that quantified 

individual biases and the systematic variation of performance with both task difficulty and other 

factors. Furthermore, we explored the contribution of serial choice biases at different levels of 

engagement, and estimated orientation discrimination acuity that reached an upper bound of 6 

degrees.  

Finally, we discuss the advantages of our task for understanding the computation of decision in visual 

areas (DiCarlo and Cox, 2007), for linking neural and behavioral variability (Beck et al., 2012), and for 

studying suboptimal decision strategies and heuristics (Gardner, 2019). Given the availability of 

genetic tools, this work opens up a new level of questions about decision-making and the visual-to-

cognitive link that can be pursued and explored in mice. 
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Results 

Training and task 

We trained n=40 transgenic mice in a 2AFC orientation discrimination task using an automated setup, 

in which the animal voluntarily fixed its head to initiate an experimental session (Aoki et al., 2017) 

(Figure 1A, top). Two oriented Gabor patches were simultaneously shown on the left and right sides 

of the screen, and in order to obtain water animals had to identify a more vertically oriented one 

(n=28; more horizontally, n=12) and move it to the center of the screen by rotating a wheel 

manipulator (Aoki et al., 2017; Burgess et al., 2017). Crucially, the target was not vertical on most trials, 

and animals had to compare the verticality of two orientations. The same physical stimulus could thus 

be a target or a non-target on different trials, making the task invariant relative to the orientation of 

individual stimuli (Figure 1A, middle). Orientations of both stimuli (𝜃𝐿 , 𝜃𝑅) were sampled at random 

from angles between -90° and 90° with a step size of 9° (3° for n=1 animal), with positive angles 

corresponding to clockwise and negative to counter-clockwise orientations relative to the vertical 

(Figure 1A, bottom). We used 9° spacing for most animals to sample a high number of responses for 

every angle condition, which was important for subsequent imaging experiments. Animals readily 

generalized across spatial frequencies and stimulus sizes (Figure S1). We analyzed a total of 1313355 

trials, ranging from 4591 and 82065 per animal with an average of 32834±2962 trials (mean ± s.e.) 

(Figure S1, Table 1).  

Mice reach high success rate in target-invariant task 

We quantified task performance using a standard cumulative Gaussian psychometric function 

(Wichmann and Hill, 2001) of angular separation Δ𝜃 = |𝜃𝐿| − |𝜃𝑅| between the two orientations, 

where |∙| denotes angular distance to the vertical (in short verticality), with small angular separation 

corresponding to difficult conditions and large angular separation corresponding to easy conditions. 

Angular separation Δ𝜃 = 0 corresponds to two equally vertical orientations, which are not necessarily 

parallel. Conditions with Δ𝜃 < 0 and Δ𝜃 > 0 correspond to a more vertical orientation on the left and 
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right side respectively (example animal, Figure 1B; population, Figure 1C). Mice reached an average 

success rate of 0.75±0.01 with an average sensitivity of 𝜎=42.93±1.18°.  

The task disentangles any given probability of choice from specific orientations, and a fixed difficulty 

Δ𝜃  that corresponds to one point on the psychometric curve is given by many possible pairs of 

orientations (𝜃𝐿, 𝜃𝑅). For example, Δ𝜃=30° corresponds to orientation pairs (30°,0°), (-60°,30°), and 

many others (Figure 1D). Conversely, no specific orientation was always rewarded, since for any 

orientation (except 0°) there was a possibility of the other orientation being more vertical.  

As a consequence, this task design compels the animal to estimate the verticality of left and right 

orientations, |𝜃𝐿| and |𝜃𝑅|, and compare their estimates, rather than detect a learned orientation.  

Animals may not strictly adhere to this ideal strategy, so long as they get sufficient water reward in an 

experimental session. With choice variability taken into account, an animal looking at only one of the 

two stimuli will perform at 63.07±0.59% (Methods), exceeding the 50% chance level, but not reaching 

satiation. In the following we will introduce a model that will quantify how animals combine 

information from the two orientations while also capturing deviations from the ideal strategy. 

Choice model 

The psychometric curve quantifies the animal’s behavior along a single dimension of difficulty Δ𝜃. 

However, given the task structure, the complete representation of the stimulus space is two-

dimensional, with a unique stimulus condition corresponding to a pair of angles (𝜃𝐿 , 𝜃𝑅). In this space, 

a fixed Δ𝜃 is given by all stimulus conditions along the iso-difficulty lines (branches) that lie in four 

quadrants of the space and correspond to four different combinations of angle signs (Figure 1D). We 

therefore consider probability of right choice, P(R), for all stimulus conditions in this space.  

To get a better insight into the factors that affect an animal’s choices, we developed a psychometric 

model that provided a functional mapping from the two-dimensional stimulus space to the choice 

probability P(R).   

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.20.423700doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.20.423700
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

We assume that in every trial a mouse makes noisy estimates (𝜃𝐿
∗, 𝜃𝑅

∗) of both orientations (𝜃𝐿 , 𝜃𝑅), 

compares their verticalities (|𝜃𝐿
∗|, |𝜃𝑅

∗ |), and makes a choice (Figure 2A). The probability of a right 

choice P(R) in this procedure is expressed as an integral of the distribution of estimates 𝑝(𝑥, 𝑦) over 

the |𝑥| < |𝑦| subspace, corresponding to |𝜃𝑅
∗ | < |𝜃𝐿

∗| (Figure 2B) (Methods: Eq. 1). The shape of the 

P(R) surface over the stimulus space (𝜃𝐿 , 𝜃𝑅) (Figure 2C, left) is therefore determined only by the 

parameters of the distribution 𝑝(𝑥, 𝑦). 

We model these distributions using circular von Mises functions 𝑝(𝑥|𝜃𝑅; 𝜅𝑅)  and 𝑝(𝑦|𝜃𝐿; 𝜅𝐿) 

centered at 𝜃𝑅 and 𝜃𝐿 equal to the true orientations, and with variability for each target quantified by 

the concentration parameters 𝜅𝑅 and 𝜅𝐿. High concentrations correspond to low variability of angle 

estimates, and 𝜅 is thus qualitatively inverse to the standard deviation and can be interpreted as 

certainty of orientation estimates (Drugowitsch et al., 2016; Laquitaine and Gardner, 2018). For 

example, a distribution of estimates 𝑝(𝑥, 𝑦)  is broader and shallower along the axis of lower 

concentration (Figure 2D, left column, top), making P(R) more independent of the respective stimulus 

(Figure 2D, left column, middle).  

Estimates of each orientation can be systematically biased, with an animal consistently making choices 

as if the right or the left orientation were rotated more clockwise or counter-clockwise. These 

systematic errors are accounted for by translational biases 𝑏𝑅, 𝑏𝐿 (Figure 2D, center column), which 

move 𝑝(𝑥, 𝑦) and consequently P(R) surface relative to the angle axes without changing their values.  

Both the translational biases and certainty parameters change the slope of the psychometric curve 

but not its left-right choice bias (Figure 2D, bottom row), with this effect generally indistinguishable 

in the Δ𝜃 space as opposed to the complete stimulus space. Lower or higher certainty results in a 

shallower or steeper P(R) respectively, and a shallower or a steeper psychometric curve. On the other 

hand, a translational bias displaces the entire P(R) surface, overall decreasing performance for every 

Δ𝜃 in the space of the psychometric curve.  
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To model a choice bias towards right or left, we introduced a family of prior distribution functions or 

choice priors 𝑝𝑏(𝑥, 𝑦; 𝜅𝑏) parameterized by prior concentrations 𝜅𝑏 (Figure 2E). Choice priors make 

an orientation on the right or on the left effectively appear more vertical – as opposed to more 

clockwise or counter-clockwise – or equivalently make an animal more certain about the verticality of 

that stimulus (Figure 2D, right column) (Methods, Eq. 2).  

For example, choice prior for a rightward bias has a peak at (90°,0°) (Figure 2E, right, 𝜅𝑏 > 0) and 

increases probability of a right choice for any pair of orientations (Figure 2D, right column) by biasing 

𝑝(𝑥, 𝑦) to the |𝑥| < |𝑦| region (Figure 2D, right column, green arrows).  

