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The Human Reference Genome serves as the foundation for modern genomic analyses. However, in its present form, it 

does not adequately represent the vast genetic diversity of the human population. In this study, we explored the 

consensus genome as a potential successor of the current Reference genome, and assessed its effect on the accuracy of 

RNA-seq read alignment.  In order to find the best haploid genome representation, we constructed consensus genomes 

at the Pan-human, Super-population and Population levels, utilizing variant information from the 1000 Genomes 

project. Using personal haploid genomes as the ground truth, we compared mapping errors for real RNA-seq reads 

aligned to the consensus genomes versus the Reference genome. For reads overlapping homozygous variants, we found 

that the mapping error decreased by a factor of ~2-3 when the Reference was replaced with the Pan-human consensus 

genome. Interestingly, we also found that using more population-specific consensuses resulted in little to no increase 

over using the Pan-human consensus, suggesting a limit in the utility of incorporating more specific genomic variation. 

To assess the functional impact, we performed transcript expression quantification and found that the Pan-human 

consensus increases accuracy of transcript quantification for hundreds of transcripts. 

Background 
In 2003, 15 years of work culminated with the International 

Human Genome Sequencing Consortium publishing the first 

finished version of the Human Reference Genome [21,22]. 

Despite the utility and continuous improvements over the years, 

it is still not without flaws – primarily the lack of variation 

information. Around 93% of the current GRCh38 assembly is 

composed of DNA from just 11 individuals [17, 26]. Because 

such a large portion of the Reference comes from such a small 

pool of individuals, it does not adequately represent the vast 

diversity present in the human population [9,32,34]. To explore 

and capture human diversity, researchers have continued 

sequencing thousands of genomes. The first of such projects, 

the 1000 Genomes Project, sequenced 2,504 individuals across 

26 populations. Overall, it was estimated that ~3,000 genomes 

would be necessary to capture the most common variants [23], 

while structural variation present in the human populations has 

challenged this [6]. One particularly glaring example was 

shown in a recent construction of an African pan-genome, 

which contained almost 300M bases of DNA not seen in 

GRCh38 [34]. This lack of variation information negatively 

affects all kinds of genomic analyses that utilize the Reference, 

such as disease studies and GWAS analyses [7-9,32,34,38]. 

However, despite the ubiquity of RNA-seq alignment and 

quantification, the improvements on mapping from using a 

more diverse reference have not been shown. 

While graph genomes are theoretically capable of encapsulating 

all observed variation information [11,18,29,31,37,41], it 

remains difficult to use these tools for large scale expression 

analysis such as in RNA-seq quantification. In prior work, we 

proposed the use of a consensus genome to inherently capture 

common variation, whilst still retaining the structure and 

functionality of the current Reference assembly [4]. A 

consensus genome is a linear haploid genome that incorporates 

population variation information by replacing all minor alleles 

in the Reference genome with the major allele of that variant 

[3,4,5,13,25,36,30] (Figure 1a). Because allele frequencies 

must be defined with respect to a population, a consensus 

genome is representative of the population used to define the 

major and minor alleles. Prior work has shown that using a 

consensus genome can have positive effects on variant calling, 

[25,30,36] and construction of population-specific consensus 

genomes has been a major goal of multiple projects [10, 15,19, 

34,39]. Additionally, replacing the current Reference genome 

with a consensus genome in existing analysis pipelines is 

straightforward, since the consensus genome is still a linear 

haploid sequence. 

Here, we seek to answer the question of which linear reference 

representation is best for RNA-seq mapping and transcript 

expression estimation. We considered several consensus 

genomes, built by replacing all minor alleles in the reference 

with the major alleles at different population levels: pan-human, 

super-population, and population. To work with consensus 

genomes, we developed ConsDB to construct pan-human and 
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population-level consensuses, and STAR-consensus to 

streamline RNA-seq mapping to consensus genomes. We 

defined the ground truth by mapping the individuals' RNA-seq 

reads to their own personal haploid genomes, and evaluated the 

mapping accuracy improvements arising from replacing the 

GRCh38 reference with the Pan-human consensus, Super-

population or Population consensus genomes. We found that for 

all individuals, the Pan-human consensus decreased the 

mapping error from the Reference by ~2-3 fold, while the 

Super-population and Population consensuses did not perform 

significantly better than the Pan-human consensus. To assess 

the functional impact, we measured errors in transcript 

expression quantification for different genome representations 

with respect to the ground truth of the personal genome. We 

again found that the Pan-human consensus offers an 

improvement over the Reference, with almost 6 times as many 

transcripts having a larger transcript quantification error for the 

Reference than for the Pan-human consensus. 

