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Abstract 
Mass spectrometry based metaproteomics is a relatively new field of research that 

provides the ability to characterize the functionality of microbiota. Recently, we were 

the first to demonstrate the applicability of data-independent acquisition (DIA) mass 

spectrometry to the analysis of complex metaproteomic samples. This allowed us to 

circumvent many of the drawbacks of the conventionally used data-dependent 

acquisition (DDA) mass spectrometry, mainly the limited reproducibility when 

analyzing samples with complex microbial composition. However, the previous 

method still required additional DDA data on the samples to assist the DIA analysis. 

Here, we introduce, for the first time, a DIA metaproteomics approach that does not 

require any DDA data, but instead replaces a spectral library generated from DDA 

data with a pseudospectral library generated directly from the metaproteomics DIA 

samples. We demonstrate that using the new DIA-only approach, we can achieve 

higher peptide yields than with the DDA-assisted approach, while the amount of 

required mass spectrometry data is reduced to a single DIA run per sample. The new 

DIA-only metaproteomics approach is implemented as open-source software package 

DIAtools 2.0, which is freely available from DockerHub.  
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Introduction  

Metaproteomics is a relatively new field of research that aims to characterize all 

proteins expressed by a community of microorganisms in a complex biological sample 
1. Its major promise lies in its ability to directly measure the functionality of microbiota, 

while the more widely used metagenomics captures only the taxonomic composition 

and functional potential. Therefore, metaproteomics has emerged as an intriguing 

option, for example, in the study of human gut microbiota functionality in various 

healthy and disease states 2, 3.  

 

To date, the common approach in metaproteomics has been data-dependent 

acquisition (DDA) mass spectrometry, which is, however, known to have limitations 4. 

For example, only the most intense peptide ions are selected for fragmentation, which 

leaves the rest of the peptides undetected. This is particularly important for 

metaproteomics, where the vast number of peptides increase the chance of co-elution 

and peptides are discarded by the instrument from subsequent analysis. The selection 

also introduces stochasticity to the identifications, reducing the overlap between 

repeated analyses. For this reason, DDA often requires multiple runs from the same 

sample to discover all obtainable peptides. Furthermore, the ion intensities are not 

consistently recorded through the whole chromatographic profile, making 

quantification challenging 5. 

 

To overcome the limitations of DDA, data-independent acquisition (DIA) mass 

spectrometry produces records of all precursor and fragment ion spectra by 

systematically fragmenting all precursor peptide ions. Therefore, DIA has been 

proposed as an alternative method to overcome many fallbacks of DDA. However, the 

systematic fragmentation of the precursor peptide ions produces highly convoluted 

fragment spectra, making the peptide identification a difficult task. This is especially 

challenging for complex metaproteomic samples, where multiple precursor ions are 

more likely to elute simultaneously.  

 

Recently, we were the first to demonstrate that DIA mass spectrometry can be 

successfully applied to analyse complex metaproteomic samples by using a spectral 

library constructed from corresponding DDA data to assist the peptide identification 6. 
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While such DDA-assisted method requires that the peptides are previously discovered 

through DDA, it allows reproducible identification and quantification of the detected 

peptides across the samples 7. However, the requirement for having a DDA-based 

spectral library can be considered as a major drawback of the method. Creating the 

DDA-based spectral library consumes sample material, may not represent well the 

content of all samples and, most importantly, brings the DDA originated limitations of 

peptide identification to DIA, as only peptides present in the library can be detected 

from the DIA data.  

 

Here we introduce, for the first time, untargeted analysis of DIA metaproteomics data 

without the need for corresponding DDA data. This is done by generating a 

pseudospectral library directly from the DIA data, following a similar strategy as 

previously introduced in single-species studies 8. The pseudospectra are generated 

by deconvoluting DIA spectra into DDA-like spectra, having precursors and their 

fragments, which can then be used for peptide identification with conventional protein 

database searches. Using laboratory-assembled microbial mixture and human fecal 

samples, we demonstrate that our DIA-only metaproteomic approach enables 

overcoming the limitations of the DDA-assisted approach and reduces the number of 

required mass spectrometry analyses to a single DIA analysis per sample. The new 

DIA-only metaproteomics approach is implemented as part of our open-source 

software package DIAtools 2.0, which is freely available from DockerHub. 
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Results  

To demonstrate the feasibility and benefits of our new DIAtools 2.0 DIA-only 

metaproteomics approach, we applied it to a laboratory assembled microbial mixture 

containing twelve different bacterial strains (12mix) and to human fecal samples from 

six healthy donors (Supplementary Tables 1-2) and compared the performance 

against the previously introduced DDA-assisted method 6. 

