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Abstract 12 

Temporal regularity is ubiquitous and essential to guiding attention and coordinating 13 

behavior within a dynamic environment. Previous researchers have modeled attention as 14 

an internal rhythm that may entrain to first-order regularity from rhythmic events to 15 

prioritize information selection at specific time points. Using the attentional blink 16 

paradigm, here we show that higher-order regularity based on rhythmic organization of 17 

contextual features (pitch, color, or motion) may serve as a temporal frame to recompose 18 

the dynamic profile of visual temporal attention. Critically, such attentional reframing 19 

effect is well predicted by cortical entrainment to the higher-order contextual structure at 20 

the delta band as well as its coupling with the stimulus-driven alpha power. These results 21 

suggest that the human brain involuntarily exploits multiscale regularities in rhythmic 22 

contexts to recompose dynamic attending in visual perception, and highlight neural 23 

entrainment as a central mechanism for optimizing our conscious experience of the world 24 

in the time dimension. 25 
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Introduction 27 

Deploying attention over time is crucial for guiding human activities within a rapidly 28 

changing environment. However, the constant influx of information goes far beyond our 29 

mental capacity, impeding even the most competent human brain from capturing every 30 

nuance of the details. How does the human brain surmount such limitations in temporal 31 

attention allocation during dynamic information processing? 32 

One feasible solution, as that for spatial attention, is through selection, or by shining 33 

an attentional “spotlight” on the most relevant information while filtering out the 34 

irrelevant regarding the task demands (Posner, 1980). When it comes to the temporal 35 

domain, people tend to utilize regularities in the sensory information flow for directing 36 

attention to the moments when a target event is expected to occur (Nobre et al., 2007; 37 

Nobre & van Ede, 2018). As a great example, Jones and colleagues have shown in a series 38 

of studies that after listening to a rhythmic tone sequence, auditory perception in terms 39 

of pitch judgment and time discrimination was more accurate for target tones appearing 40 

at the expected than the unexpected time points (Jones et al., 2002; Large & Jones, 1999). 41 

Such facilitation effects have been extended to various aspects of visual perception and 42 

even across sensory modalities (Bolger et al., 2014; Brochard et al., 2013; Mathewson et 43 

al., 2010; Miller et al., 2013; ten Oever et al., 2014), implicating the involvement of a 44 

general attentional selection mechanism guided by the regularity in stimulus timing. 45 

In this line of studies, perceptual responses were significantly improved for targets 46 

appearing within a rhythmic context but not within an arrhythmic context. These findings 47 

can be interpreted by the dynamic attending theory (DAT), which assumes attention as an 48 

internal oscillatory activity (or attending rhythm) that can be entrained to rhythmic 49 

structures of the exogenous events (Jones, 1976; Jones et al., 1981; Jones & Boltz, 1989; 50 

Large & Jones, 1999). In line with this assumption, electrophysiological research in 51 

humans and non-human primates have found entrainment of intrinsic neural oscillations 52 

to external stimulus rhythms, and regarded such process as an instrument for selective 53 

attention (Calderone et al., 2014; Obleser & Kayser, 2019; Schroeder & Lakatos, 2009). 54 

Through neural entrainment, neuronal excitability aligns with the occurrence of rhythmic 55 
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events, creating “temporal attentional spotlights” that attract the brain’s attentional 56 

resources towards a string of selected moments (Calderone et al., 2014; Henry & 57 

Herrmann, 2014; Lakatos et al., 2008, 2013; Schroeder & Lakatos, 2009). 58 

The synchronization between the internal attending rhythm and the external 59 

rhythms allows us to direct attention proactively and enhance perception at the 60 

anticipated moments. With regards to forming a coherent perception of the dynamic 61 

environment, however, we should not only select information bound to the anticipated 62 

time points, but also allocate attentional resources among these points, raising the 63 

problem of dynamic attentional deployment over an information stream. For instance, 64 

when viewing a rapid serial visual presentation (RSVP) stream, there is a large chance that 65 

the observer would miss the second of two temporally proximate targets, as the allocation 66 

of attention to the first target hinders the redeployment of mental resources to the second 67 

one (Broadbent & Broadbent, 1987). This phenomenon, vividly referred to as the 68 

attentional blink (AB)(Chun & Potter, 1995; Raymond et al., 1992), has attracted much 69 

interest as it reveals the limitations of attentional allocation and memory processes that 70 

may become a bottleneck for conscious awareness (Dux & Marois, 2009; Martens & Wyble, 71 

2010; Shapiro et al., 1997). More intriguingly, as items in the RSVP stream are all 72 

rhythmically presented and temporally predictable, the AB effect poses a challenge in 73 

dynamic attending that cannot be circumvented solely by the anticipation built upon 74 

stimulus timing. 75 

To address this challenge, here we propose that, the brain has to rely, as a 76 

complement to the first-order regularity in rhythmic stimulation, on regularities in the 77 

higher-order temporal structure of the information stream. More specifically, if the 78 

endogenous attentional rhythm could entrain automatically not only to the stimulus 79 

rhythm but also to the higher-order structure based on the information content, the 80 

deployment of temporal attention might be reconstructed in a way that facilitates target 81 

detection in the AB task. To test this hypothesis, we synchronized the original AB stream 82 

(stimulation rate at 10 Hz) to a hierarchical contextual stream that possessed a feature-83 

based temporal structure—a 2.5Hz rhythm arising from periodic changes of a physical 84 

feature, superimposed on its stimulus rhythm at 10Hz. Using temporal structures defined 85 
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by a variety of features (pitch, color, etc.), we provided converging evidence that the 86 

structured context, which was task-irrelevant and even from a different modality, could 87 

regulate the dynamic deployment of visual attention so as to alleviate the AB effect. To 88 

further unravel the neural basis of the observed attentional modulation effect, we 89 

conducted an electroencephalogram (EEG) experiment. We are particularly interested in 90 

whether neural oscillations can entrain to the contextual temporal structure of stimulus 91 

feature along with that of stimulus onset timing, and more critically, whether and how the 92 

cortical entrainment to these hierarchical structures mediates the behavioral modulation 93 

effect. 94 

Results 95 

Temporal structure of contextual auditory stream recomposes visual attentional 96 

deployment 97 

In Experiment 1a, we first explored whether feature-defined temporal structure from a 98 

contextual auditory stream could regulate visual attentional deployment during the AB 99 

task. If so, the AB effect should be modulated by the positions of the visual targets relative 100 

to the rhythmic structure arising from periodic changes of the background sounds (Fig. 101 

1A). Above all, we found a robust AB effect in the short-SOA conditions, no matter whether 102 

there were contextual sounds or not. The T2 detection accuracy conditioned on correct 103 

T1 response was generally impaired in the short-SOA conditions relative to that in the 104 

long-SOA condition, during both the context session (long-SOA: 0.945 ± 0.016 (mean ± se), 105 

short-SOA: 0.728 ± 0.034, t(15) = 5.443, p < .001, Cohen’s d = 1.361) and the baseline 106 

session (long-SOA: 0.950 ± 0.013, short-SOA: 0.702 ± 0.034, t(15) = 6.720, p < .001, 107 

Cohen’s d = 1.680). 108 

More importantly, looking close at T2 performance in the short-SOA conditions (Fig. 109 