Pan-human Consensus captures the 

majority of population deviation 

from the Reference 
The construction of consensus genomes requires population 

allele frequency information. Currently, several databases exist 

that contain this information [2,12,24,35]. In this study we 

utilized the 1000 Genomes Project database, which was 

established in order to discover and catalogue human genome 

variant information [2,12]. In order to avoid population bias, the 

individuals genotyped in the 1000 Genomes Project were 

selected to create an even population distribution across 26 

populations, which are grouped into 5 super-populations [2] 

(Figure 1b). The information from the 1000 Genomes Project is 

available through the International Genome Sample Resource 

(IGSR), and can be downloaded in the form of VCF files, which 

contain variant genotype information for all of the individuals 

contained in the analysis [2]. 

We constructed three types of consensus genomes based on the 

various population levels present in the 1000 Genomes Project: 

a Pan-human consensus genome, a Super-population consensus 

genome, and a Population consensus genome (Figure 1b). For 

the Pan-human consensus we calculated allele frequency using 

genotype information from all individuals present in the 

database. For the Super-population and Population 

consensuses, we used genotype information from all 

individuals of a given super-population or population. For the 8 

individuals whose RNA-seq data we utilized in this study, we 

used the consensus genomes built from the super-population 

and population to which each individual belongs. To construct 

these consensuses, we replaced all minor alleles (alleles with a 

population allele frequency AF < 0.5) present in the Reference 

with the major alleles (AF > 0.5). We will call these variants 

replaced in the reference the major allele replacements (MAR). 

The release of the 1000 Genomes database that we used 

contained only biallelic variants, i.e. each variant had exactly 

one minor allele and one major allele. Additionally, it only 

contained SNPs and small insertions and deletions (<50 bp), 

while large structural variants were not considered in this study. 

Although SVs are a large source of genomic variation, they are 

understudied and not sufficiently catalogued to be used in 

consensus genomes due to mapping and classification 

difficulties [28]. 

In order to facilitate working with the large VCF files of the 

1000 Genomes Project database, we developed ConsDB, a 

Python package that provides a convenient, class-based 

interface to work with the large number of variants contained in 

the 1000 Genomes Project database. It also provides a main 

script with a number of run modes to perform common tasks 

associated with consensus genomes, such as the construction of 

the consensus genome VCF files used in this study. ConsDB 

operates using a simple workflow (Figure 1c). The first step is 

downloading the database VCF files. For this study, we used 

the 1000 Genomes Project, but ConsDB is also capable of 

parsing gnomAD VCF files. The next step is for ConsDB to 

parse the database VCF files and save them in the ConsDB 

format. At this point, files from different databases (if multiple 

databases are being used) can be combined into one file per 

chromosome. Finally, ConsDB uses these parsed files to 

generate the end result, in this case a VCF file defining a 

consensus genome. 

The personal haploid genomes were constructed using the 

individual genotypes from the 1000 Genomes Project database. 

For each individual, all homozygous variants that differ from 

the Reference were inserted into the Reference. Additionally, 

all heterozygous alleles were randomly chosen with a 

probability of 0.5 to be included or excluded. Although these 

haploid personal genomes are a crude approximation of the true 

diploid genome, they are sufficient for comparison of mapping 

accuracy between haploid consensuses and the haploid 

Reference, and thus we used them to define the ground truth for 

RNA-seq mapping in this study. 