Concentrations, translational biases, and prior concentration {𝜅𝑅 , 𝜅𝐿 , 𝑏𝑅 , 𝑏𝐿, 𝜅𝑏} thus determine our 

model of choice, which allows for a more complete analysis of P(R) than the psychometric curve. The 

model predicted a previously unexplored property of P(R): its variation along the branches of a fixed 

Δ𝜃. A model with zero biases and an equal certainty for both orientations (𝜅𝑅 = 𝜅𝐿) predicted the 

decrease of P(R) whenever either orientation was close to 0° or 90°, and an increase when close to 

45° (Figure 2B-C). We parameterized this variation using reference orientation 𝜃𝑟𝑒𝑓 = min⁡(|𝜃𝐿|, |𝜃𝑅|), 

i.e. the orientation of the more vertical stimulus. The source of this variation is clear from the position 

of 𝑝(𝑥, 𝑦) relative to the category boundary |𝑥| = |𝑦| when considered along one branch of a fixed 

Δ𝜃  (Figure 2B): the probability mass of orientation estimates that result in error judgments (e.g. 

|𝜃𝑅
∗ | > |𝜃𝐿

∗| when |𝜃𝑅| < |𝜃𝐿|) is higher around 𝜃𝑟𝑒𝑓=0° and 𝜃𝑟𝑒𝑓=90° than around 𝜃𝑟𝑒𝑓=45°. This 

effect arises from the variability of both orientation estimates and their interaction with the category 

boundary in the circular space, and cannot be replicated by the psychometric curve whose only input 

variable is Δ𝜃. 

In summary, by combining information from two orientations, our model predicted a dependency of 

choice probability not only on difficulty but also on reference orientation. This latter variability 

necessarily follows from the circularity in the input stimulus space given a limited certainty in 

orientation estimates.  
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The model captures animals’ choices 

We next analyzed choice probabilities of mice in the two-dimensional stimulus space. For the 

population of animals, P(R) varied with difficulty Δ𝜃, as expected from the psychometric curves (Figure 

1B,C), and with reference 𝜃𝑟𝑒𝑓 (Figure 2F), as predicted by our model (Figure 2B-C). For a fixed Δ𝜃 >

0, P(R) was higher (and choices were more often correct) when orientations were far from horizontal 

or vertical (Figure 2F); while for Δ𝜃 < 0  P(R) was smaller (also more often correct) when the 

orientations were far from horizontal or vertical.  

The model reproduced this performance variation for individual animals (Figure 2G). However due to 

individual biases P(R) curves for fixed Δ𝜃 were additionally distorted in comparison to the unbiased 

case (cf. Figure 2C, right). Counterintuitively, P(R) for the same Δ𝜃  in different quadrants of the 

stimulus space could represent on average opposite choices (Figure 2G, center, right), which our 

model accounted for thanks to translational biases. The model successfully captured animal-specific 

differences in choice probabilities (Figure S3), explained data significantly better than the 

psychometric curve (ΔAIC = 798.8±141.9; ΔAIC>0 for all animals), and explained significantly more 

deviance (Runyan et al., 2017) (ΔDE=9.03±1.48%, p=1.07·10-6, signed-rank test) (Methods).  

Across the population of animals, average stimulus concentration values were high and positive – 

𝜅𝑅=2.22±0.69 (p=3.73·10-7, t-test) and 𝜅𝐿=1.76±0.52 (p=1.34·10-7) (Figure 2H, left) – showing that 

animals used both targets for the decision. Bias concentration 𝜅𝑏 was small (𝜅𝑏=-0.06±0.05, p=0.01), 

pointing to the mixed bias across the population. Translational biases (𝑏𝑅=0.14±0.05, p=3.71·10-6; 

𝑏𝐿=0.19±0.05, p=1.21·10-7) were similarly small but significant. 

Although the stimulus protocol, reward sizes, and session schedules were designed to motivate 

animals to use information of both orientations equally, we found that strategies of individual animals 

ranged from a balanced orientation comparison to relying on one target more than the other. We 

quantified this range of strategies with the ratio of log concentrations 𝜅𝑅 and 𝜅𝐿, with ratios close to 

1 for balanced strategies (Figure 2H, center). Right and left concentrations were significantly anti-
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correlated (ρ=-0.57, p=4.45·10-4, t-test α=5·10-3, corrected), reflecting a trade-off in animals that 

preferentially used information from either stimulus (Figure 2H, right). Despite this trade-off, best-

performing animals also had overall higher concentrations (p<0.05, ANCOVA, F-test of intercept with 

fixed slope), showing that while the task permitted a relative flexibility of choice strategies, a more 

accurate estimation of orientations was necessary for high success rates. Other parameters of the 

model did not significantly correlate between each other or with the concentration ratios.   

In summary, our model accounted for biases in animals’ behavior and explained performance 

variation with 𝜃𝑟𝑒𝑓. Individual animals weighted sensory information from two orientations differently, 

following strategies that were sufficient to obtain high amounts of reward, but were not perfectly 

aligned with the true stimulus-reward space. While left and right concentrations were anti-correlated 

across the population, high success rates required overall high certainty in orientation estimate. 

Discrimination acuity 

We used our model to estimate the minimal orientation difference that animals can reliably 

discriminate. A change in a pair of orientations that results in a significant change of P(R) is the smallest 

for conditions with the largest gradient of P(R). Since the numerical gradient directly computed from 

the data can be too noisy, we used our model to more accurately estimate maximum gradient 

conditions. 

We compared choice probability in stimulus conditions with the highest gradient and in neighboring 

conditions (Figure 3). We found that a change of either orientation by 9° resulted in a significant 

change of P(R) in 62.5% (n=25) of animals, and a change of 27° resulted in a significant change in all 

(n=40) animals (Figure 3A-E). In the only animal tested with a 3° sampling of stimuli, we found that 

changing both orientations by 3° along or against the gradient – amounting to a total change of 6° – 

resulted in a significantly different P(R) (p<0.001, both cases) (Figure 3F-I).  

In summary, our model allowed an in-depth analysis of discrimination acuity by utilizing a complete 

picture of the P(R) gradient and identifying stimulus conditions where the sensitivity to angle change 
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is the highest. We found that an angle change of 6° can be significantly detected based on the change 

of choice probability, thus establishing an upper bound for mouse orientation discrimination acuity.  

Effects of trial history 

Choice strategies are determined not only by preferential weighting of available sensory information, 

but also by trial history (Abrahamyan et al., 2016; Akrami et al., 2018; Busse et al., 2011; Corrado et 

al., 2005; Fründ et al., 2014; Urai et al., 2017; Yu and Cohen, 2008). To account for history-related 

biases, we included a history prior 𝑝ℎ(𝑥, 𝑦) parameterized with a concentration parameter 𝜅ℎ and a 

term ℎ that linearly depended on the previous trial’s choice 𝑟 and target orientation 𝑠 through history 

weights, ℎ = 𝑠ℎ𝑠 + 𝑟ℎ𝑟 (Busse et al., 2011; Corrado et al., 2005; Fründ et al., 2014). A pair of weights 

(ℎ𝑠, ℎ𝑟) determined the choice strategy of an animal, such as “win-stay” (Figure 4A, model example) 

or “lose-stay” (Figure 4A, example animal) throughout all trials, and in combination with the choice 

and target of the previous trial (𝑟, 𝑠) determined the history-dependent change of the P(R) (Figure 

S4A-E) and the psychometric curve (Fründ et al., 2014) (Figure 4A).  

Through the flexible family of history priors, our model captured a variety of strategies besides win-

stay (Figure S4F). Most of our mice showed a mild tendency for the “stay” strategy, followed by “win-

stay”, and rare cases of “lose-stay” (Figure 4C), largely in consistency with previous reports 

(Odoemene et al., 2018).  The history-dependent model explained data significantly better than the 

history-independent model (ΔAIC = 211.8±40.1; ΔAIC>0 for all but n=4 animals), and explained 

significantly more deviance (ΔDE=5.07±0.98%, p=8.1·10-6, signed rank test).  

We investigated whether animals rely on the history to a different extent during periods of relatively 

high and low engagement in the task, which we identified based on performance within a session 

(Methods). For each of the two engagement levels, we computed the difference between the trial-

average log-likelihood of choices given a model with a history prior and without: Δ𝐿𝑙  for low-

engagement trials, and Δ𝐿ℎ for high-engagement. The increase in explanatory power was larger in the 
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low-engagement trials (Δ𝐿𝑙 > Δ𝐿ℎ) (Wilcoxon test, p=2.12e-07) (Figure 4E), meaning that on these 

trials the choices were more strongly driven by the history biases.  

Difficult stimulus conditions were more susceptible to the influence of history priors than easy 

conditions (Figure 4F, left), in a way that depended on the engagement state of the animal. During 

periods of high engagement, inclusion of history priors led to a substantial improvement in the 

model’s performance only in the most difficult conditions (Figure 4F, center), while in the low 

engagement periods most stimulus conditions were affected (Figure 4F, right). 

In summary, in expanding our model to capture history-dependent biases, we found that most 

prominent strategies were “win-stay” and “stay”, and that choices were more affected by history 

biases during periods of lower engagement. Our observations demonstrate that choice heuristics can 

fluctuate together with the cognitive state of the subject (Whiteley and Sahani, 2012; Wyart and 

Koechlin, 2016).  