 

Peptide identifications and their reproducibility 
When investigating the peptide yields, the DIA-only approach of DIAtools 2.0 produced 

13% and 37% higher yields than the DDA-assisted approach in the 12mix (17255 vs. 

15242 peptides) and human fecal data (15262 vs. 11136 peptides), respectively 

(Figure 1A-B). Of all the peptides identified by either of the approaches, 88% and 29% 

were shared between the approaches in the 12mix and the fecal data, respectively, 

while several peptides were only detected with one of the approaches. 

 

In the 12mix data, we also investigated the reproducibility of the identified peptides 

between three technical replicates. The reproducibility of both the DIA-only and the 

DDA-assisted approach was high, with an overlap of over 97% in both cases (Figure 
1C-D). For comparison, use of only the DDA data resulted in an overlap of only 41% 

(Figure 1E), highlighting the improved reproducibility of DIA over DDA. 

 

Next, we explored the composition of the spectral and pseudospectral libraries, which 

is an essential technical aspect of the peptide identification, forming the search space 

of peptides that can be detected from the DIA data. Of all the library peptides, 38% 

and 34% were shared between the spectral and pseudospectral libraries in the 12mix 

and the human fecal data, respectively (Figure 1F-G). Interestingly, although in the 

12mix data, the DDA-based spectral library contained more peptides than the DIA-

based pseudospectral library, the latter resulted in more peptide identifications (Figure 
1A). This implies that, as expected, a library built directly from the DIA data targets the 

DIA data peptides more precisely than a separate DDA-based library. 

 

Taxonomic and functional profiles 
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Overall, the taxonomic and functional profiles of the metaproteomes observed using 

the DIAtools 2.0 DIA-only and the DDA-assisted approaches were highly similar. The 

DIA-only approach was able to assign a unique taxonomic annotation at genus level 

to 60% of the peptides in the 12mix (Figure 2A) and 43% of the peptides in the human 

fecal data (Figure 2B). Similarly, the DDA-assisted approach annotated 61% and 41% 

of the peptides in the 12mix and human fecal data, respectively (Figure 2A-B). With 

both the DIA-only and the DDA-assisted approach, less than 2% of the identified 

peptides in the laboratory assembled 12mix were annotated to genera not present in 

the mixture. The taxonomic profile of human fecal samples was similar to those 

reported in the literature 2, 9. These provide further validation of the feasibility of DIA 

metaproteomics in profiling complex microbial samples. 

 

To understand better the differences between the DIA-only and DDA-assisted peptide 

identifications, we compared the genus-level taxonomic profiles of the peptides found 

only by one of the approaches (Figure 2C). While the overall taxonomic profiles of 

these peptides were highly similar, some notable differences were observed. First, 

while the DIA-only approach detected a larger number of peptides, it also detected a 

larger proportion of unknown peptides with no taxonomic annotation in the widely used 

integrated reference catalog of the human gut microbiome (IGC) 10. This suggests that 

the most abundant proteins, commonly targeted by DDA, are more likely to have an 

annotation in the database. Secondly, the DDA-assisted method detected a larger 

proportion of ambiguous peptides with multiple different annotations in IGC, which is 

typical to peptides that are shared by multiple organisms. Again, this is in line with 

DDA targeting the most abundant peptides. Finally, when investigating the individual 

genera, the largest difference between the results of the DIA-only and DDA-assisted 

approaches was observed in Prevotella in the human fecal samples, which had a 4% 

share with the DIA-only approach and 2% share with the DDA-assisted approach. A 

closer look at the individual human fecal samples revealed that Prevotella was 

dominant in a single sample, while its proportion in the other samples was very low 

(Figure 2D-E). This highlights the limitations of using a pooled DDA library for the 

analysis, which may adversely affect the performance of the DDA-assisted approach.  
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Similarly, we investigated the identified KEGG functional profiles of the peptides and 

found them to be highly similar between the DIA-only and DDA-assisted approaches 

(Supplementary Figure 1). 