1B), we found T2 was better identified when two targets appeared in two adjacent cycles 110 

(between-cycle condition) than within the same cycle defined by the background sounds 111 

(within-cycle condition). Notably, such difference was observed only for the context 112 

session (t(15) = 2.947, p = .010, Cohen’s d = 0.737) but not for the baseline (no sound) 113 

session (t(15) = -0.212, p = .835, Cohen’s d = 0.053), although the target positions were 114 
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completely matched between these two sessions. Meanwhile, only in the between-cycle 115 

condition, the contextual sounds enhanced T2 detection accuracy relative to the baseline 116 

(t(15) = 2.287, p = .037, Cohen’s d = 0.572), while in the within-cycle condition, the 117 

performance kept comparable between the context and baseline sessions (t(15) = -0.271, 118 

p = .790, Cohen’s d = 0.068). The observed dissociation was further confirmed by a two-119 

way repeated-measures ANOVA, which yielded a significant interaction between 120 

experimental session (baseline vs. context session) and target position (between- vs. 121 

within-cycle, defined by the context) (F(1, 15) = 7. 151, p = .017, ηp
2 = .323). 122 

Results from Experiment 1a demonstrated that feature-based temporal structure of 123 

an auditory stream, though being task-irrelevant, could systematically modulate the 124 

allocation of visual attention over the AB stream. Since the temporal structure of the 125 

contextual sounds was defined by periodic change of pitch, when two targets were located 126 

in distinct cycles as in the between-cycle condition, they were accompanied by different 127 

tones, in contrast to that when located within the same cycle they were accompanied by 128 

the same tone. It is possible that the contrast of physical stimulation (i.e., pitch) at T1 and 129 

T2 could account for the performance improvement in the between-cycle condition. To 130 

test this possibility, in Experiment 1b, we matched the pitch of tones at target occurrence 131 

with that in Experiment 1a for the between- and within-cycle condition respectively, 132 

whereas disrupted feature-based regularity in the temporal structure of the contextual 133 

sound sequence (Fig. 1A, bottom). Despite that the sounds paired with the targets were 134 

exactly the same as in Experiment 1a, the difference in T2 detection accuracy caused by 135 

the contextual sounds was no longer observed (t(15) = 0.433, p = .671, Cohen’s d = 0.108), 136 

neither was its interaction with experimental session (F(1, 15) = 2.734, p = .119, ηp
2 = .154; 137 

Fig. 1C). In other words, T2 was identified with similar accuracy across all the conditions 138 

in Experiment 1b, suggesting that it is the temporal structure of the contextual sounds, 139 

not the pitch difference at target presentation, that accounts for the between-cycle 140 

facilitation effect observed in Experiment 1a. 141 

 142 
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Generalization of the modulation effect to different cycle frequencies 143 

In Experiment 1a, the auditory context always changed its pitch value every four items, 144 

i.e., every 400 ms as one cycle, resulting in rhythmic cycles at 2.5 Hz. In Experiment 1c, we 145 

tested whether the modulation effect we observed could be generalized to other cycle 146 

frequencies. We set the pitch change rate to 2 Hz (i.e., five items per cycle; Fig. 2A, upper) 147 

and 3.3 Hz (i.e., three items per cycle; Fig. 2A, lower). For both context frequencies, the T2 148 

detection performance in the between-cycle condition was significantly higher than that 149 

in the within-cycle condition (Fig. 2B; for 2 Hz, t(15) = 3.478, p = .004, Cohen’s d = 0.869; 150 

for 3.3 Hz, t(15) = 2.467, p = .030, Cohen’s d = 0.617), suggesting successful attentional 151 

modulation effects. Furthermore, a repeated-measures ANOVA on T2 accuracy revealed 152 

only a significant main effect of relative target position (i.e., between- vs. within-cycle) 153 

(F(1, 15) = 23.320, p < .001, ηp2 = .609), with a marginally significant main effect of 154 

frequency (F(1, 15) = 4.337, p = .055, ηp2 = .224) and no interaction between these two 155 

factors (F(1, 15) = 0.204, p= .658, ηp2 = 0.013). 156 

The effect of temporal attention rather than perceptual grouping 157 

As temporal structure of the context was constructed by auditory items sharing the same 158 

feature (i.e., pitch), one may argue that perceptual grouping on the basis of similarity 159 

(Bregman, 1994), instead of dynamic attending guided by feature-based temporal 160 

regularities, contributes to the between-cycle benefit that we observed. To disentangle 161 

these factors, in Experiment 1d, we changed the pitch value of tone sequences irregularly 162 

to form auditory streams that could be grouped in varying lengths (Fig. 2C, upper). 163 

Though temporal grouping was reserved in this setting, no facilitation effect was observed 164 

when targets were separated in two distinct groups relative to when they were displayed 165 

within the same group (Fig. 2D, Irreg-G). T2 detection performance was comparable in the 166 

between- and the within-group conditions (t(15) = 0.348, p = .733, Cohen’s d = 0.087). 167 

Compared with Experiments 1a and 1c, the strength of temporal grouping in 168 

Experiment 1d might be attenuated due to irregular number of items in each group, which 169 

could lead to the lack of behavioral modulation effect. To solve this issue, in Experiment 170 

1e (Fig. 2C, lower), we changed the pitch every four items to keep the rule of temporal 171 
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grouping exactly the same as that in Experiment 1a. Nevertheless, we disrupted the 172 

regularity of stimulus timing. Such manipulation would have a detrimental impact on 173 

dynamic deployment of temporal attention in general, according to the basic assumption 174 

of the DAT (Jones et al., 1982; Jones & Boltz, 1989; Large & Jones, 1999). On the other hand, 175 

it would have little influence on the grouping effect. Therefore, if temporal attention rather 176 

than perceptual grouping is essential to the behavioral modulation effect observed in the 177 

current study, we should expect such effect to disappear in Experiment 1e. In line with our 178 

speculation, when the stimulus onset timing was randomized, T2 detection performance 179 

in the between-cycle condition was no longer improved relative to the within-cycle 180 

condition (Fig. 2D, Irreg-T; t(15) = 0.302, p = .767, Cohen’s d = 0.076), despite the potential 181 

benefit of the grouping effect. Putting together, the absence of context-induced 182 

modulation effect in Experiments 1d and 1e consistently supports the idea that temporal 183 

grouping without dynamic attending guided by feature- and timing-related regularities in 184 

the auditory context is insufficient to cause the behavioral modulation effect. 185 

Temporal regularities in color-defined rhythmic structure recompose visual 186 

attentional deployment 187 

Information from the auditory modality, like speech and music, is inherently organized in 188 

time and provides rich sources of rhythmic structures that can be proactively tracked by 189 

the human brain (Arnal & Giraud, 2012; Doelling & Poeppel, 2015; Haegens & Zion 190 

Golumbic, 2018; Zion Golumbic et al., 2012). This suggests a possibility that the role of 191 

rhythmic structure in guiding attention is exclusive to auditory context, which may explain 192 

the findings from Experiment 1 that temporal structures generated by rhythmic changes 193 

of auditory signals in the background automatically modulate the AB effect. To test this 194 

idea, we designed Experiment 2 to directly investigate whether temporal structures based 195 

on the change of visual properties would exert a similar influence on temporal attentional 196 

deployment. In Experiment 2a, we used visual patterns with periodic change in 197 

background color as the temporal context while observers were performing the same AB 198 

task (Fig. 3A). As a control experiment, Experiment 2b followed the same logic for 199 