Discussion 

Using high throughput automated cages with voluntary head fixation, we trained a large cohort of 

mice (n=40; 1,313,355 trials) in a complex variant of a 2AFC orientation discrimination task. The task 

required mice to measure relative orientation, thereby decoupling choice from the orientation of 

individual stimuli. We quantified their behavior with a novel model of choice that accounted for the 

circularity of stimulus space and for individual choice biases and strategies. The model explained 

variation in choice probability not only with the task difficulty Δ𝜃 , but also with the reference 

orientation 𝜃𝑟𝑒𝑓, an effect not reported previously. With the help of the model we found that the 

maximum acuity of orientation discrimination in expert animals can be as small as 6°. History biases, 

ubiquitous in human and animal psychophysical experiments (Abrahamyan et al., 2016; Akrami et al., 

2018; Busse et al., 2011; Corrado et al., 2005; Fründ et al., 2014; Urai et al., 2017; Yu and Cohen, 2008), 

were modulated by animals’ engagement, affecting choices more strongly and on a broader set of 
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stimulus conditions whenever the engagement was relatively low. Our work responds to the need for 

a visual task that depends on abstract choice categories and is invariant to specific visual stimuli, but 

can be learned by mice, relies on basic visual features, and allows straightforward quantification 

within the framework of signal detection theory. We argue that besides these advantages, our task 

can be useful in engaging higher visual areas in the computation of decision (DiCarlo and Cox, 2007), 

and can give valuable insight into the relationship between neural and behavioral variability (Beck et 

al., 2012; Britten et al., 1996; Brunton et al., 2013; Drugowitsch et al., 2016; Renart and Machens, 

2014). 

Object recognition and discrimination tasks can be used to introduce perceptual invariances into 

decision-making experiments (DiCarlo and Cox, 2007; Rust and Stocker, 2010). In rodents, such 

experiments have been successfully carried out in rats (Tafazoli et al., 2012; Zoccolan, 2015; Zoccolan 

et al., 2009), with more recent ongoing research into object recognition (Froudarakis et al., 2020) and 

its ethological relevance (Hoy et al., 2016) in mice. However, in discrimination tasks, where distinct 

objects (rather than transformations of the same object) can correspond to the same category (Cox, 

2014; DiCarlo and Cox, 2007), quantification of the stimulus space and of subjective object similarity 

can be challenging, requiring the introduction of object-morphing axes (Tafazoli et al., 2012), and is 

yet to be demonstrated in mice. Our task, which can be learned by mice, is invariant to low-level visual 

activations and is straightforwardly parameterized with two angles, thus representing a useful 

alternative to object-based paradigms. Furthermore, the low dimensionality and periodicity of our 

stimuli allows exploration of the full stimulus space, while 3d shape-detection tasks are restricted to 

a set of possible objects (Cox, 2014). Our task builds upon orientation discrimination tasks in mice 

(Andermann et al., 2010; Goard et al., 2016; Long et al., 2015; Reuter, 1987; You and Mysore, 2020), 

in which a specific orientation is to be chosen over a distractor orientation (Long et al., 2015; Reuter, 

1987; You and Mysore, 2020), or in which a change relative to a specific orientation is to be detected 

(Glickfeld et al., 2013). Because in these tasks a given orientation is always either a target or a non-

target, they can be interpreted as fundamentally detection-type. In our task, in contrast, a successful 
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trial outcome is not guaranteed by detection of any specific orientation. Instead, the animal had to 

measure and compare the verticality of two orientations.  

An adequate quantification of choice behavior differs accordingly between these two approaches. In 

detection-type tasks, models of one variable are appropriate, such as cumulative Gaussian or Weibull 

(Glickfeld et al., 2013) functions of angle difference (Reuter, 1987). Choices in our task could similarly 

be quantified with a one-dimensional function of Δ𝜃, but taking into account the full dimensionality 

of the stimulus space and using both orientations as inputs to the model allowed us to explain the 

data better than the standard psychometric function.   

Our model helped estimate orientation discrimination acuity, which reached 6 degrees of angle 

difference. The orientation discrimination acuity of mice has been previously measured in detection-

type tasks, such as 2AFC with a distractor (Reuter, 1987), and in change detection tasks (Glickfeld et 

al., 2013; Wang et al., 2020). Acuity measures have been reported as thresholds or just-noticeable 

differences (JND) and commonly rely on model-derived values, such as the model-based inverse of a 

certain success rate (Glickfeld et al., 2013), mean of the fitted Gaussian (Wang et al., 2020), or √2 

times its standard deviation (Wang et al., 2020). We developed a new acuity estimation procedure 

suitable for our stimulus space, in which we identified stimulus conditions with the highest gradient 

of model-predicted P(R), and compared performance in these and neighboring conditions. Our 

approach took advantage of the complete stimulus space representation of P(R) instead of relying on 

a cruder psychometric model to compute a JND or threshold value.  

Assumption of noisy orientation estimation was also sufficient to qualitatively explain the reference 

effect – the variation of the probability of choice with a varying reference orientation 𝜃𝑟𝑒𝑓 and a fixed 

difficulty Δ𝜃. This variation arises from the interaction of noisy orientation estimates in a circular 

domain with the category boundary and is not due to animal-specific strategies. A similar effect could 

probably be demonstrated using our task in another periodic sensory domain, for example with 

comparisons of pure tones or chords.  
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Our model allowed for systematic errors in angle estimates via translational bias parameters, which 

shifted P(R) surfaces with respect to the angle axes in the 2d stimulus space, but were concealed in 

the psychometric curve representation, instead only changing its slope. These biases were relatively 

small across the population, and did not preclude high levels of performance, but were essential to 

explaining a counterintuitive difference between the P(R) curves for the same small Δ𝜃 in different 

quadrants of the stimulus space (Figure 2G). Furthermore, we accounted for choice bias – unlike 

translational biases – using a choice prior, which modelled an animal’s tendency to choose 

predominantly the right or left stimulus. Unlike translational biases, choice bias increased or 

decreased all values of P(R) and corresponded to a shift of the psychometric curve. 

With the described set of parameters {𝜅𝑅 , 𝜅𝐿, 𝑏𝑅 , 𝑏𝐿, 𝜅𝑏}, our model could capture variation of choice 

patterns across animals, assuming fixed concentrations for all stimulus conditions and a Bayes-optimal 

combination of sensory information with the choice prior (Knill and Pouget, 2004). Beyond the 

capabilities of the model, we find that at least in some animals variation of choice probability with 

𝜃𝑟𝑒𝑓 for a fixed Δ𝜃 can be larger than our prediction (Figure S5. This additional variation would be 

explained by a dependency of 𝜅𝑅  and 𝜅𝐿  on the proximity to the category boundary (|𝜃𝑅
∗ | = |𝜃𝐿

∗|) 

(Jazayeri and Movshon, 2007). Furthermore, concentration values are likely decreased by non-sensory 

factors, such as noise in decision computation (Beck et al., 2012; Dosher and Lu, 1998; Drugowitsch et 

al., 2016), inherent priors (Girshick et al., 2011), and choice heuristics (Beck et al., 2012; Gardner, 

2019).  

One choice heuristic was evident in the trade-off of concentration values, with some animals 

unequally weighting stimulus information. Accuracy of orientation estimation was still necessary for 

high success rates, but even among the best-performing animals right and left concentrations were 

anti-correlated. This trade-off demonstrated that animals followed a range of “sufficiently good” 

strategies when solving the discrimination problem.  
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Such strategies can be interpreted as examples of suboptimal or approximate inference in an 

uncertain environment. Suboptimal inference is sometimes thought of as an adaptive phenomenon, 

a way for a subject to deal with the complexity of the task at hand by constructing and acting upon its 

approximate model (Beck et al., 2012). Adherence to a suboptimal strategy can therefore be linked to 

limited cognitive resources (Whiteley and Sahani, 2012; Wyart and Koechlin, 2016), which in our task 

fluctuate together with task engagement. Indeed, we find that history-dependent biases – another 

manifestation of suboptimal behavior – are stronger during periods of lower engagement. We 

demonstrate this by introducing history priors that increase the explanatory power of the model more 

in periods of lower engagement than in periods of higher engagement. Besides the state-dependent 

effect of history biases, the model allowed us to establish that average history-dependent choice 

strategies were mainly “stay” and “win-stay”, with rare examples of “lose-stay”. 

Our task can be useful for linking neural activity and behavior. First, our task decouples the decision 

variable from specific sensory stimuli, which makes it easier to distinguish between decisions and 

sensory representations at the neural level. A similar approach relying on combinations of stimuli has 

been used extensively in the decision-making literature (Hernández et al., 1997), but has not been 

reported in mouse orientation discrimination experiments.  