 

Peptide quantifications and their reproducibility 

Finally, we assessed the performance of the DIAtools 2.0 DIA-only and the DDA-

assisted approach in quantifying the identified peptides. With both approaches, the 

pairwise Pearson correlation coefficients between the quantifications across the 

technical replicates in the 12mix data were very high (r > 0.95 with p < 0.001 in each 

pairwise comparison, Figure 3A-B and Supplementary Figure 2), indicating high 

reproducibility of the approaches.  

 

Further investigation of the quantifications by the DIA-only and the DDA-assisted 

approaches suggested both similarities and differences. The overall correlations 

between the approaches were high: 0.99 for the 12mix (p < 0.001) and 0.81 for the 

human fecal samples (p < 0.001) (Figure 3C-D). In general, however, the DIA-only 

estimates for many of the peptides were somewhat higher than the estimates 

produced by the DDA-assisted approach. This is related to differences in the libraries 

built by the approaches, where each unique peptide can be represented by multiple 

ions with different charge states and modifications and the same peptide is typically 

represented by a partially different set of fragments (Supplementary Figure 3). This 

results in quantification differences between the approaches, because the peptides 

are quantified on the basis of the fragment level.  
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Discussion 

We introduce here a new computational tool for DIA metaproteomics to overcome the 

main limitations of the currently used DDA-based methods. Our results suggest that 

our new DIA-only approach of DIAtools 2.0 enables reproducible identification and 

quantification of metaproteome profiles beyond both the currently used DDA-assisted 

DIA approach or the more widely used DDA-only method. In particular, the DIAtools 

2.0 DIA-only approach improves both the number of detections as well as their 

reproducibility over the DDA-based methods. Another major benefit of the proposed 

approach is that it reduces the number of samples that need to be analysed, as 

additional DDA-based analysis is no longer needed for library generation. This is of 

particular importance in studies with large numbers of samples, such as those in 

clinical study settings. 

  

Microbiome profiling has attained increasing attention in the past few years with the 

recognition of the important role of microbiota in human health and disease. For 

instance, gut microbiome has been associated with various health and disease states 

and has been suggested as the “forgotten” human organ 11–13. Overall, better 

understanding of how the complex microbial communities in human influence disease 

pathogenesis has major implications for disease prediction, prevention, and treatment. 

  

Currently, the most common approach to study microbiome is metagenomics. It has 

been successfully applied in various studies, including large multi-centre studies of 

thousands of samples using either 16S rRNA or whole genome sequencing 14. By 

cataloguing which microbes are present in a sample and their relative abundances, 

metagenomics can provide important information about the taxonomic composition of 

the microbial communities and predict their functional potential. A major limitation of 

the metagenome approach is, however, that it does not directly assess the function of 

the microbiota. To overcome this limitation, mass spectrometry based metaproteome 

analysis has emerged as an alternative option. 

  

In addition to technical challenges, a major bottleneck in the utilisation of mass 

spectrometry metaproteomics is the lack of appropriate computational tools to interpret 

the data produced 15. Because of the inherent complexity of the data, conventional 
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tools to analyse single-species proteome data are often not well suited for 

metaproteomics. While a few tools have been introduced for the analysis of DDA 

metaproteome samples 16,17, until our recent work 6, there have been no tools for DIA 

mass spectrometry metaproteomics, despite its high potential to improve the 

reproducibility over the more conventionally used DDA mode. The aim of this study 

was to address that need. 

  

To this end, we propose here a major practical improvement to DIA metaproteomics 

analysis by showing, for the first time, that reproducible identification and quantification 

of microbial peptides is possible without the need for additional DDA library samples 

using our new DIA-only DIAtools 2.0. In addition to a reduced number of samples that 

need to be analysed, this circumvents the initial DDA-originated limitations in peptide 

identification that hamper approaches using a DDA-based spectral library, especially 

as such library is typically prepared using only a limited set of pooled samples. This 

may play a crucial role in the data interpretation, as demonstrated in the analysis of 

the human fecal samples, where Prevotella was dominant in one of the samples but 

lowly abundant in the others. If the DDA library does not well represent the whole 

sample set, important parts of the microbial communities may remain undetected, 

which can be avoided with the DIA-only approach. 