Experiment 1b, in which we destroyed the structure of the visual context by changing the 200 
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background color in random orders, but kept the background color presented with the 201 

targets the same as that in Experiment 2a (Fig. 3C). 202 

Similar to findings obtained from Experiment 1a, the interaction between 203 

experimental session (baseline vs. context session) and target position (between- vs. 204 

within-cycle) was significant in Experiment 2a (Fig. 3B; F(1, 15) = 5.180, p = .038, ηp2 205 

= .257). In the context session only, T2 performance in the between-cycle condition was 206 

better than that in the within-cycle condition (t(15) = 3.538, p = .003, Cohen’s d = 0.885). 207 

Compared with the baseline session, T2 performance was only improved in the between-208 

cycle condition (t(15) = 2.274, p = .038, Cohen’s d = 0.569). By contrast, in Experiment 2b, 209 

we did not observe a significant facilitation effect in the between-cycle condition 210 

compared with the within-cycle condition (t(15) = -1.176, p = .258, Cohen’s d = 0.294) or 211 

with its counterpart in the baseline session (t(15) = 0.685, p = .504, Cohen’s d = 0.171), 212 

nor did we observe the interaction between experimental session and target position (Fig. 213 

3D; F(1, 15) = 1.435, p = .250, ηp2 = .087). These findings suggest that the utilization of 214 

feature-based temporal regularities in attentional guidance is a fundamental principle 215 

that holds true not only for auditory but also for visual processing. 216 

Excluding the impact of structure boundary: evidence from motion context 217 

So far, results from Experiments 1 and 2 have demonstrated a general regulatory effect 218 

that feature-based temporal structure from task-irrelevant information recomposed 219 

visual attentional allocation during the AB task, which could be exerted within the same 220 

or cross different sensory modalities. In both experiments, however, the switch from one 221 

feature-based rhythmic cycle to another was always accompanied by an abrupt change in 222 

physical features (pitch or color), resulting in explicit boundaries before T2 presentation 223 

in the between-cycle but not in the within-cycle condition. This abrupt change may serve 224 

as an attentional cue or alerting signal for the upcoming T2, and thus accounts for the 225 

improvement of performance in the between-cycle condition. To examine this possibility, 226 

in Experiment 3, we introduced a cyclic motion context that possessed feature-based 227 

rhythmicity identical to those contextual rhythms in previous experiments (for more 228 

details, see Methods) but had no abrupt boundaries between cycles (Fig. 3E). Once again, 229 
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we observed significant improvement of T2 performance in the between-cycle condition 230 

relative to the within-cycle condition in the cyclic motion session (Fig. 3F; t(15) = 2.674, p 231 

= .017, Cohen’s d = 0.669), but this was not the case in the random motion session (t(15) 232 

= -0.330, p = .746, Cohen’s d = 0.082), resulting in a significant interaction between 233 

experimental session (baseline vs. context session) and target position (between- vs. 234 

within-cycle): F(1, 15) = 9.253, p = .008, ηp
2 = 0.382. These results provide compelling 235 

evidence that explicit perceptual boundaries are not necessary for the temporal structure 236 

in the context to regulate the allocation of attentional resources. 237 

EEG experiment: The role of neural entrainment in regulating attentional 238 

deployment 239 

Neural tracking of higher-order temporal structure of contextual rhythms predicts the 240 

behavioral modulation effect 241 

To investigate the neural mechanisms underlying the observed context-induced effect, we 242 

carried out an EEG experiment using the same task as that in Experiment 1a. First of all, 243 

we replicated the behavioral modulation effect that T2 performance was significantly 244 

better in the between-cycle condition versus the within-cycle condition, only in the 245 

context session (between-cycle: 0.567 ± 0.036, within-cycle: 0.520 ± 0.039, t(15) = 3.838, 246 

p = .002, Cohen’s d = 0.960) but not in the baseline session (between-cycle: 0.519 ± 0.039, 247 

within-cycle: 0.527 ± 0.043, t(15) = 0.296, p = .771, Cohen’s d = 0.074). Furthermore, to 248 

identify the oscillatory characteristics of EEG signals in response to stimulus rhythms, we 249 

examined the FFT spectral peaks by subtracting the mean power of two nearest 250 

neighboring frequencies from the power at the stimulus frequency. Power spectrum in Fig. 251 

4A shows several peaks for the context session, with the highest at 10 Hz (compared with 252 

zero using one-sample t-test, right-tailed, t(15) = 10.610, p < .001, FDR-corrected for 253 

multiple comparisons across frequencies) corresponding to the common stimulation 254 

frequency of the visual and auditory streams. More importantly, the second-highest peak 255 

appeared at 2.5 Hz (t(15) = 5.730, p < .001, FDR-corrected), followed by its harmonics at 256 

5 and 7.5 Hz, indicating neural tracking of the feature-defined structure of the auditory 257 

context. In contrast with the observation in the context session, we only found significant 258 
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power peak at 10 Hz (t(15) = 9.405, p < .001, FDR-corrected), but not at 2.5 Hz (t(15) = 259 

0.301, p = .384, FDR-corrected) in the baseline session where contextual rhythms were 260 

absent, and the power at 2.5 Hz was significantly weaker than that in the context session 261 

(t(15) = 3.421, p = .002, FDR-corrected). 262 

The significant enhancement of EEG power at 2.5 Hz clearly demonstrates that the 263 

brain can entrain to the higher-order structure defined by changes in an auditory feature 264 

(i.e. pitch) of the contextual stream. Consistent with previous studies, we also observed a 265 

wide range of individual variation in such cortical tracking of contextual rhythms (Grahn 266 

& McAuley, 2009; Kranczioch, 2017; Nozaradan et al., 2016). Could such variation predict 267 

one’s ability to extract and utilize the feature-based structure at the neural level, and thus 268 

explain the individual differences in the attentional modulation effect? To explore this 269 

possibility, we calculated the Pearson correlation between the magnitude of the neural 270 

entrainment effect and the behavioral modulation index (BMI) using a cluster-based 271 

permutation test. In the context session, we identified two significant clusters showing 272 

positive correlation between power at 2.5 Hz and individuals’ behavioral effect—one in 273 

the parieto-occipital region (Fig. 4B; P5, PO7, PO5, PO3; r =.587, p = .008, right-tailed) and 274 

the other in the frontal area (F3, F1, FZ, FC3, FC1, FCZ, C1, CZ; r =.681, p = .002). By contrast, 275 

no significant clusters were found in the baseline session (p > .05). 276 

 To further examine the role of brain activity phase-locked with the rhythmic context, 277 

we also analyzed the inter-trial phase coherence (ITPC) of EEG signals. Consistent with 278 

the power spectrum, ITPC in the context session peaked at 2.5 and 10 Hz (Fig. 4C), 279 

suggesting a hierarchical entrainment effect elicited by both feature-based and time-280 

based regularities. By contrast, ITPC in the baseline session only peaked at 10 Hz, 281 

mirroring the stimulation rate of the visual stream, and the ITPC at 2.5 Hz was significantly 282 

weaker than that in the context session (t(15) = 4.652, p < .001, FDR corrected). Critically, 283 

only in the context session, the 2.5 Hz ITPC was positively correlated with the behavioral 284 

modulation index, yielding two significant clusters in the parieto-occipital area (Fig. 4D; 285 