Second, our task can give a valuable insight into the relationship between neural and behavioral 

variability. Whether behavioral variability arises predominantly from sensory sources (Brunton et al., 

2013), or from the deterministic or stochastic suboptimality of decision computation (Beck et al., 

2012) is one of the central questions in the neuroscience of decision-making. One key advantage of 

our task is that it keeps the variability of purely sensory responses constant by fixing the contrast of 

the stimuli. If the neural variability is found to systematically change across the stimulus space, this 

variation can only be attributed to the noisy computation of decision (Beck et al., 2012). Neural 

variability across the stimulus space can thus be partitioned into the purely sensory variability 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.20.423700doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.20.423700
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

determined by the contrast, the non-sensory component independent of the stimuli, and a stimulus-

dependent component which our task can help tease apart from the other two.  

Third, our task is well-suited to isolating the contributions of visual cortical areas in the computation 

of decision. The importance of a particular visual area for decision-making depends on the type of task 

(Pinto et al., 2019): mice with a lesioned or silenced visual cortex can show above-chance performance 

in detection paradigms (Glickfeld et al., 2013; Prusky and Douglas, 2004), possibly reflecting a 

predominant role of the superior colliculus (Wang et al., 2020), while for orientation discrimination 

tasks with a distractor, the visual cortex seems to be necessary (Jurjut et al., 2017; Poort et al., 2015; 

Resulaj et al., 2018). However even in the latter cases the involvement of the visual cortex in the 

computation of decision rather than sensorimotor relay is unclear. In our task, both stimuli are 

predominantly encoded in V1 and their comparison can be done in V1 or possibly further downstream, 

since the visual cortical system is characterized by increasingly complex category boundaries that 

facilitate discrimination between high-level perceptual concepts (DiCarlo and Cox, 2007). Our task is 

therefore a useful addition to the common protocols for visual decision-making research in mice 

focused on cortical computations.  
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Tables 

Table 1. Total number of trials per animal 
ID N trials ID N trials ID N trials ID N trials 

1 82065 11 38624 21 30078 31 18637 

2 76488 12 38583 22 29646 32 17624 

3 66929 13 38263 23 28228 33 15681 

4 63074 14 37961 24 27659 34 13006 

5 58747 15 37189 25 27425 35 11893 

6 56392 16 36422 26 25509 36 11885 

7 48118 17 33938 27 22222 37 11465 

8 46872 18 33003 28 20926 38 10069 

9 45415 19 32946 29 20113 39 5602 

10 39673 20 30988 30 19406 40 4591 

“ID” columns show animal identification numbers as in Figures S2-3, “N Trials” columns show total 

number of trials of the corresponding mouse used in the analysis throughout the paper.  

Methods 

Experimental Model and Subject Details 
All surgical and experimental procedures were approved by the Support Unit for Animal Resources 

Development of RIKEN CBS. We used n=40 transgenic mice: Thy1-GCaMP6f (n=37), Camk2-tTA TRE-

GCaMP6s (n=2), Emx1-tTA TRE-GCaMP6s (n=1), with a total of 30 male and 10 female animals, aged 4 

to 25 months. The triple transgenic strain Camk2-tTA TRE-GCaMP6s was established by cross-mating 

Camk2a-cre and Camk2a-tTA. The triple transgenic strain Emx1-tTA TRE-GCaMP6s was established by 

cross-mating Emx1-cre and Camk2a-tTA.  

Animals were anesthetized with gas anesthesia (Isoflurane 1.5-2.5%; Pfizer) and injected with an 

antibiotic (Baytril®, 0.5ml, 2%; Bayer Yakuhin), a steroidal anti-inflammatory drug (Dexamethasone; 

Kyoritsu Seiyaku), an anti-edema agent (Glyceol®, 100μl, Chugai Pharmaceutical) to reduce swelling 

of the brain, and a painkiller (Lepetan®, Otsuka Pharmaceutical). The scalp and periosteum were 

retracted, exposing the skull, then a 4 mm-diameter trephination was made with a micro drill 
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(Meisinger LLC). A 4mm coverslip (120~170μm thickness) was positioned in the center of the 

craniotomy in direct contact with the brain, topped by a 6 mm diameter coverslip with the same 

thickness. When needed, Gelfoam® (Pfizer) was applied around the 4mm coverslip to stop any 

bleeding. The 6mm coverslip was fixed to the bone with cyanoacrylic glue (Aron Alpha®, Toagosei). A 

round metal chamber (6.1mm diameter) combined with a head-post was centered on the craniotomy 

and cemented to the bone with dental adhesive (Super-Bond C&B®, Sun Medical), mixed to a black 

dye for improved light absorbance during imaging.  

Behavioral training 
Animals were housed in individual cages connected to automated setups (Aoki et al., 2017) (O’Hara & 

CO., LTD., http://ohara-time.co.jp/) where two experimental sessions per animal per day were carried 

out. Sessions were initiated by animals themselves as they entered the setup and their head plate was 

automatically latched. Animals were trained in a 2AFC orientation discrimination task. Two oriented 

Gabor patches (20° visual angle static sinusoidal gratings, sf = 0.08 cpd, with randomized spatial phase, 

and windowed by a 2D Gaussian envelope with 𝜎=0.25° v.a.) were shown on the left and right side of 

a screen positioned in front of the animal (LCD monitor, 25 cm distance from the animal, 

33.6 cm × 59.8 cm [~58° × 100°dva], 1080 x 1920 pixels, PROLITE B2776HDS-B1, IIYAMA) at ±35° 

eccentricity relative to the body’s midline. Mice reported which of the two stimuli was more vertical 

(more horizontal for n=12 animals; task details in “Phases of training”) by rotating a rubber wheel with 

their front paws, which shifted the stimuli horizontally on the screen. For a response to be correct, the 

target stimulus had to be shifted to the center of the screen, upon which the animal was rewarded 

with 4µL of water (amount adjusted for a few animals with non-typical weight and age). Incorrect 

responses were discouraged with a prolonged (10s) inter-trial interval and a flickering checkerboard 

stimulus (2 Hz). If no response was made within 10 s (time-out trials), neither reward nor 

discouragement was given.  

All trials consisted of an open-loop period (OL, 1.5s) during which the wheel manipulator did not move 

the stimuli on the screen, and a closed-loop period (CL: 0—10 s) during which the wheel controlled 

their position. Inter-trial interval was randomized (ITI: 3—5s). Stimuli appeared on the screen at the 

beginning of the OL.  

Phases of training 
Training in the automated behavioral setup went through three phases. First, the animal learned to 

rotate the wheel manipulator and was rewarded for consistent rotations to either side. During this 

phase no visual stimulus was presented. In the next phase, the animal was shown one vertical target 

(horizontal, n=12), on one side of the screen chosen at random, and was rewarded for moving it into 

the center of the screen. In the final phase, the animal was shown two orientations, and had to move 

the more vertical (horizontal) one into the center of the screen. Since both stimuli moved 

synchronously with wheel rotation, the non-target stimulus moved out of the screen. In this phase, 

we sampled both orientations at random from a range of angles between -90° and 90°, with 𝜃 > 0 

corresponding to clockwise and 𝜃 < 0 – to counter-clockwise orientations relative to the vertical 
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(Figure 1A). Orientations were initially sampled with a minimal angular difference of 30°, i.e. with 

specific angles from the set {-90°,-60°,-30°,0°,30°,60°} (-90° and 90° are the same orientation). As the 

animal’s performance reached 70% success rate on 5-10 consecutive days, we increased the difficulty 

by sampling angles at 15° angle difference, and later in the training – at 9°, with one animal’s 

conditions eventually sampled at 3°. 

Data selection 
We analyzed trials from sessions in which the average success rate was at least 60%, and the 

proportion of time-out trials did not exceed 20%. We only used animals that had reached the 

orientation sampling step of 9°, and included the choice data from preceding sessions with all angle 

binning steps starting from 30°. We excluded the first trial of every session, all time-out trials and 

every trial that followed a time-out. The two dimensions of the stimulus space were flipped for 

horizontal-reporting animals when fitting our model. Same stimulus space transformation was done 

for all the population summaries where mice trained on horizontal targets were pooled together with 

mice trained on vertical targets.    

Psychometric curve 
We fitted the animal’s probability of making a right choice P(R) as a function of task difficulty using a 

psychometric function 𝜓(Δ𝜃; ⁡𝛼, 𝛽, 𝛾, 𝜆) = ⁡𝛾 + (1 − 𝛾 − 𝜆)⁡𝐹(Δ𝜃; 𝛼, 𝛽),  where 𝐹(𝑥)  is a Gaussian 

cumulative probability function, α and β are the mean and standard deviation, γ and λ are left and 

right (L/R) lapse rates, Δ𝜃 is the difference in the angular distance to the vertical, Δ𝜃 = |𝜃𝐿| − |𝜃𝑅|. 