Figure 1d shows the number of minor alleles in the GRCh38 

reference that have to be replaced with the major alleles for each 

of the Super-population consensus genomes. The European 

consensus is the most similar to the Reference, and it still 

requires ~2.1 million SNP and indel corrections from the 

Reference. Other Super-population consensuses contain even 

larger numbers of major allele deviations from the Reference, 

with the East Asian consensus differing most from the 

Reference. We note that such a large number of minor alleles in 
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the Reference with respect to any population stems from its 

construction, which utilized sequences from only one 

individual for most of the genomic loci, and thus incorporated 

individual-specific low frequency alleles. 

In Figure 1e, we compute intersections of the MARs in the Pan-

human, African Super-population, and Yoruban Population 

consensus genomes. The Pan-human consensus shares most of 

the major alleles with the Super- and Population consensuses 

(~1.5M), while the latter two share ~400k MARs not present in 

the Pan-human consensus. The Pan-human consensus contains 

~300k MARs not present in either Super- or Population 

consensuses. Finally, the Yoruban Population consensus 

contains ~50k unique MARs. The intersections of MARs look 

similar for other populations (Supplementary Figures S1-2) as 

well as personal homozygous variants (Supplementary Figures 

S3-5). Figure 1f shows the intersections between the MARs for 

the Pan-human consensus and 3 Super-population consensuses. 

The MARs shared by all four of these genomes make up the 

largest group, which contains ~1.2M MARs and represents well 

over half of the MARs in any one genome. This group is more 

than 3 times as large as the next largest group, again 

demonstrating that the majority of the population deviation 

from the Reference is captured in the Pan-human consensus. 

Consensus genomes significantly 

improve RNA-seq mapping 
Next, we analyzed to what extent the consensus genomes 

improve RNA-seq mapping accuracy. The RNA-seq reads were 

taken from the Human Genome Structural Variation 

Consortium, which sequenced three father-mother-daughter 

trios from the 1000 Genomes Project [40]. One of these 

individuals (HG00514 from the East Asian trio) is not present 

in the database version used in this analysis, and was excluded 

from our analysis.  

To simplify alignment to the consensus genome, we developed 

STAR-consensus, an extension to the RNA-seq aligner STAR 

(Figure 2a) [14]. It imports variants from a VCF file and 

incorporates them into the reference genome sequence, thus 

creating a transformed genome for mapping. Importantly, after 

mapping the reads to the transformed genome, STAR-

consensus can perform a reverse transformation of the 

alignment coordinates back to the original reference genome 

coordinates. This transformation is non-trivial when insertion 

or deletion variants are included, and allows performing all 

downstream analyses in the reference coordinate system. Such 

an approach is an incremental but important step towards taking 

advantage of the consensus genome, while at the same time 

utilizing the conventional coordinate system. 

In order to assess error rate, we needed to compare the read 

mappings in the various genomes to a ground truth. However, 

because the true mapping location of these reads is unknown, 

we used the read mappings to the personal haploid genomes as 

the ground truth. The personal haploid genomes are a close 

approximation of the true genomes, and therefore the locations 

to which the reads map in the personal genomes should be quite 

similar to their true original locations. 

We classified mapping errors into five types of errors based on 

the change of the read’s alignment status in the 

Reference/consensus genome compared to the ground truth 

(Figure 2b). The different error types are: reads that are mapped 

uniquely in the personal genome but mapped to multiple places 

in the other genome (Unique to Multiple), reads that are mapped 

to multiple places in the personal genome but mapped uniquely 

in the other genome (Multiple to Unique), reads that mapped to 

the personal genome but not to the other genome (Mapped to 

Unmapped), reads that didn’t map to the personal genome but 

did map to the other genome (Unmapped to Mapped), and reads 

that mapped uniquely in both genomes but to different positions 

(Different Mapping Loci). The mapping error rate for an error 

type is defined as the number of erroneously mapped reads 

normalized by the total number of reads from an individual.  

For each individual, we calculated the error rates for mapping 

to the Reference and their respective consensus genomes (Pan-

human, Super-population, Population). Figure 2c shows the 

overall error rates for each error type for the individual 

NA19238. The largest error comes from the reads that switch 

from mapping uniquely in the personal genome to mapping to 

multiple loci in the Reference/consensus genomes, followed by 

reads that map to multiple loci in the personal genome but map 

uniquely in the Reference/consensus. 