P7, P5, PO7, PO5, PO3, O1: r = .612, p = .006) and the frontal area (FPZ, FP2, AF4, F2, F4, 286 

F6; r = .672, p = .002). Taken together, the results of power and ITPC jointly demonstrate 287 

that the better one’s brain oscillations entrain to the higher-order temporal structure of 288 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.21.423786doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.21.423786
http://creativecommons.org/licenses/by/4.0/


 12 

the contextual rhythms, the larger attentional enhancement one may exhibit in the 289 

between-cycle condition over the within-cycle condition. 290 

T2-related alpha power reflects the attentional modulation 291 

Alpha oscillations have been considered to play a crucial and even causal role in temporal 292 

attention, particularly in the AB effect (Hanslmayr et al., 2011; Klimesch, 2012). As the AB 293 

phenomenon is characteristic of its stimulation frequency approximately at 10 Hz within 294 

the alpha band, the brain can be in a resonant state with the AB stream at the same 295 

frequency. It has been demonstrated that an increase in alpha power at the stimulus 296 

frequency indicated attentional orienting to the stimulus stream, providing an on-line 297 

measure of attentional allocation over the RSVP stream (Müller & Hübner, 2002). On the 298 

other hand, enhanced alpha power in the AB task has also been shown to be associated 299 

with correct T2 detection (Janson et al., 2014; Keil et al., 2006). Motivated by these 300 

findings, we investigated whether alpha activity related to T2 processing could reflect the 301 

attentional modulation in our study. We calculated alpha power around stimulation 302 

frequency (9.5–10.5 Hz) within the time window of 0–100 ms after T2 onset, and found 303 

two significant clusters for the context session—one in the left parieto-occipital region 304 

(Fig. 5A; T7, C5, C3, TP7, CP5, CP3, P5, P3, PO5, PO3, O1) and the other in a right-lateralized 305 

region (AF4, F2, F4, FC4, FC6, FT8, C4, C6, T8, CP4, CP6, TP8, P8), both showing stronger 306 

alpha power in the between-cycle condition than in the within-cycle condition (for the left 307 

cluster, t(15) = 3.570, p = .0014; for the right cluster, t(15) = 3.631, p = .0012, right-tailed, 308 

cluster-based permutation test). This increase in T2-related alpha power, which could be 309 

regarded as a sign of stimulus-driven neural activity, agrees well with the observations 310 

that more attentional resources are deployed to T2 and thus higher accuracy was achieved 311 

in the between-cycle condition than in the within-cycle condition. 312 

Cross-frequency coupling between delta phase and alpha power correlates with the 313 

attentional modulation effect 314 

Examinations on delta-band entrainment effect and T2-related alpha power both reveal 315 

behavioral relevance in our study. This leads to a natural question of whether the observed 316 
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attentional modulation effect is implemented through a coordinative process between 317 

neural oscillations at delta and alpha bands. To address this question, we analyzed cross-318 

frequency coupling between delta phase and alpha power, which has been found to 319 

support the attentional selection between competing stimuli (Gomez-Ramirez et al., 2011; 320 

Wilson & Foxe, 2020; Wöstmann et al., 2016). We conducted the analysis in two clusters 321 

whose neural responses in both the delta band (the ITPC at 2.5 Hz) and the alpha band 322 

(T2-related alpha power) had an established link with the attentional modulation effect: 323 

one in the parieto-occipital region (P5, PO3, PO5, O1) and the other in the frontal region 324 

(AF4, F2, F4). We calculated the modulation index (MI) of phase-amplitude coupling (PAC) 325 

between delta (1.5–3.5 Hz) and alpha band (7–13 Hz) for each cluster. The MI was 326 

stronger in the between-cycle condition than in the within-cycle condition, while the 327 

effect reached significance only in the parieto-occipital region (Fig. 5B; t(15) = 2.432, p 328 

= .028) but not in the frontal region (t(15) = 1.459, p = .165). More importantly, this 329 

contrast effect of delta-alpha PAC showed a positive correlation with the attentional 330 

modulation effect on behavioral performance, which was also restricted to the parieto-331 

occipital region (Fig. 5C; r = .660, p = .005) and not found in the frontal region (r = .154, p 332 

= .569). To further confirm the association between the delta-alpha PAC and the observed 333 

attentional modulation effect, we did a cluster-based permutation test, which again 334 

yielded a positively significant cluster in the parieto-occipital region (PO7, PO5, PO3, O1, 335 

OZ; r = .697, p = .003). These results, combined with the findings from single-band 336 

analyses, indicate that cortical tracking of hierarchical temporal structures of the auditory 337 

context, as well as the coordination of such cortical tracking effects in delta and alpha 338 

bands, may play a vital role in reconstructing the deployment of visual attentional in the 339 

AB task. 340 

Discussion 341 

Temporal attention guided by time- and feature-based regularities 342 

Dynamic information flows, such as speech and music, are composed of rhythmic 343 

structures nested across multiple timescales (Ding et al., 2016; Gross et al., 2013; Koelsch 344 

et al., 2013; Peelle & Davis, 2012). These hierarchical structures are organized in time 345 
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based on regularities in stimulus timing, that is, when sensory signals are emitted (time-346 

based), as well as regularities in information content, that is, how physical or semantic 347 

features of the sensory inputs change over time (feature-based). Accrued evidence 348 

suggests that temporal structures formed by time-based regularities are effective in 349 

directing attention and enhance information selection at the expected time points (Jones 350 

et al., 2002; Nobre et al., 2007; Nobre & van Ede, 2018). Yet the current study 351 

demonstrates the role of feature-based temporal structures in recomposing temporal 352 

attention deployment, which optimizes the distribution of attentional resources over two 353 

temporally proximate targets in the AB task. 354 

We modified the standard AB paradigm by introducing a contextual stream whose 355 

physical property changed periodically to form perceivable, but unattended rhythmic 356 

cycles in the background. Although this feature-based temporal structure was task-357 

irrelevant, it modulated the deployment of attentional resources along the AB stream, as 358 

indicated by higher T2 detection performance when the two targets were located in 359 

different cycles than in the same cycle. More intriguingly, this modulation effect was 360 

observed no matter whether the contextual stream was from the auditory (Experiment 1) 361 

or the visual (Experiment 2) modality. These findings provide clear evidence that 362 

temporal structures defined by periodic changes of physical features in a dynamic context 363 

can automatically reconstruct the temporal distribution of visual attention. 364 

In the current study, the rhythmic cycles in the contextual stream consisted of a set of 365 

temporally grouped items, some with abrupt changes in physical features across the cycle 366 

boundaries. Could the attentional modulation effect be achieved purely on the basis of 367 

transient perceptual boundaries or temporal grouping? Findings from several control 368 

experiments do not agree with these assumptions. In Experiment 3, the rhythmic cycles 369 

of contextual rhythms were defined by cyclic motion without any abrupt changes at the 370 

boundaries. Even in this case, the cyclic motion yielded a significant attentional 371 

modulation effect, excluding the possibility that the observed effect was caused simply by 372 

perceptual changes of the background. In addition, results from Experiments 1d and 1e 373 

further confirm that temporal attention guided by temporal regularities rather than 374 

perceptual grouping is key to the reduced AB effect. On the one hand, simple grouping 375 
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without feature-based temporal regularities had little influence on T2 detection (as in 376 