Confidence intervals were computed by bootstrapping (n = 999). 

Model design 
On each trial 𝑖 the animal was shown a pair of stimuli {𝜃𝑅𝑖, 𝜃𝐿𝑖}, and made a right or a left choice 𝑟𝑖, 

which we set by convention to be 𝑟𝑖 = 1 or 𝑟𝑖 = 0 respectively. We denote response and correct 

target on the previous trial as 𝑟ℎ𝑖 and 𝑠ℎ𝑖 respectively, with 𝑟ℎ𝑖 = −1 or 𝑟ℎ𝑖 = 1 if the animal chose 

left or right respectively, and 𝑠ℎ𝑖 = −1 or 𝑠ℎ𝑖 = 1 if the correct answer was respectively left or right, 

and 𝑠ℎ𝑖 = 0 if targets had an equal distance to the vertical.  

On every trial the animal made an estimate {𝜃𝑅𝑖
∗ , 𝜃𝐿𝑖

∗ } of the presented stimulus orientations {𝜃𝑅𝑖, 𝜃𝐿𝑖}. 

We model 𝜃𝑅𝑖
∗  and 𝜃𝐿𝑖

∗  as random variables whose probability densities are von Mises distributions 

centered at 𝜃𝑅𝑖 and 𝜃𝐿𝑖, with additional angle estimation biases (translational biases) 𝑏𝑅 , 𝑏𝐿 and with 

concentrations 𝜅𝑅 , 𝜅𝐿  (high concentration means smaller spread, with 𝜅  analogous to 1/𝜎  of a 

normal distribution) (Figure 2B,D):  

 
𝜃𝑅𝑖
∗ ⁡~⁡𝑝(𝑥) = C(𝜅𝑅)𝑒

cos⁡(𝜅𝑅(𝑥−𝑏𝑅−𝜃𝑅𝑖)) 

𝜃𝐿𝑖
∗ ⁡~⁡𝑝(𝑦) = C(𝜅𝐿)𝑒

cos⁡(𝜅𝐿(𝑦−𝑏𝐿−𝜃𝐿𝑖)) 
(1) 

where C(𝜅) = 1/2𝜋𝐼0(𝜅), and 𝐼0 is modified Bessel function of order 0. We reserve (𝑥, 𝑦) notation 

for the domain of integration and {𝜃𝐿
∗, 𝜃𝑅

∗} – for angle estimates. We next assume that the joint 

probability density that underlies decision is a combination of a stimulus-based joint 𝑝(𝑥, 𝑦) =
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𝑝(𝑥)𝑝(𝑦), a bias prior 𝑝𝑏(𝑥, 𝑦) that induces choice bias for right or left stimuli, and a history prior 

𝑝ℎ(𝑥, 𝑦) that models choice dependency on previous choice and stimulus (𝑟ℎ𝑖 and 𝑠ℎ𝑖): 

 𝑝𝑏(𝑥, 𝑦) = 𝐶𝑏
2(𝜅𝑏)𝑒

𝜅𝑏(cos(𝑥)−cos(𝑦)) (2) 

 𝑝ℎ(𝑥, 𝑦) = 𝐶ℎ
2(𝜅ℎ)𝑒

ℎ𝑖𝜅ℎ(cos(𝑥)−cos(𝑦)) (3) 

Here, 𝜅𝑏  is a concentration parameter that regulates the strength and sign of choice bias, 𝜅ℎ  is a 

concentration parameter of history prior, ℎ𝑖 = ℎ𝑠𝑠ℎ𝑖 + ℎ𝑟𝑟ℎ𝑖 determines the influence of the previous 

stimulus 𝑠ℎ𝑖  and choice 𝑟ℎ𝑖  with respective weights ℎ𝑠  and ℎ𝑟  fixed for a given animal, and 𝐶ℎ =

1/2𝜋𝐼0(𝜅ℎℎ𝑖) and 𝐶𝑏 = 1/2𝜋𝐼0(𝜅𝑏) are normalization constants. 

Since by convention we set vertical orientation to zero, the angle with the smaller absolute value is 

the correct choice. Hence, the probability of choosing right on a given trial is given by: 

 𝑃(𝑅)𝑖 = 𝑝(𝑟𝑖 = 1) = 𝑝(|𝜃𝑅𝑖
∗ | < |𝜃𝐿𝑖

∗ |) 

=
∬ 𝑝(𝑥, 𝑦)𝑝𝑏(𝑥, 𝑦)𝑝ℎ(𝑥, 𝑦)𝑑𝑥𝑑𝑦

⁡

|𝑥|<|𝑦|

∬𝑝(𝑥, 𝑦)𝑝𝑏(𝑥, 𝑦)𝑝ℎ(𝑥, 𝑦)𝑑𝑥𝑑𝑦
 

(4) 

Overall, the model has eight fitted parameters (ℎ𝑟, ℎ𝑠, 𝜅𝑅 , 𝜅𝐿, 𝜅ℎ , 𝑏𝑅 , 𝑏𝐿 , 𝜅𝑏 ), or five parameters 

(𝜅𝑅 , 𝜅𝐿 , 𝑏𝑅 , 𝑏𝐿 , 𝜅𝑏) when we fit a history-free model. All angles were converted from (-90°,90°) range 

to (-180°,180°) to satisfy periodicity. 

Optimization 
To fit the model, we minimize the cross-entropy cost function  

 𝐿 = − ∑ 𝑟𝑖
𝑖=1…𝑁

log𝑃(𝑅)𝑖 + (1 − 𝑟𝑖)log⁡(1 − 𝑃(𝑅)𝑖) (5) 

using MATLAB built-in function fmincon. At every iteration of the optimizer we evaluated equation (4), 

first computing values of all probability densities on a grid of 300 by 300 points in the 2d domain 

[−𝜋, 𝜋] × [−𝜋, 𝜋], and integrating numerically using MATLAB function trapz over |𝑥| < |𝑦| for the 

numerator and over the whole domain for the denominator. We ran these calculations on GPU 

(NVIDIA RTX 2080Ti) using MATLAB Parallel Computing Toolbox. 

Success rate with a one-sided strategy 
We estimated the success rate that animals could reach when taking into account only one stimulus 

by first computing P(R) for every trial using a model where one concentration was set to zero and the 

other one to √𝜅𝑅𝜅𝐿  of that animal. We sampled choices using the stimulus conditions as they 

appeared in the experimental dataset 1000 times and computed an average percent correct over 

repetitions and an average across animals.   

Maximum perceptual acuity 
By analogy with a 1d psychometric curve, we defined points of maximum perceptual acuity in the 

stimulus space as conditions (pairs of angles) where the change in 𝑃(𝑅) was the largest for a small 

fixed change in the stimuli. We found these conditions from the probability surface⁡𝑃(𝑅) given by the 
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full model by computing the squared norm of the gradient vector, 𝑔(𝜃𝑅 , 𝜃𝐿) = (
𝑑

𝑑𝜃𝑅
𝑃(𝑅))

2

+

(
𝑑

𝑑𝜃𝐿
𝑃(𝑅))

2

 and selecting {𝜃𝑅 , 𝜃𝐿} conditions for which the values of g were in the top 5%. Among 

these conditions, we analyzed those with P(R)≈0.5 (0.48≤P(R)≤0.52), which we call maximum gradient 

conditions (Figure 3C,H, white) with a pooled right-choice probability of P0.5. For n=28 animals this 

procedure gave at least 3 unique maximum gradient conditions. For n=12 animals, the initial criterion 

gave fewer than three maximum gradient conditions, and we expanded the allowed range to have at 

least 3: we set (0.47≤P(R)≤0.53) for n=7 animals, (0.46≤P(R)≤0.54) for n=1, (0.42≤P(R)≤0.58) for n=1, 

(0.40≤P(R)≤0.60) for n=1, (0.38≤P(R)≤0.62) for n=1, and (0.28≤P(R)≤0.72) for n=1.  

We then determined the neighboring conditions by changing one orientation at a time by 9°, which 

resulted in an increase (“+”) or decrease (“-”) of P(R) relative to P0.5 (Figure 3C). For example, PR- 

corresponded to the probability of right choice pooled from all conditions in which 𝜃𝑅  changed 

relative to maximum gradient conditions in the direction of P(R) decrease. Here, the stimulus space 

was binned to a 9° grid. In a separate analysis, for an animal with 3° condition binning, we changed 

both orientations simultaneously by +-3°, “along” and “against” the gradient of P(R), and obtaining P+ 

and P+ respectively (Figure 3H).  