We also separately plotted the error rate for reads that overlap 

indel variants (Supplementary Figure S6), which are very small 

compared to the overall error rates in Figure 2c. These plots 

look similar for the other individuals (Supplementary Figures 

S7-20). 

Figure 2d shows the overall mapping error rate for all eight 

individuals, summed over the five error types. We see a 

noticeable decrease in the error rate when the Reference 

genome is replaced with the Pan-human consensus. Notably, 

increasing population specificity to the Super-population or 

Population consensus does not result in a significant further 

reduction of the error rate. This trend mirrors the observation 

about the minor alleles discussed above (Figure 1e-f), and 

supports the conjecture that the majority of the mapping 

accuracy improvement is captured by the Pan-human 

consensus, with little additional benefit from the Super-

population or Population consensuses. 
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Replacement of the minor alleles in the Reference with the 

major alleles in the consensus can only correct the mapping 

errors caused by the homozygous alternative alleles in an 

individual. Of course, the actual individual genome is diploid 

and contains millions of heterozygous variants (i.e. both the 

major and minor alleles are present), which cannot be truthfully 

represented in a haploid Reference or consensus genome. To 

elucidate this issue, we defined the homozygous mapping error 

rate as the number of erroneously mapped reads that overlap 

homozygous variants normalized by the total number of reads 

overlapping homozygous variants for an individual. The 

homozygous mapping error rate shows the effect of different 

genomes specifically on read alignments that can be affected by 

these genomes. Because the genomes used in this study are all 

haploid, we do not expect reads that overlap heterozygous 

variants to be significantly affected by the specific genome 

used. 

We plotted the homozygous mapping error rates for the 

individual NA19238 (for each error type) in Figure 2e, and for 

all eight individuals (summed over all error types) in Figure 2f. 

Compared to Figure 2c-d, the homozygous error rates (Figures 

2e-f) show a much steeper decrease when the Reference 

genome is replaced with the Pan-human consensus. 

Additionally, the heterozygous error rate is higher than the 

homozygous error rate and stays relatively constant across all 

genomes (Supplementary Figures S21-28). This supports the 

notion that consensus genomes significantly improve mapping 

accuracy of the reads that overlap homozygous variants, 

however, owing to their haploid nature, they cannot improve 

the alignment of the reads overlapping heterozygous loci. 

Mapping RNA-seq reads to 

unrelated consensus genomes 

outperforms the Reference 
We next investigated the effects of mapping an individual’s 

RNA-seq reads to consensus genomes of different populations 

(Figure 3a) and to other personal haploid genomes (Figure 3c). 

We used the same reads, individuals, and genomes as 

previously discussed, and mapped all individuals to all 

genomes. The homozygous mapping error rate is calculated as 

before, and is shown in Figures 3b,d. 

As expected, Figure 3b shows that the unrelated consensus 

genomes perform worse than both related Population consensus 

and the Pan-human consensus, because each Population 

consensus contains many major alleles unique to that 

population. Interestingly, unrelated consensus genomes still 

perform better than the Reference. This is explained by the fact 

that the Reference contains a large number of minor alleles 

specific to the individuals who contributed to the Reference 

assembly. Conversely, the personal genomes of unrelated 

individuals are unlikely to share many MARs. This is illustrated 

in Figure 3d: the mapping error rate to personal genomes from 

different populations is higher than mapping to the Pan-human 

consensus and is comparable with mapping to the Reference. 

Notably, even mapping to the unrelated individual from the 

same population (Mother to Father and Father to Mother) does 

not improve the accuracy significantly. However, since the 

daughter in each trio will share many of her MARs with her 

parents, we see the error rates for mapping daughters’ RNA-seq 

reads to their parents’ genome (and vice versa) slightly better 

than mapping to the Pan-human consensus. 

The results demonstrate that the Reference genome performs 

worse than any consensus genome, even consensuses from a 

different population. The accuracy of mapping to the Reference 

is comparable to mapping to unrelated personal genomes. On 

the other hand, the Pan-human consensus outperforms mapping 

to the unrelated individual genomes of the same or different 

population, and its performance is comparable with mapping to 

the genomes of related individuals (parent to child). 