Experiment 1d, the feature-based grouping was irregular). On the other hand, when we 377 

disrupted time-based regularities by using stochastic stimulus timing, the attentional 378 

modulation effect also vanished, even though the rule of feature-based grouping remained 379 

in force (as in Experiment 1e, every four identical tones constituted one group). Jointly, 380 

these findings point to a mechanism of temporal attentional guidance independent of 381 

transient perceptual cues and simple perceptual grouping. 382 

 It is worth noting that the attentional modulation effect did not occur in the absence 383 

of regular stimulus timing. In other words, the feature-based regularities should work in 384 

tandem with the time-based regularities to reconstruct the dynamics of visual temporal 385 

attention, at least under the current experimental settings. This finding is consistent with 386 

the emerging view concerning the role of a diversity of temporal structures in guiding 387 

adaptive behavior (Nobre & van Ede, 2018). It has been suggested by studies using 388 

auditory materials, mostly in speech and music perception, that temporal regularities 389 

embedded in information content can act along with the time-based anticipation in 390 

attentional guidance (Doelling & Poeppel, 2015; Morillon et al., 2016; Peelle & Davis, 2012; 391 

Zion Golumbic et al., 2012). Our findings extend these studies by establishing a 392 

mechanism in visual temporal attention that is guided by regularities in feature-defined 393 

structures on top of the anticipation based on stimulation timing. 394 

The roles of dynamic attentional deployment in reducing attentional blink and 395 

boosting awareness 396 

The AB phenomenon represents a bottleneck of conscious awareness pertaining to the 397 

temporal resolution of visual attention. It is well known for its robustness that even long 398 

repetitive training cannot eliminate the AB effect (Braun, 1998). Some studies have 399 

demonstrated attenuated AB magnitude, as manifested in increased T2 detectability, by 400 

enhancing T2 salience with color-salience training (Choi et al., 2012), emotional arousal 401 

(Keil & Ihssen, 2004), or concurrent sounds (Olivers & Van der Burg, 2008). Another line 402 

of research has also reported improved T2 performance when explicitly cueing the target-403 

onset-asynchrony (TOA) on a trial-by-trial basis (Martens & Johnson, 2005) or 404 
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manipulating the predictability of target onset (Tang et al., 2014; Visser et al., 2015). 405 

Despite implementing different approaches, all these studies tried to manipulate certain 406 

aspects of T2, regarding either its salience or predictability in time. By contrast, in our 407 

study, the salience of targets and temporal expectations about T2 onset were comparable 408 

across all experimental conditions. The only difference between the within- and between-409 

cycle conditions was the positions of the two targets relative to the feature-defined 410 

temporal structure. Under this situation, items in the RSVP stream were no longer 411 

encoded in isolation, but treated as a part of a structured information flow that could be 412 

organized by periodic changes in the context. In particular, when T1 and T2 were 413 

separated in different cycles, the temporal relations between them were reframed, which 414 

might at least partially reduce the competition between the targets, thus improving the 415 

resolution of visual temporal attentional and boosting the conscious access to T2. Instead 416 

of emphasizing the role of a given target or a certain time point, our findings highlight the 417 

significance of attentional deployment as a dynamic process in regulating visual 418 

awareness and the AB effect, which is modulated by temporal structures of the entire 419 

information flow. 420 

Neural entrainment to hierarchical contextual rhythms modulates dynamic 421 

attending in visual perception 422 

Neural oscillations can be entrained to external rhythms across different frequencies 423 

(Calderone et al., 2014; Escoffier et al., 2015; Henry et al., 2014; Mathewson et al., 2012; 424 

Schroeder et al., 2010; Schroeder & Lakatos, 2009; Thut & Gross, 2011), allowing the brain 425 

to encode dynamic information with multiplexed rhythmic structures across different 426 

timescales (Fontolan et al., 2014; Lakatos et al., 2005; O’Connell et al., 2015). A common 427 

example of this comes from studies of speech processing. The linguistic structure 428 

possesses a temporal hierarchy—from smaller phonetic elements to larger syllabic and 429 

phrasal units, which accordingly elicit neural entrainment at multiple frequency bands 430 

(Arnal & Giraud, 2012; Zion Golumbic et al., 2012). There is growing evidence that cortical 431 

tracking of the higher-order structures plays a vital role in speech and music 432 

comprehension (Ding et al., 2016; Doelling & Poeppel, 2015; Gross et al., 2013; Koelsch et 433 
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al., 2013; Peelle & Davis, 2012). In our EEG study, we demonstrate an analogous 434 

entrainment effect that not only keeps track of the original AB stream at 10 Hz but also 435 

represents the higher-order feature-based structure of contextual rhythms at 2.5 Hz. More 436 

importantly, the magnitude of the 2.5-Hz entrainment effect is significantly correlated 437 

with the strength of the attentional modulation effect. The scalp topographic map of 438 

correlation is lateralized and restricted to the left parietal region, which was found to be 439 

associated with temporal attention (Bolger et al., 2014; Coull & Nobre, 1998). These 440 

findings are in good accordance with the assumption that the cortical tracking of feature-441 

based contextual structure is critical to the redeployment of attentional resources over 442 

the AB stream and may lead to the behavioral modulation effect.  443 

The AB paradigm is characterized by its stimulation frequency approximately at 10 444 

Hz within the alpha band. In our experiment, the 10-Hz power after T2 is stronger in the 445 

between-cycle condition than in the within-cycle condition, which probably because the 446 

increased attentional resources delivered to T2 enhance the stimulus-evoked neural 447 

responses in the between-cycle condition (Janson et al., 2014; Keil et al., 2006). Further 448 

analysis reveals that, in the left parieto-occipital cluster that exhibits phase-locked neural 449 

responses to feature-based structures of the contextual rhythms and a T2-related 450 

increment in alpha power, there is a phase-amplitude coupling between the delta and 451 

alpha oscillations. Moreover, the strength of this delta-alpha coupling effect predicts the 452 

effect of higher-order temporal structures on dynamic attentional allocation at the 453 

individual level. These findings corroborate the idea that neural entrainment to a slower 454 

external rhythm may serve as a mechanism of attentional selection, with the phase of delta 455 

oscillation regulating the excitability of neural activity in the alpha band (Gomez-Ramirez 456 

et al., 2011; Wilson & Foxe, 2020; Wöstmann et al., 2016). 457 

Taken together, findings from the current study have cast new light on the classic 458 

theory of DAT and its neural implementation. The DAT assumes attention to be inherently 459 

oscillatory and can be driven by the timing pattern of external events (Jones, 1976; Jones 460 

et al., 1982; Jones & Boltz, 1989; Large & Jones, 1999). By taking advantage of temporal 461 

regularities of isochronous or rhythmic events, attentional synchrony can be established 462 

and thus improve perceptual accuracy and elevate response speed. Our study extends the 463 
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DAT to more general cases of dynamic information processing at both the behavioral and 464 

the neural levels. Primarily, our behavioral observations suggest that to utilize regularities 465 

in a hierarchical temporal structure, the internal attentional oscillation may not only align 466 

with first-order rhythmic structures based on stimulus timing, but also with higher-order 467 

rhythmic structures defined by content-based changes of the information flow. Such a 468 

dynamic attending process necessitates the synergy between time- and content-based 469 

regularities, which could be implemented by neural entrainment to the higher-order 470 

temporal structure and its coordination with the cortical tracking of the stimulus rhythm 471 

through cross-frequency coupling. 472 

Conclusion 473 

In summary, the current study emphasizes the role of feature-defined contextual rhythms 474 

in reconstructing the deployment of visual attention along dynamic information streams. 475 