  

The peptide yields from the DIA metaproteomics methods were comparable to those 

reported in DDA metaproteomic studies with similar laboratory protocols 18. 

Importantly, for the DIA-only approach this was achieved with only a single analysis 

run per sample. Notably, the majority of the peptides detected using the DDA-assisted 

DIA approach were detected also using the DIA-only method, whereas the total 

number of peptides detected by the DIA-only method exceeded the number of 

peptides detected by the DDA-assisted method. This confirms that a library built from 

DDA data is not required for DIA metaproteomics. 

  

A well-known limitation of the DDA-based analysis is that it tends to detect peptides 

that are highly abundant. This includes peptides shared by multiple species, which 

was observed here as the relatively large proportion of peptides with ambiguous 

taxonomic annotation with the DDA-assisted approach. On the other hand, the DIA-

only approach tended to detect a larger proportion of peptides with unknown genus, 
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indicating that they were less well characterized in the current databases. This may 

suggest ability to target proteins not detectable by other means, thus revealing 

proteins that are not well known and annotated by databases. 

  

Technically, analysis of metaproteomics data can be a very computationally intensive 

task in terms of the required computing power and memory usage. For building a 

spectral or pseudospectral library, a great deal of computing power is needed to 

compare the theoretical spectra of the vast sequence database against the 

experimental spectra obtained from the DIA data. With the datasets in this study, this 

was found to be the most time-consuming step that can take several days. Once the 

spectral or pseudospectral library has been produced, the subsequent analysis of the 

DIA data against the library spectra is then considerably faster. The current version of 

DIAtools 2.0 scales the processing with threads using efficiently the processing power 

of a single computer. However, it is possible to extend the parallel analysis to multiple 

computers, such as cluster environments. To enable easy deployment of DIAtools 2.0, 

it is implemented as a software container which provides all the required utilities and 

libraries in a single package. 

  

An interesting future development would be to circumvent the need of generating 

reference spectra separately for each new project. For this, machine learning has been 

suggested as a possible solution using, for instance, artificial neural networks 19–21. A 

major challenge with such approaches is, however, their potential biases towards the 

training data and need for re-training for specific conditions. This remains an 

interesting topic for further investigation.  

  

Overall, the microbiome research still involves multiple different types of unknowns 

that are continuously being revealed thanks to improved technologies 22. In this 

endeavour, metaproteomics provides an excellent opportunity to uncover the 

functionally important aspects of the microbial communities, providing complementary 

information to the studies of microbiomes and their role in health and disease. 
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Materials and methods  

Generation of DIA-based pseudospectral library 

To enable building a pseudospectral library directly from the DIA data, the spectra in 

the DIA data were deconvoluted into pseudospectra containing precursor ions and 

their corresponding fragment spectra following a similar procedure as in the DIA-

Umpire tool for single-species proteomics 8. In short, a 2D feature detection algorithm 

was first used to locate precursor and fragment ions from the MS1 and MS2 data. 

Pearson correlation coefficients of the elution peaks and retention time differences of 

the peak apexes were then used to pair precursor and fragment ions. For the 

generation of pseudospectra, all likely complementary y and b ions were detected. 

The obtained DIA pseudospectra were finally searched with X!Tandem 23 and Comet 
24 algorithms against the Integrated reference catalog of the human gut microbiome 

(IGC, 9.9M) 10, containing over 9 million protein sequences covering human gut 

bacteria. The false discovery rate (FDR) for the identifications was set at 1%. The 

identified spectra formed the final pseudospectral library that was used to identify 

peptides from the DIA data. 

 

Peptide identification and quantification 
Peptide identifications and quantifications were obtained from the DIA data using 

DIAtools 2.0. For peptide identification, either the DIA-based pseudospectral library 

(referred to as DIA-only approach) or the DDA-based spectral library (referred to as 

DDA-assisted approach) was used on the basis of  X!Tandem 23 and Comet 24 

algorithms and the IGC reference database. Parent ion mass tolerance was set to 10 

ppm and fragment ion tolerance to 0.02 Da. The false discovery rate (FDR) for the 

spectral library matching was set at 1%. For TRIC feature alignment 25, the target and 

maximum FDRs were set to 1% and 5%, respectively. 