Mapping error-causing variants are 

predominantly located in introns and 

UTRs 
To investigate the genomic mechanisms underlying these 

mapping errors, we classified the genomic loci of the error-

causing variants by overlapping error-causing reads with the 

GENCODE v29 GTF file. Interestingly, only a small proportion 

of the error-causing variants occur in the coding regions, while 

most are located in the intronic regions, followed by UTR and 

intergenic regions (Figure 4a). Because polyA+ RNA-seq reads 

should generally not map to introns, these errors are likely 

attributable to reads switching between being uniquely mapped 

and mapping to multiple locations (Unique to Multiple and 

Multiple to Unique error types). Interestingly, this corresponds 

with the previous observation that the largest sources of errors 

were the Unique to Multiple and Multiple to Unique error types. 

Consensus alleles generate large 

changes in transcript expression 
Here, we explore the effect of replacing the Reference with a 

consensus genome on the transcript expression. We used RSEM 

[27] to quantify transcript expression (TPM) for reads mapped 

to the Reference and to the Pan-human consensus, again using 

the haploid personal genome as the ground truth. In this 

analysis, we excluded insertions and deletions in order to avoid 

any discrepancies between the internal transformed genome 

generated by STAR and the genome used by RSEM to generate 
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its genomic indices. The quantification error is defined as the 

log2-ratio of the TPM in the Reference or Pan-human 

consensus to the TPM in the personal (ground truth) genome. 

Although the vast majority of transcripts show very similar 

expression results for both genomes, there are many transcripts 

with large quantification errors (Figures 4b-d). To reduce noise, 

we filtered the transcripts with low expression in all three 

genomes at three TPM thresholds of 0.2, 1 and 5 (Figure 4c-d). 

For all three thresholds, there were ~6 times as many transcripts 

for which the quantification error in the Reference was higher 

than that in the Pan-human consensus (Figure 4d). 

To illustrate the effect of consensus genomes on the transcript 

quantification, we looked at a transcript of the ALDH3A2 gene, 

which has zero expression in the personal genome and the Pan-

human consensus genome (no error), but at the same time 

exhibits non-zero expression in the Reference (~2 TPM), which 

signifies a large error with respect to the ground truth. A 

genome browser snapshot of selected regions of this gene is 

shown in Figure 4e, highlighting the effects that MARs can 

have on read mapping and on transcript expression prediction. 

In this case, the Reference contains the minor allele, which 

causes reads to map to the short exon, and hence the isoform 

(ENST00000582991.5) containing this exon has non-zero 

expression. At the same time, both the Pan-human consensus 

and personal HG00512 genome contain the major allele, which 

prompts the read alignments to skip the short exon, resulting in 

zero expression for the ENST00000582991.5 isoform. 

Discussion 
In any data analysis, often a first central question is how much 

variation to include. This might be accomplished by dimension 

reduction, quality control, feature selection, stratification, or 

other techniques. The human genome is no exception, and 

considering how best it should be summarized remains a crucial 

problem. Importantly, that problem may have a use-dependent 

solution. What is important for disease variant detection may 

not be important for RNA-seq alignment, and vice versa. The 

current Reference genome has had enormous utility, and before 

tearing down the infrastructure that has been built up to exploit 

it, it is important to consider alternatives carefully. Graph 

genome methods are one promising option, and they resolve the 

main deficiency in the reference: effectively incorporating all 

variation (or aspiring to). However, this comprehensiveness 

comes with its own host of issues, such as the lack of a simple 

coordinate system, difficulties with visualization, and 

significantly inflated computing requirements. The wide 

adoption of a graph-based reference genome will likely take a 

long time, given the history of switching from one version of 

the linear Reference to the next: GRCh38 was released in 

December 2013 [1], and at the time of this writing, 7 years later, 

studies are still being published using GRCh37. 

Although the full adoption of a graph genome may be several 

years in the future, the path there need not be a straight line.  We 

may explore methods that partially improve on the current 

Reference, while imposing few of the costs of the graph 

methods. By progressively assessing the role of population 

variation (in essence, moving from low principal components 

to higher ones), we can develop intermediate forms moving 

from the current reference to more accurate reflections of 

population variation and, particularly, ones that still opt to 

summarize variability to some degree.  The consensus genomes 

have substantial utility at the pan-human level, and then show a 

fall off past that point, suggesting that the Pan-human 

consensus can be considered a first step in the direction of 

adding population variation information to the Reference. 