We tested that probabilities in the neighboring conditions (PL+, PR+, PL-, PR- in case of 9°-binned 

conditions, and P+, P-  in case of 3°-binned conditions) were significantly different from maximum 

gradient probabilities P0.5 using a two-tailed 𝜒2 test with df=1. For a population summary (Figure 3E) 

we computed  PL+, PR+, PL-, PR- with increasing angle increments of 9°, 18°, and 27° and reported the 

cumulative number of animals for which at least one of the four probabilities was significantly 

different from P0.5, using a two-tailed 𝜒2 test with df=1 and a criterion α=0.05/4.  

History biases during high and low engagement 
We first identified periods of high and low engagement in every session. For a given session, we 

computed a running estimate of the success rate in a sliding window of 10 trials (average performance 

in the window was assigned to the last trial of that window). We centered the running estimate by 

subtracting the mean success rate of the session. All trials with the centered success rate estimate 

exceeding a fixed threshold of 10% were labeled as high engagement, and all trials in which the 

centered success rate estimate was lower than -10% were labeled as low engagement. We confirmed 

the stability of our results using threshold values of 5%, 15%, and 20% (data not shown). When 

identifying engagement epochs, time-out trials were counted as failures, but we discarded these trials 

for all the analysis that followed, consistently with the rest of this study. 

Next, we computed the log-likelihood 𝐿 of outcomes in high- and low-engagement trials (𝑟ℎ and 𝑟𝑙  

respectively) given the probabilities predicted by the full model that accounted for trial history, and 

by a history-free model fitted separately (𝑝ℎ and 𝑝0 respectively) (see Methods: Model Design). For 

binary outcomes 𝑟 and model-derived probabilities 𝑝, we computed trial-wise the log-likelihood using 

the formula 𝐿(𝑟, 𝑝) = 𝑟 log(𝑝) + (1 − 𝑟) log(1 − 𝑝)  with stimulus conditions binned to a 9° grid. 
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Applying two different trial selections and two different models we obtained 𝐿(𝑟ℎ , 𝑝ℎ)  for the 

likelihoods of high-engagement trial outcomes given the model with history, 𝐿(𝑟𝑙 , 𝑝ℎ)  for the 

likelihoods of low-engagement trial outcomes given the model with history, 𝐿(𝑟ℎ , 𝑝0)  for the 

likelihoods of high-engagement trials given the history-free model, and 𝐿(𝑟𝑙 , 𝑝0) for the likelihoods of 

low-engagement trials given the history-free model. We next computed the differences of likelihood 

averages between models with and without history terms, using high-engagement trials, Δ𝐿ℎ =

〈𝐿(𝑟ℎ , 𝑝ℎ)〉 − 〈𝐿(𝑟ℎ , 𝑝0)〉 and low-engagement trials, Δ𝐿𝑙 = 〈𝐿(𝑟𝑙 , 𝑝ℎ)〉 − 〈𝐿(𝑟𝑙 , 𝑝0)〉, (Figure 4D).  

Next, we computed the average of each of these likelihoods across all trials for every pair of 

orientations (𝜃𝐿, 𝜃𝑅) thus obtaining maps of 〈𝐿(𝑟∗, 𝑝∗)〉𝜃  as a function of orientations (𝜃𝐿 , 𝜃𝑅). We 

discarded any stimulus conditions where the number of trials was <10. We computed the difference 

between history and history-free maps of 〈𝐿(𝑟∗, 𝑝∗)〉𝜃 separately for high- and low-performance trials, 

i.e. Δ𝐿ℎ𝜃 = 〈𝐿(𝑟ℎ , 𝑝ℎ)〉𝜃 −⁡〈𝐿(𝑟ℎ , 𝑝0)〉𝜃  and Δ𝐿𝑙𝜃 = 〈𝐿(𝑟𝑙 , 𝑝ℎ)〉𝜃 −⁡〈𝐿(𝑟𝑙 , 𝑝0)〉𝜃 , and for all trials 

together, Δ𝐿𝜃 = 〈𝐿(𝑦, 𝑝ℎ)〉𝜃 −⁡〈𝐿(𝑦, 𝑝0)〉𝜃. For a population summary (Figure 4E) of Δ𝐿𝜃, Δ𝐿ℎ𝜃, and 

Δ𝐿𝑙𝜃, we normalized Δ𝐿∗ maps of every animal by the standard deviation across all stimulus conditions, 

and averaged the resulting maps across animals.  

Model comparison 

AIC 
We compared the cumulative Gaussian psychometric model to our history-free model, and the 

history-free model to the model with history priors, using the Akaike Information Criterion (AIC) 

defined as 𝐴𝐼𝐶 = −2𝐿 + 2𝑘 where 𝑘 is the number of parameters (4 for Gaussian model, 5 for the 

history-free model, 8 for model with history) and 𝐿 is the log-likelihood value of the best fit. We 

computed 𝐿 using the binomial likelihood formula  

𝐿 =∑𝑦𝑖𝑛𝑖 log(𝑝𝑖) + 𝑛𝑖(1 − 𝑦𝑖)log⁡(1 − 𝑝𝑖)

𝑖

+ log⁡(
𝑛𝑖
𝑦𝑖𝑛𝑖

) 

where 𝑖 corresponds to a 9°-binned unique stimulus condition defined by (𝜃𝐿 , 𝜃𝑅) for the history-free 

to Gaussian model comparison and (𝜃𝐿, 𝜃𝑅 , 𝑟ℎ , 𝑠ℎ)  for the history-free to the history-dependent 

model comparison, 𝑦𝑖  is the proportion of successes, 𝑛𝑖  is the total number of trials, and 𝑝𝑖  is the 

success rate given by either one of three models. We computed and reported Δ𝐴𝐼𝐶 = 𝐴𝐼𝐶(𝐺𝑎𝑢𝑠𝑠) −

𝐴𝐼𝐶(𝐻𝑖𝑠𝑡𝐹𝑟𝑒𝑒), and Δ𝐴𝐼𝐶 = 𝐴𝐼𝐶(𝐻𝑖𝑠𝑡𝐹𝑟𝑒𝑒) − 𝐴𝐼𝐶(𝐻𝑖𝑠𝑡𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡) for the final quantification. 

Given this measure, the model whose AIC is the minuend in the expression for Δ𝐴𝐼𝐶 is exp⁡(−Δ𝐴𝐼𝐶/2) 

times more probable than the other model to minimize the information loss.   

Percent of explained deviance 
To estimate how much explanatory power is gained by fitting the history-free model in comparison to 

the Gaussian psychometric model, and by the history-dependent model in comparison to the history-

free model, we computed the fraction of explained deviance. Deviance is defined as two times the log 

of the ratio of the saturated model likelihood 𝑙(𝜃𝑚𝑎𝑥; 𝑦) to optimal model likelihood 𝑙(𝜃; 𝑦) 
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𝐷 = 2 log(

𝑙(𝜃𝑚𝑎𝑥; 𝑦)

𝑙(𝜃; 𝑦)
) (6) 

where 𝑦 are observations, 𝜃 are estimated parameters, and 𝜃𝑚𝑎𝑥 are parameters of the saturated 

model.  

For binomial data, deviance is  

 
𝐷 = 2∑ 𝑦𝑖𝑛𝑖 log (

𝑦𝑖
𝑝𝑖
) − (1 − 𝑦𝑖)𝑛𝑖 log (

1 − 𝑦𝑖
1 − 𝑝𝑖

)
𝑖

 (7) 

where 𝑦𝑖𝑛𝑖is the number of successes for stimulus condition 𝑖, ⁡𝑛𝑖 is the number of trials, and 𝑝𝑖  is the 

probability of success in condition 𝑖 given by the fitted model with parameters 𝜃. For the cumulative 

Gaussian psychometric function 𝜓(Δ𝜃; ⁡𝛼, 𝛽, 𝛾, 𝜆) a stimulus condition is defined by a pair of angles 

{𝜃𝑅, 𝜃𝐿} in a history-free model, and a pair of angles with trial history {𝜃𝑅, 𝜃𝐿 , 𝑠ℎ, 𝑟ℎ} in a model with 

history.  