This work enriches our knowledge, as raised at the beginning of this article, about how 476 

we optimize the limited mental capacity to process successive inputs from this ever-477 

changing world. Taking the AB phenomenon as an example, we provide a new perspective 478 

on visual temporal attention research—when examining the perception of complex 479 

dynamic information, temporal context on multiple timescales should be taken into 480 

consideration because it provides a meaningful hierarchical temporal frame for 481 

attentional deployment. This temporal frame, implemented by neural entrainment, may 482 

serve to organize attentional resources in a prospective manner and help construct our 483 

conscious experience of the world in the dimension of time. 484 
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Materials and Methods 485 

Participants 486 

A total of one hundred and forty-four volunteers (aged from 18 to 30 years, 69 females) 487 

were recruited and paid for their participation in the current study. One hundred and 488 

twenty-eight participated in the behavioral Experiments 1a-1e, 2a-2b, and 3 (16 for each 489 

experiment, with participants’ gender balanced), and 16 (5 females) in the EEG 490 

experiment. All participants had normal or corrected-to-normal vision and normal 491 

hearing and were naï ve to the purpose of the experiment. Considering the individual 492 

differences in the AB effect, only participants who exhibited a typical AB effect (i.e., an 493 

impairment of T2 accuracy at short lags compared with that at long lags) during a pre-494 

screening session were asked to take part in the formal experiments. All participants 495 

provided written informed consent in accordance with experimental procedures and 496 

protocols approved by the Institutional Review Board of the Institute of Psychology, 497 

Chinese Academy of Sciences. 498 

Stimuli 499 

The rapid visual serial presentation (RSVP) stream used in the AB task consisted of 16 500 

items (except in Experiments 1c and 1d). Among these items, one or two were the targets 501 

(capital letters selected from the alphabet, excluding B, D, O, I, M, Q, S, W, and Z), and the 502 

remaining were distractors (one-digit numbers, 1 and 0 excluded, without repetitions 503 

between any two of four successive digits). The items were displayed for 83 ms each and 504 

were separated by 17 ms blank intervals (except Experiment 1e), generating a 10 Hz 505 

rhythm based on stimulus presentation (see Fig. 1A, top). Each item subtended 0.47°×0.57° 506 

of visual angle and was displayed in white within a gray square (3°×3° ) located at the 507 

center of a black screen. In each experiment, a contextual stream, which contained the 508 

same number of items as the AB stream but was organized by a feature-defined structure, 509 

was presented in synchronization with the AB stream. Stimuli were generated and 510 

displayed using MATLAB (The MathWorks Inc., Natick, MA) with the Psychophysics 511 

toolbox extension (Brainard, 1997). Visual stimuli were presented on a 21-inch CRT 512 

monitor with a viewing distance of 55 cm in a dim room. Auditory stimuli were delivered 513 
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binaurally over Bose QC3 headphones with the volume set to a comfortable listening level. 514 

Procedures 515 

Behavioral Experiments 516 

In all experiments, participants were explicitly instructed to ignore the contextual events 517 

and focused attention on the AB task. Participants initiated each trial by pressing the enter 518 

key. A white fixation cross appeared for 600 ms at the center of the screen, followed by the 519 

presentation of an AB stream (along with an auditory/visual stream in the context 520 

session). After the last item disappeared, the central fixation turned blue to remind the 521 

participant to report the identities of the target(s) in the order they detected them by 522 

typing on the keyboard. 523 

Experiment 1a had a baseline session followed by a context session. In the baseline 524 

session, participants viewed only the AB stream and performed the typical AB task. To 525 

induce the AB effect, the second target (T2) in the AB stream was located at the second 526 

lag of the first target (T1) with a short stimulus onset asynchrony (SOA) of 200 ms, as the 527 

magnitude of AB effect is most robust around the second and the third lags. In contrast 528 

with the short-SOA condition, we introduced a long-SOA condition where T2 always 529 

appeared at the 8th Lag of T1 and could rarely be missed. To measure the false alarm rate, 530 

we also included catch trials in which only one target was displayed. The context session 531 

had the same settings and task as the baseline session, except that a task-irrelevant 532 

auditory stream was presented in synchronization with the original RSVP stream. 533 

Specifically, the auditory stream was composed of 16 tones, each aligned with the onset of 534 

a visual item and displayed for 30 ms. The tone sequence changed its pitch from high 535 

(2000 Hz) to low (1200 Hz) or vice versa every four items (corresponding to 400 ms), 536 

generating 4 auditory cycles (i.e., 4-4-4-4) at a rate of 2.5 Hz (Fig. 1A, middle). To examine 537 

the regulation effect of such pitch-defined rhythmic structures, we created two 538 

experimental conditions specifically for the short-SOA trials, by varying the positions of 539 

T1 and T2 relative to the contextual cycles. In the “between-cycle condition”, T1 and T2 540 

were located in two adjacent cycles; and in the “within-cycle condition”, the two targets 541 

were located in the same cycle. To reduce observers’ anticipation about the timing of T1 542 
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onset across trials, we introduced various T1 positions while keeping T2 located within 543 

the middle two cycles. Each session had 120 experimental trials (40 trials for the between-544 

cycle, within-cycle, and long SOA condition each) and 20 catch trials. These trials were 545 

divided into four equal blocks, with randomized trial order within each block. 546 

Experiment 1b-1e adopted the same procedure as Experiment 1a but with the 547 

following exceptions. In Experiment 1b, as shown in Fig. 1A (bottom), we abolished the 548 

feature-based structure of the contextual streams by pseudo-randomizing the auditory 549 

tone sequences while keeping the pitch of tones at target locations the same as that in 550 

Experiment 1a. In Experiment 1c, we changed the temporal structure of the contextual 551 

streams by altering their pitch change rate, generating two types of auditory sequences: 552 

one with 4 five-tone cycles displayed at 2Hz (i.e., 5-5-5-5, see Fig. 2A, upper), and the other 553 

with 5 three-tone cycles at 3.3 Hz (i.e., 3-3-3-3-3, see Fig. 2A, lower). For both frequency 554 

conditions, T2 was located in the next to last or third from last cycles. In Experiment 1d, 555 

we varied the length of chunks in the contextual streams, generating auditory sequences 556 

with four cycles of different lengths (e.g., 5-2-4-3) but always having 4 tones in the third 557 

cycle where the second target appeared (see Fig. 2C, upper). In Experiment 1e, the feature-558 

based structure remained while the rhythm from stimulus timing was removed (see Fig. 559 