Although consensus genomes are unable to comprehensively 

represent all human genotypic variation, they are still a 

desirable alternative to the Reference as they eliminate the 

millions of spurious minor alleles present in the current 

Reference genome, while maintaining a simple linear 

coordinate system.  

In this study, we explored the advantages and limitations of 

using consensus genomes for RNA-seq mapping. We used read 

alignments to the haploid personal genome as a proxy for the 

ground truth to quantify the rate of erroneous alignments to the 

Reference genome, and compared it to the three levels of 

consensus: pan-human, super-population and population. 

The overall mapping error rate caused by Reference 

shortcomings is quite small at only ~0.5-0.6% of all reads for 

the Reference genome, and further reduced to 0.3-0.4% for the 

consensus genomes, leaving relatively small room for further 

improvements (Figure 2d). However, for some analyses, such 

as allele-specific expression or de novo variant calling, the only 

reads of interest are those that overlap the variants. If we 

normalize the number of the erroneous reads by the number of 

reads that overlap the personal variants for each individual, we 

observe much higher corresponding error rates of ~8-10%, 

which decrease to ~2-4% when using a consensus genome. 

The homozygous error rate (defined for reads that overlap only 

homozygous variants) is substantially decreased (by ~2-3 fold) 

when the Reference genome is replaced by the Pan-human 

consensus. Surprisingly, using the Super-population or 

Population consensuses does not result in further improvement 

of the mapping accuracy, which indicates that the Pan-human 

consensus captures the majority of population variation 

information that can be captured in a linear haploid genome. 

Using the Super-population or Population consensus genomes 

may not be worth the loss of generality: for instance, it will 

severely complicate interpopulation comparisons owing to the 

lack of a common coordinate system. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.423111doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423111
http://creativecommons.org/licenses/by/4.0/


6 

 

These mapping results call into question the time and resources 

that are being spent on constructing consensus genomes for 

particular populations [10,19,15,34,39]. Intuitively, one would 

expect that more specific consensus genomes would increase 

the mapping accuracy for the populations that they represent. 

However, our results indicate that a universal Pan-human 

consensus genome is sufficient to attain the best possible 

accuracy that can be achieved with a haploid reference, and the 

expensive efforts to construct more population-specific 

references are likely futile for improving accuracy of RNA-seq 

analyses. 

On the other hand, the heterozygous error rate (for reads that 

overlap heterozygous variants) is not significantly reduced by 

replacing the Reference with a consensus of any population 

level. This is not surprising given that the haploid genome can 

only include one of the alleles of a heterozygous locus, and 

hence cannot truthfully represent it. Graph genomes or other 

non-linear reference representations will be required to reduce 

error rates for heterozygous loci. 

Although there is still work to be done on improving the 

Reference genome, the Pan-human consensus already offers 

noticeable improvements in downstream analyses, such as 

transcript expression quantification. We demonstrated that 

there are significantly more transcripts for which the 

quantification error with respect to the ground truth is higher in 

the Reference than in the Pan-human consensus. These 

functional consequences further support our assertion that the 

Pan-human consensus offers important improvements over the 

Reference. 

The Pan-human consensus appears to be a strict improvement 

over the current Reference with minimal costs, and thus we 

propose replacing the current Reference with the Pan-human 

consensus. Besides the question of absolute utility, we also 

advocate using consensus genomes as a mechanism to develop 

practices to improve genome representation more generally. 

Recent years have seen genomics pipelines using the Reference 

become entrenched, to varying degrees, by researchers 

unwilling to upgrade. Because the consensus genome requires 

very minor changes in pipelines, it can be used as a 

straightforward, first-order approximation to assess and explore 

the sensitivity of specific genomic analyses to genome 

variation. For instance, the benefits of the consensus genome 

for RNA-seq mapping can be explored via the STAR-consensus 

pipeline, which aligns reads to the consensus genome and then 

transforms the coordinates to the Reference genome 

coordinates, thus eliminating the need for changes in the 

downstream processing. By incorporating consensus genomes, 

we envision not only improvements in both the absolute 

performance of diverse research projects, but also a greater 

understanding of the dependencies in those methods, thus 

setting the stage for a more flexible and robust future for 

genomics. 