We first computed the deviance of the null model, with the same P(R)=𝑝𝑛𝑢𝑙𝑙 rate for all conditions 

(computed as a grand average P(R) across trials). We then used the formula for deviance 𝐷 (7), with 

𝑝𝑖 = 𝑝𝑛𝑢𝑙𝑙  when computing null deviance 𝐷𝑛𝑢𝑙𝑙 , 𝑝𝑖 = 𝑝𝑖(𝐻𝐹)  as predicted by history-free model 

when computing history-free deviance 𝐷𝐻𝐹 , 𝑝𝑖 = 𝑝𝑖(𝐻𝐷)  as predicted by the history-dependent 

model when computing history-dependent deviance 𝐷𝐻𝐷, and 𝑝𝑖 = 𝑝𝑖(𝐺𝑎𝑢𝑠𝑠) as predicted by the 

Gaussian model when computing Gaussian deviance 𝐷𝐺𝑎𝑢𝑠𝑠. Here a condition 𝑖 corresponded to a 

unique pair of orientations (𝜃𝐿 , 𝜃𝑅) when comparing the Gaussian model with the history-free model, 

and to a pair of orientations together with history inputs (𝜃𝐿, 𝜃𝑅 , 𝑠ℎ , 𝑟ℎ) when comparing the history-

free model and the history-dependent model; the fraction of right choices 𝑦𝑖  and the total number of 

trials per condition 𝑛𝑖  changed accordingly. We computed deviance explained (𝐷𝐸) for the three 

models as 𝐷𝐸𝐻𝐹 = 100% · (𝐷𝑛𝑢𝑙𝑙 − 𝐷𝐻𝐹)/𝐷𝑛𝑢𝑙𝑙 , 𝐷𝐸𝐻𝐷 = 100% · (𝐷𝑛𝑢𝑙𝑙 − 𝐷𝐻𝐷)/𝐷𝑛𝑢𝑙𝑙  and 

𝐷𝐸𝐺𝑎𝑢𝑠𝑠 = 100% · (𝐷𝑛𝑢𝑙𝑙 − 𝐷𝐺𝑎𝑢𝑠𝑠)/𝐷𝑛𝑢𝑙𝑙 , and finally we computed difference in deviance 

explained as Δ𝐷𝐸 = 𝐷𝐸𝐻𝐹 − 𝐷𝐸𝐺𝑎𝑢𝑠𝑠  or Δ𝐷𝐸 = 𝐷𝐸𝐻𝐷 − 𝐷𝐸𝐻𝐹 . For this analysis, we trained each 

model on 50% randomly sampled trials and computed deviances from the other 50% of trials. We 

tested the significance of Δ𝐷𝐸 > 0 for a population of animals using the Wilcoxon signed rank test. 
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Figures 

 

Figure 1. Mice successfully learned a novel invariant orientation discrimination task. A. Top. Schematic 

of a mouse during an experimental session. Middle. Epochs of one trial. Bottom. Convention for the 

angle signs. B. Psychometric curve of an example animal. Solid line – best fit of the cumulative 

Gaussian psychometric function, circles – data points, circle sizes represent numbers of trials, colors 

correspond to colors in D, gray circles are data points not explicitly marked in D. C. Psychometric curves 

for all animals in the study, solid black line – population average. D. Many orientation pairs give the 

same task-relevant information quantified by angular separation or difficulty (Δ𝜃). Conditions with a 

fixed Δ𝜃 in the 2d stimulus space (colored lines) correspond to Δ𝜃 conditions (circles) of the same 

color in B. Example stimuli for four branches of Δ𝜃=const (two branches for 18°, and two for -18°) are 

displayed along the sides of the stimulus space map. Labels next to the images of orientation pairs 

correspond to labels on the stimulus space map.  
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Figure 2. The choice model characterizes individual biases and strategies, and predicts variation of 

performance with reference orientation, as found in the data. A. Choice model schematic. The angles 

of two oriented Gabor patches (white dashed lines, left column) are estimated as samples from 

circular distributions (density – in purple, estimates – black crosses), and compared between each 

other (middle column), which generates a choice. B. Distribution 𝑝(𝑥, 𝑦) of orientation estimates as 

in a, in 2d space, for (𝜃𝐿, 𝜃𝑅) = (30°, 0°) (red cross) in an unbiased model with (𝜅𝑅 , 𝜅𝐿) = (2,2), and 

a sample from this distribution (black cross). Probability mass inside the shaded areas (|𝑥| < |𝑦|) is 

equal to the probability of right choice P(R). Dashed lines – distribution quartiles. C. Left. P(R) of model 

in B evaluated at all stimulus pairs (𝜃𝐿 , 𝜃𝑅). Red and black lines – one example branch of Δ𝜃 = 18° 

and Δ𝜃 = −18° respectively. Right. P(R) along the branches of Δ𝜃 = 𝑐𝑜𝑛𝑠𝑡 marked on the left panel 

with a red and black lines. D. Effect of model parameters on the distributions of estimates (top row), 

P(R) surface (middle row), and the corresponding psychometric curves (bottom row); red crosses – 

distribution means before parameter manipulation, green arrows – transformation of the 
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distributions with parameter change. Left column: reduction of the concentration 𝜅𝑅  leads to a 

shallower P(R) along the 𝑥 axis, and a shallower psychometric curve (blue curve – before 𝜅𝑅 change, 

red – after). Middle column: non-zero bias 𝑏𝑅 results in a translation of the estimate distribution and 

of P(R), and to a shallower psychometric curve since pooling for the psychometric curve is determined 

by Δ𝜃. Center panel: P(R) values are displaced relative to Δ𝜃 isolines (solid black: example isoline for 

Δ𝜃=15°), resulting in stimulus pairs with predominantly left choice (P(R)<0.5, blue) to be pooled 

alongside P(R)>0.5 values. Right column: choice bias 𝜅𝑏 > 0 leads to an increased (decreased for 𝜅𝑏 <

0) probability mass in the |𝑥| < |𝑦| region, an expanded P(R)>0.5 area of the P(R) surface, and a 

psychometric curve shifted to the left, in favor of the right choices. E. Choice priors 𝑝𝑏(𝑥, 𝑦) with 𝜅𝑏 

equal to -1 (left panel; left choice bias) and 1 (right panel; right choice bias). F. Left. population average 

P(R) (n=40 mice) with one example branch of Δ𝜃 = 9° and Δ𝜃 = −9° marked with red and black lines. 

Right: P(R) values as on the left panel (dots with error bars, mean ± c.i.), and average of model 

predictions (black lines with shaded areas, mean ± c.i.) across all animals. See Figure S3A for P(R) of 

every animal. G. Example mouse, left: P(R) of the fitted model, middle: P(R) along the red dashed and 

solid lines on the left panel predicted by the model (lines) and computed from the data (dots with 

error bars, darker dots correspond to the dashed line), right: P(R) along the black dashed and solid 

lines on the left panel, as predicted by the model (lines) and computed from the data (dots with error 

bars, darker dots correspond to the dashed line). See Figure S4D for the model of P(R) for every animal. 

H. Left: population summary of model parameters fitted to all mice (n=35; n=5 animals with 𝜅𝑅 or 𝜅𝐿 

estimated on the edge of the allowed range of values are excluded). Middle: ratio of log⁡(𝜅𝑅 + 1) and 

log⁡(𝜅𝐿 + 1) with the smaller of the two values divided by the larger value for each mouse (n=35). 

Circles – individual animals. Box plot – population summary: red line – median value, box borders – 

25th and 75th percentiles, whiskers are up to most extreme parameter values, red crosses – outliers. 

Animals with ratios close to one use right and left orientation information in their choices equally. 

Right: log⁡(𝜅𝑅 + 1)  and log⁡(𝜅𝐿 + 1)  across the population are significantly anti-correlated. Linear 

regression line for all animals together (R2=0.32,p=4.5·10-4, significant at 𝛼=0.005). Red circles – 10 

mice with best performance; the best performing mice have significantly higher concentrations than 

the rest of the population (p<0.05, ANCOVA, F-test of intercept with fixed slope). 
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Figure 3. Mice can reach an orientation acuity of 6°. A. P(R) model surface of an example mouse. B. 

|∇P(R)| absolute value of the gradient of P(R) surface in A. C. Four stimulus conditions (white) with 

|∇P(R)| in the top 5% of values and P(R) close to 0.5 (0.48<P(R)<0.52). Arrows of the same color show 

angle change yielding neighboring conditions: PL+ (yellow; “L+” for left stim. change that increases 

P(R)), PR+ (green), PL- (red), PR- (blue). Insets (right) show these conditions. D. Pooled P(R) in maximum 

gradient conditions (white), P0.5=0.52±0.04, differed from P(R) in the four neighboring conditions 

PL+=0.67±0.04, p<2.5·10-4 (yellow), PR+=0.63±0.05, p<2.5·10-3 (green), PL-=0.40±0.05, p<2.5·10-3 (red), 

PR-=0.39±0.05, p<2.5·10-4 (blue) (binomial confidence intervals, χ2 test with n=4 comparisons). E. 