 

Taxonomic and functional annotations 

The identified peptides were taxonomically and functionally annotated using the 

annotations from the IGC database without protein inference. For each peptide, 

annotations of all possible protein sequences were retrieved. An annotation was 

assigned to a peptide only if there was no evidence of conflicting annotations. In case 

of conflicting annotations, a peptide was annotated as ambiguous. 
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Software and availability 

The DIAtools 2.0 software is open source and distributed as a Docker image that can 

be downloaded from DockerHub repository elolab/DIAtools-2.0. The image is based 

on Ubuntu 18.04 and comes bundled with several programs and libraries that retain 

their original licenses. The installed software include: Comet 2017.01 rev. 4, 

X!Tandem 2017.02.01.4, OpenMS 2.4 (includes OpenSWATH), Trans-Proteomic 

Pipeline (TPP) 5.1, msproteomicstools 0.8.0, SWATH2stats 1.8.1, DIA-Umpire 2.1.3, 

and Thermo msFileReader. The source code and step-by-step instructions to use the 

software are provided at https://github.com/elolab/DIAtools.  

 

Laboratory assembled microbial mixture and human fecal samples 

The 12mix data was a mixture of twelve (12) different bacterial strains isolated from 

fecal samples of three human donors grown on fastidious anaerobe agar (LAB 090; 

LAB M, UK) and annotated by sequencing their 16S-rDNA: Bacteroides vulgatus, 

Parabacteroides distasonis, Enterorhabdus sp., Bifidobacterium pseudocatenulatum, 

Escherichia coli, Streptococcus agalactiae, Bacteroides fragilis, Alistipes onderdonkii, 

Collinsella aerofaciens, Clostridium sordellii, Eubacterium tenue, and Bifidobacterium 

bifidum. Prior to mixing, the bacterial cell counts were equalized to 10 x 108 cells / ml 

using flow cytometry and 1 x 108 cells of each isolate were added to the final mixture. 

Three isolations and mixtures were made, and each mixture was analyzed in DDA and 

DIA mode on a Q Exactive HF mass spectrometer (Thermo Fisher Scientific) equipped 

with a nano-electrospray ionization source, as described in Aakko et al. (2019) 6.  

 

The human fecal data contained six human fecal samples from anonymous individuals 

representing a complex metaproteomic scenario. Each fecal sample was analyzed in 

DIA mode with a single injection. Additionally, all six samples were pooled together 

and analyzed in DDA mode with six injections. The analyses were performed on a 

nanoflow HPLC system (Easy-nLC1200, Thermo Fisher Scientific, Waltham, 

Massachusetts, USA) coupled to a Q Exactive HF mass spectrometer (Thermo Fisher 

Scientific) equipped with a nano-electrospray ionization source, as described in Aakko 

et al. (2019) 6.  
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The mass spectrometry data are available from the ProteomeXchange Consortium via 

the PRIDE partner repository with the dataset identifier PXD008738. 
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Figure 1. (A-B) Overlap of peptides detected by the DIAtools 2.0 DIA-only and the DDA-

assisted approach in the 12mix and the human fecal datasets. (C-E) Overlap of detected 

peptides between three replicated 12mix samples using the DIA-only, DDA-assisted, and 

DDA-only approach. (F-G) Overlap of peptides between the spectral and pseudospectral 

libraries in the 12mix and the human fecal datasets. 
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Figure 2. Genus-level taxonomic profiles of the (A) 12mix and (B-C) human fecal samples 

using the DIAtools 2.0 DIA-only or the DDA-assisted approach. Genera having less than 1% 

of the total peptides were aggregated to category other. Genus-level taxonomic profiles of the 

individual human fecal samples using (D) the DIA-only or (E) the DDA-assisted approach. 
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Figure 3. Representative examples of correlations of peptide quantifications between two 

technical replicates of the 12mix samples using (A) the DIA-only or (B) the DDA-assisted 

approach. All the corresponding pairwise comparisons are shown in Supplementary Figure 
2. Correlations of peptide quantifications between the DIA-only and the DDA-assisted 

approach in (C) the 12mix and (D) the human fecal samples. 

 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.21.423800doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.21.423800