2C, lower). Specifically, the tone pitch changed every four items just as in Experiment 1a, 560 

whereas the stimulus onset asynchrony (SOA) of each visual item was selected randomly 561 

from a predetermined uniform distribution (50, 67, 83, 100, 100, 117, 133, 150 ms) to 562 

keep the total presentation time identical to that in Experiment 1a. In both Experiment 1d 563 

and 1e, T2 was always the second item in the 3rd cycle for the between-cycle condition 564 

and the last item in the 3rd cycle for the within-cycle condition. 565 

Experiments 2a and 2b had a design similar to that of Experiments 1a and 1b, except 566 

that we replaced the auditory context with a visually presented contextual stream that 567 

possessed color-defined temporal structure. Specifically, in the context session of 568 

Experiment 2a, the color of the background square changed from green to red or vice 569 

versa at the same tempo as that for contextual tones in Experiment 1a (Fig. 3A, upper). 570 

And in Experiment 2b, the background color changed in arrhythmic patterns (Fig. 3C, 571 

upper). Luminance of the two colors was matched for each observer with a chromatic 572 
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flicker fusion procedure before the experiments. 573 

Experiment 3 consisted of an experimental session with a structured context as that 574 

in Experiment 2a and a control session with a random context as that in Experiment 2b. 575 

In the experimental session, the contextual rhythm was created by cyclic motion patterns 576 

in the background (Fig. 3E, upper). Specifically, a blue right-angle (width = 0.38°, side 577 

length = 1.5°), initiating from one corner (the upper-left or the upper-right, balanced 578 

between blocks) of the background square, rotated clockwise at the same pace as the AB 579 

stream. In this way, one cycle of rotation corresponded to the appearance of four items 580 

(i.e., 400 ms), forming a 2.5 Hz structure based on the motion cycles. In the control session, 581 

no cyclic motion pattern remained but the right-angle shifted to a random quadrant under 582 

the constraint of identical initial quadrant in each ‘cycle’ (Fig. 3E, lower).  583 

Note that in all these experiments, we also labelled the conditions in baseline and 584 

control sessions as “within-cycle” or “between-cycle”, just to indicate that these conditions 585 

shared the same absolute target positions with the corresponding conditions in the 586 

context session. This design was adopted to control for any potential influence of the 587 

absolute position of a target within the AB stream. Specifically, for each experimental 588 

condition (within- or between-cycle), we matched the absolute positions of T1 and T2 589 

between the context session and the baseline session without a context (Experiments 1–590 

2), or between the experimental session and the control session with a random context 591 

(Experiments 1 & 3). 592 

EEG Experiment 593 

The procedure of the EEG experiment was mostly identical to that of Experiment 1a except 594 

for the following modifications. Black items were presented on a gray background and the 595 

item size was 0.59°×0.78°. In each trial, the fixation duration was 1000 ms and each item 596 

was displayed for 100 ms with no blank interval. After response, there was a 1.2–1.5 s 597 

blank interval. Each subject completed 3 baseline blocks followed by 6 experimental 598 

blocks with the auditory context. Each block consisted of 40 trials, with 17 short-SOA trials 599 

in each of the between- and within-cycle condition, and the remaining 6 as the catch trials, 600 

run in a random order. 601 
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EEG recording  602 

A SynAmps2 Neuroscan amplifier system (Compumedics Ltd, Abbotsford, Australia) was 603 

used for data acquisition. EEG signals were recorded continuously from 64 Ag/AgCl 604 

electrodes mounted on an elastic cap according to the extended 10–20 system, with a 605 

reference electrode placed between Cz and CPz. Vertical and horizontal eye movements 606 

were monitored with two bipolar EOG electrode pairs positioned above and below the left 607 

eye and on the outer canthus of each eye. Data were acquired at a sampling rate of 1000 608 

Hz with an online 0.05-100 Hz band-pass filter (notched at 50 Hz). Electrode impedances 609 

were kept below 8 kΩ for all electrodes. 610 

EEG data analysis 611 

Preprocessing 612 

Data preprocessing and analysis was performed using EEGLAB toolbox (Delorme & 613 

Makeig, 2004) and FieldTrip (Oostenveld et al., 2011) in combination with custom 614 

MATLAB scripts. EEG recordings were down-sampled offline to 500 Hz, high-pass filtered 615 

at 0.3 Hz, and then segmented into 2200 ms trials from -600 to 1600 ms relative to the 616 

onset of the AB stream. Ocular artifacts were then identified and removed using the 617 

ADJUST algorithm (Mognon et al., 2011) based on independent component analysis (ICA). 618 

Segments with voltage deflections greater than 75 uV were rejected. Residual artifacts 619 

were checked by visual inspection. On average, 90 trials remained for each condition and 620 

each individual. The segmented data were re-referenced to the average potential of all 621 

electrodes excluding the mastoid and EOG electrodes. 622 

Power analysis 623 

The preprocessed EEG signals were first corrected by subtracting the average activity of 624 

the entire stream for each epoch, and then averaged across trials for each condition, each 625 

participant, and each electrode. Then signals from stream onset were zero-padded and 626 

fast Fourier transformed, yielding amplitude and phase estimation at a frequency 627 

resolution of 0.5 Hz. Power spectra was calculated as the squared amplitude and then 628 

converted to decibel scale (i.e., 10*log10). To remove unrelated background noises from 629 
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the frequency response of stimulus rhythms, for each frequency, the mean power at two 630 

nearest neighboring frequencies was subtracted from the power at that center frequency. 631 

The subtracted power at each frequency was then averaged across all channels (excluding 632 

M1, M2, VEO, HEO, CB1 and CB2) and compared with zero using one-sample t test to 633 

determine whether neural oscillations were entrained to temporal structures of the 634 

stimulus rhythms. Multiple comparisons across frequencies were controlled by the false 635 

discovery rate (FDR, p < .05) procedure. 636 

Phase locking analysis 637 

Inter-trial phase coherence (ITPC) serves to indicate the consistency with which intrinsic 638 

neural oscillations were phase-locked to the external rhythms over trials. We first 639 

obtained phase estimation from spectral decomposition for each single trial based on fast 640 

Fourier transform, and then calculated ITPC as follows: 641 

ITPC(𝑓) = |
1

𝑛
∑ (

𝐹𝑘(𝑓)

|𝐹𝑘(𝑓)|
)𝑛

𝑘 = 1 |    (1) 642 

where, for n trials, 𝐹𝑘(𝑓) is the spectral estimate of trial k at frequency f, and || represents 643 

the complex norm. 644 

T2-related alpha power 645 

In order to measure the neural activity time-locked to T2 at alpha band, time-frequency 646 

analysis was performed by convolving single-trial data with a complex Morlet tapered 647 

wavelet using the newtimef function of EEGLAB. To optimize the trade-off between 648 

temporal and frequency resolution, the length of wavelets increased linearly from 1 cycle 649 

at the lowest frequency (2 Hz) to 7.5 cycles at the highest frequency (30 Hz, in increments 650 

of 0.5 Hz), resulting in power estimates from -321 to 1321 ms around stream onset. For 651 

each frequency, power at each time point was first averaged across trials and then divided 652 

by the average activity in baseline period from -300 to -200 ms and log-transformed to 653 

decibels.  654 

 655 
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Delta-alpha phase-amplitude coupling analysis 656 