Cumulative number of animals for which at least one direction of angle change gives a P(R) significantly 

different from P0.5, as a function of angle change. F,G. Similar to A,B for an animal trained with 3° angle 

binning. H. Maximum gradient conditions (white, same criteria as in C), and neighboring conditions 

obtained by changing both angles by ±3° in the direction of P(R) increase (P+, yellow), and decrease 

(P-, blue). I. Pooled P(R) in three groups highlighted in H: P0.5=0.52±0.04, PL+=0.69±0.07 (yellow), P-

=0.36±0.05 (blue), both different from P0.5 with p<0.0005 (n=2 comparisons).  
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Figure 4. The probability of choice is affected by the choice and reward on the previous trial, with a 

larger effect during periods of lower task engagement. A. P(R) of an unbiased example model 

(𝜅𝑅 , 𝜅𝐿 , 𝜅𝑏 , 𝑏𝑅 , 𝑏𝐿) = (1.5, 1.5, 0, 0, 0) with a win-stay strategy (ℎ𝑠, ℎ𝑟, 𝜅𝑝) = (0.4, 0.4, 0.5); from left 

to right: [1] without history bias (after a ‘neutral’ trial, (𝑠ℎ, 𝑟ℎ) = (0,0)), [2] after a successful right 

choice (𝑠ℎ, 𝑟ℎ) = (1,1) with P(R) biased to the right choices as a result, [3] after a successful left choice 

(𝑠ℎ, 𝑟ℎ) = (−1,−1) with P(R) biased to the left choices, [4] psychometric curves corresponding to [1-

3]: without a history effect (black), after a correct right choice (red), after a correct left choice (blue). 

B. P(R) of an example animal with large history biases (ℎ𝑠 , ℎ𝑟) = (−0.26, 0.55) (lose-stay strategy); 

from left to right: [1] average P(R) on all trials, [2] P(R) after an unsuccessful right choice (𝑠ℎ, 𝑟ℎ) =

(−1,1) biased to right choices, [3] P(R) after an unsuccessful left choice (𝑠ℎ, 𝑟ℎ) = (1,−1) biased to 
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left choices; P(R) of all conditions in [2] and [3] with fewer than N=5 trials was set to the average P(R) 

of its neighbors; [2] and [3] are conditioned on preceding errors and thus had a relatively low number 

of trials since the performance of all mice exceeded a 65% success rate, [4] psychometric curves of 

the corresponding surfaces, colors as in A. C. History weights (ℎ𝑠, ℎ𝑟) and corresponding strategies of 

all animals (4 outliers not shown); “stay” and “win-stay” strategies are predominant, with few 

examples of “lose-stay”. Blue circles – animals trained to detect a more vertical orientation, red circles 

- more horizontal orientation. D. Increase in the likelihood due to inclusion of history terms is larger 

for low-engagement trials than high-engagement trials (Wilcoxon test, p=2.12e-07). Abscissa – 

difference (Δ𝐿ℎ ) between average log-likelihood under the model with history (𝑝ℎ ) and without 

history (𝑝0 ) of high-engagement trial outcomes (𝑟ℎ ), Δ𝐿ℎ = 〈𝐿(𝑟ℎ , 𝑝ℎ)〉 − 〈𝐿(𝑟ℎ , 𝑝0)〉, ordinate – 

difference (Δ𝐿𝑙) between average log-likelihood under the model with and without history of the low-

engagement trial outcomes (𝑦𝑙), Δ𝐿𝑙 = 〈𝐿(𝑟𝑙 , 𝑝ℎ)〉 − 〈𝐿(𝑟𝑙 , 𝑝0)〉. E. Increase in the likelihood due to 

inclusion of history terms changes with stimulus conditions and engagement modes; left to right: [1] 

Δ𝐿𝜃 – average likelihood difference for every stimulus condition, Δ𝐿𝜃 = 〈𝐿(𝑟, 𝑝ℎ)〉𝜃 −⁡〈𝐿(𝑟, 𝑝0)〉𝜃, all 

trials are taken, maps are Z-scored and averaged across animals, conditions with fewer than 10 trials 

are excluded, [2] Δ𝐿ℎ𝜃 – same value computed for high-engagement trials only, [3] Δ𝐿𝑙𝜃 – same value 

computed for low-engagement trials only.  
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Figure S1. Performance is invariant relative to various stimulus transformations. a. Correct rate as a func-
tion of trial easiness |Δθ|, comparing 3 sessions (divided into 6 groups of trials, with ~75 trials/group) 
before a change in spatial frequency of the gratings (red dots) and after the change (blue dots) (spatial 
frequency, SF=0.008 ‐> 0.016 cpd for mouse ID: 39, left panel, and SF=0.0016 ‐> 0.032 cpd for mouse 
ID:15098, right panel). Open circles for correct rates {0, 1}. Data for the right panel (mouse ID: 15098, angle 
sampling step 3°) has been grouped into 9° bins to improve visualization. For statistical comparison, we 
compared binned data (non‐overlapping 18° bins) from before vs after conditions and found no signi�-
cant di�erence (p>0.05, Wilcoxon rank‐sum test). b. Psychometric curves form 3 sessions before (red) and 
after (blue) changing the spatial frequency of stimuli. Filled dots for the data; dotted‐line for the �ts; color-
ed bands for bootstrap con�dence intervals. c. Comparison of �tting parameters: slope, lapse rate, and 
bias, before and after changing stimuli spatial frequency (mean ± s.e.m., n=2 mice, n.s. for p>0.05, and ‘*’ 
for p<0.05, unpaired t‐test for individual animals, paired t‐test for comparison across animals). d-f. Same as 
a-c, but for changes in stimulus size (20° ‐> 25° visual angle, n = 2 mice, ID: 15098, 15100). Data sampled at 
3° angle di�erence has been grouped into 9° bins to improve visualization. Left panels: statistical di�er-
ence for |Δθ| bin = 18° (‘*’ for p<0.05) re�ects an improvement in the performance after changing stimulus 
size.
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Figure S2. A high number of trials was collected from n=40 animals. a. Total number of trials collected for all animals. b. Population-average number of trials 
for every stimulus condition (pair of angles); color bar – number of trials, log scale. c. Median number of trials across conditions for every animal. d. Number 
of trials for every stimulus condition and every animal, axes as in b; number in black square - animal ID, the same as in Supplementary Figure 3 and Table 1.
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Figure S3. Choices of mice are largely determined by the rewarded side in the two-dimensional stimulus space, and choice model recapitulates choice probability. 
a. Probability of right choice, P(R), for all mice. Stimulus conditions are binned to 9°. Color limits are the same in all panels and in b-c. Animal IDs (number in a black 
square) are as in Supplementary Figure 2 and Table 1. b. Average P(R) across animals trained to �nd a more vertical orientation. c. Average P(R) across animals 
trained to �nd a more horizontal orientation. d. Model P(R) surfaces for every animal, same color bar on all panels, and as in e and f. e. Average P(R) surface of all 
animals trained to �nd the more vertical target. Dashed lines at P(R) values of 0.25, 0.5, 0.75. f. Average P(R) surface of all animals trained to �nd the more horizontal 
target.
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Figure S4. History priors can represent many possible strategies, and a�ect choice probability , P(R), by shifting 
the probability density p(x,y) inside or outside the |x|<|y| region a. Probability density (p.d., shown by color satu-
ration) p(x,y) [Eq.1] induced by stimuli (θR,θL)=(30°,60°) (red cross) in a model with κR=κL=2, bR=bL=0, and κb=0; 
dashed lines show distribution quartiles. b. History prior ph(x,y) (Methods, Eq. 3) corresponding to the 
win-stay/lose-switch strategy, (hs,hr)=(0,1), with κh=5, and four possible target-response combinations (sh,rh) on 
the previous trial. Top to bottom: (sh,rh) = (R,R); (R,L); (L,R); (L,L). c. Posterior p.d.: normalized product of p(x,y) and 
ph(x,y) before integration over |x|<|y|, with (sh,rh) same as in b in the same row. d. probability of right choice P(R) 
for (θR,θL)=(30°,60°) with and without history bias. e. P(R) with strategy for all (θR,θL) corresponding to (sh,rh) in b 
in the same row. f. History priors ph(x,y) for �ve example history-based strategies (columns) shown for all four 
possible combinations of target and choice on the previous trial (rows); κh=1 in all cases.
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Figure S5. Variation of P(R) with reference orientation θref is larger in the data than in the model. Left. Exam-
ple mouse, selected here for its low translational bias and approximately equal concentrations for right 
and left stimuli, which results in a regularly shaped P(R) dependency on θref (cf. Figure 2c). Center and right. 
P(R) along θref for the Δθ=const conditions marked on the left panel, as predicted by the model (lines) and 
as in the data (dots with whiskers). Dots of a lighter shade (orange, light blue) correspond to the solid lines. 
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