The modulation index (MI) of phase-amplitude coupling (PAC) was used to measure the 657 

coordinative modulation between the phase of ongoing oscillations in delta band (1.5–3.5 658 

Hz) and the power in alpha bands (7–13 Hz) at each electrode. First, the low-frequency 659 

phase at delta band (fp) and high-frequency amplitude at alpha band (fa) were estimated 660 

by filtering each epoch with a Butterworth bandpass filter and then applying the Hilbert 661 

transform. The broad bandwidth of alpha band (7–13 Hz) was determined to be wide 662 

enough to contain the side-bands of the modulating frequency at fp (2.5 Hz) (Dvorak & 663 

Fenton, 2014; Seymour et al., 2017). Next, the modulation index of PAC was quantified 664 

using the mean-vector length method first introduced by Canolty et al. (Canolty et al., 665 

2006). As shown in formula (2), for each epoch, the MI values were calculated by 666 

combining low-frequency phase and high-frequency amplitude into complex time series 667 

and then taking the length of the average vector within the selected time window (500–668 

1300 ms relative to stream onset), which corresponded to the middle two cycles of the 669 

contextual stream. The first and last 400 ms of the stream was discarded to avoid the edge 670 

artifacts after bandpass filtering. The resulting MI values were then averaged across trials 671 

for each condition. 672 

MI = |
1

𝑁
∑ A𝐻(𝑛)𝑒𝑖(Φ𝐿(𝑛))𝑁

𝑛=1 |      (2) 673 

where MI is estimated for a single trial with length of N samples or time points, A𝐻(𝑛) is 674 

the amplitude of higher-frequency at time point n, Φ𝐿(𝑛) is the phase of lower-frequency 675 

at time point n, and || represents the complex norm. 676 

Correlation analysis 677 

To examine whether the above EEG indices were associated with the observed attentional 678 

modulation effect, we correlated these EEG indices with individual’s behavioral 679 

modulation index (BMI), which was determined by the following formula: 680 

BMI =  
𝑃𝐵𝐸𝑇−𝑃𝑊𝐼𝑇

𝑃𝐵𝐸𝑇+𝑃𝑊𝐼𝑇
     (3) 681 
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where 𝑃𝐵𝐸𝑇 and 𝑃𝑊𝐼𝑇 were the accuracy rate of T2 identification in the between-cycle 682 

and the within-cycle conditions in the context session, respectively. 683 

Cluster-based permutation test 684 

To identify clusters of channels that are significant in each statistical test, we used the 685 

cluster-based permutation test, which was first stated by Maris and Oostenveld (Maris & 686 

Oostenveld, 2007) and used in a number of previous studies (Doelling & Poeppel, 2015; 687 

Spaak et al., 2014). Firstly, cluster-level statistics are calculated as the sum of channel-688 

specific test statistics within every cluster. Then, the maximum of the cluster-level 689 

statistics is taken as the actual test statistic. Finally, the significance probability of the 690 

maximum cluster-level statistic is evaluated under the permutation distribution obtained 691 

with the Monte Carlo method in which the permutation cluster-level statistic is calculated 692 

by randomly swapping the conditions in participants 1000 times.  693 
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Figures 934 

Figure 1 935 

Fig. 1. Schematics of stimuli and results for Experiments 1a and 1b. (A) In the AB task, 936 

participants were presented with rapid serial visual presentation (RSVP) streams at 10 937 

Hz (top). Each stream contained two capital letter targets embedded in fourteen number 938 

distractors. Black and gray “T1” and “T2” denote two alternative options for target 939 

locations in the short-SOA conditions. These targets were located either in two adjacent 940 

cycles (the between-cycle condition, displayed on violet background for illustration only) 941 

or within the same rhythmic cycle (the within-cycle condition, displayed on green 942 

background for illustration only) defined by a rhythmic auditory context in Experiment 943 

1a (middle). Arrhythmic context was used as a control in Experiment 1b (bottom). (B & C) 944 

T2 detection accuracy conditioned on correct T1 response for the experiments using 945 

rhythmic and arrhythmic contexts. Note that in the baseline (visual-only) session, the 946 

labels of “between” and “within” were used to refer to the conditions where the two 947 

targets shared the same absolute positions with their corresponding conditions in the 948 

context (audiovisual) session. Error bars represent 1 SEM; * p<0.05. 949 
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Figure 2 950 

Fig. 2. Stimuli and results for Experiments 1c, 1d & 1e. (A) Contextual tone sequences with 951 

pitch changed every 5 tones (2 Hz, upper) and every 3 tones (3.3 Hz, lower) in Experiment 952 

1c. (B) T2 performance in short-SOA conditions for 2-Hz(upper) and 3.3-Hz (lower) 953 

sequence in Experiment 1c. (C) The auditory context was grouped irregularly into four 954 

chunks with different numbers of tones (G-irregular) in Experiment 1d (upper) and into 955 

four regular chunks (four tones in each) but with irregular onset timing (T-irregular) in 956 

Experiment 1e (lower). (D) T2 performance in Experiment 1d (upper) and 1e (lower). 957 

Error bars represent 1 SEM; * p<0.05, ** p<0.01.  958 
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Figure 3 959 

Fig. 3. Stimuli and results for Experiments 2 and 3 using the visual contexts. (A) The visual 960 

context with or without periodic changes in the background color and (B) the T2 961 

performance in Experiment 2a. (C) The visual context with or without the background 962 

color changed irregularly and (D) the T2 performance in Experiment 2b. (E) Contextual 963 

rhythms defined by cyclic/random motion at a constant speed and (F) the T2 performance 964 

in Experiment 3. Error bars represent 1 SEM; * p<0.05, ** p<0.01. 965 

  966 
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Figure 4 967 

Fig. 4. Neural entrainment to contextual rhythms and its correlation with the attentional 968 

modulation effect. (A) The power spectrum of EEG signals averaged across all epochs and 969 

channels. For each frequency, power was normalized by subtracting the mean power of 970 

the two nearest neighboring frequencies from the power of the center frequency. Shaded 971 

areas indicate standard errors of the mean. (B) The 2.5-Hz power entrainment effect in 972 

the parieto-occipital cluster (middle, in orange) and the frontal cluster (right, in green), 973 

as in indicated in the scalp topographic map (left), significantly correlated with the 974 

behavioral modulation index (BMI). (C & D) Analysis of inter-trial phase coherence (ITPC) 975 

results yielded similar patterns to that for power. 976 

977 
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Figure 5 978 

Fig. 5. Modulation effect of the alpha power and its coupling with the delta phase. (A) T2-979 

related alpha power averaged within the time window of 0–100 ms relative to the T2 980 

onset was significantly higher in the between-cycle condition than in the within-cycle 981 

condition in a left parieto-occipital cluster (starred in orange) and a right-lateralized 982 

cluster (starred in green). (B) The modulation index of phase-amplitude coupling (PAC) 983 

between the delta and alpha bands was higher for the between-cycle condition than for 984 

the within-cycle condition, and (C) the difference in normalized PAC strength could 985 

predict the BMI across individuals. Shadowed area in the topographic plot indicates the 986 

cluster showing significant behavioral relevance in both delta- and alpha-band activities. 987 

Error bars represent 1 SEM; * p<0.05, ** p<0.01. 988 
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