Methods 

Calculating consensus alleles 

We calculated the consensus allele for each variant on a per-

haplotype basis: the number of occurrences of each allele was 

counted, and the most common allele was selected. For the Pan-

human consensus, the alleles were counted across all 

individuals. For each Super-population and Population 

consensus, the alleles were counted across all individuals within 

that group. This counting was performed in Python by ConsDB, 

by reading through each VCF file one line at a time and parsing 

the genotype for each individual in the group for which the 

consensus is being constructed. 

Genome generation and read mapping 

All genomes generation and read mapping was done with 

STAR v2.7.6a [14]. We used GRCh38 [33] as the reference 

FASTA file and GENCODE v29 [16] as the reference GTF file. 

We masked the PAR regions on the Y chromosome in order to 

avoid any sex-based differences in mapping. For the generation 

of consensus and personal haploid genomes, we used 

the --genomeTransformType Haploid option and the 

--genomeTransformVCF option with the appropriate VCF 

file. When mapping, we also used 

the --outSAMreadID Number option in order to more 

easily keep track of reads in the analysis steps. Other than these 

options, we used the default STAR parameters. 

Mapping error calculations 

Before calculating the mapping error, we made a number of 

preparations. First, we used awk to construct a VCF file for each 

individual that contained only the variants and that individual’s 

phased genotype. Next, we used these full VCFs to partition the 

variants for each consensus genome for each individual into 

four separate VCF files: one for homozygous SNPs, one for 

heterozygous SNPs, one for homozygous indels, and one for 

heterozygous indels. These four split VCFs needed to be 

generated for each individual, including individuals from 

within the same population, because variants may be 

homozygous in one individual but heterozygous in a different 

individual. 

For each individual, their filtered alignments for the Reference, 

Pan-human consensus, Super-population consensus, and 

Population consensus were compared to the filtered alignment 

for their personal haploid genome using an awk script. We 

compared the genomes on a per-read basis, checking for 

differences in mapping position and number of mapped loci. To 

determine what types of variants each read overlapped, we 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.423111doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423111
http://creativecommons.org/licenses/by/4.0/


7 

 

overlapped the filtered BAM files with each of the four split 

VCF files using bedtools, for each genome and each individual. 

We compared the read IDs from this overlap with the read IDs 

obtained from the genome mapping comparisons using grep, in 

order to find error-causing variants. 

The final steps of read counting and plotting were done using a 

Python script. For each individual, we summed the read counts 

for each combination of error type and 

homozygous/heterozygous variants across all four genomes 

being analyzed. The two normalization constants used for these 

figures were the total number of mapped reads for each 

individual, and the total number of reads for each individual that 

overlapped personal homozygous variants. The total mapped 

read numbers were extracted from the STAR Log.final.out file. 

The counts of reads overlapping personal homozygous variants 

were found by counting the number of reads present in the 

previously found overlap files for reads overlapping 

homozygous variants in the personal haploid genome. 

Finding error-causing variant locations 

To find the genomic annotations of error-causing variants, we 

first found the error-causing variants as described previously. 

We next used bedtools to intersect these variants with the 

GENCODE v29 [16] GTF file and find all genomic annotations 

that each variant overlaps. Because certain genomic annotations 

always fall within other genomic annotations (e.g. an exon will 

necessarily be located within a gene), a given variant is likely 

to have multiple genomic annotations that it overlaps. We used 

a Python script to determine the most specific genomic 

annotation overlapped by each variant and to count the number 

of variants falling within each type of genomic annotation. 

Transcript expression calculations 

The genome generation and mapping procedures for the 

transcript expression calculations were similar to the 

procedures for the mapping error section, however there were 

some key differences. The main difference in the genome 

generation step was the exclusion of insertions and deletions 

from the Pan-human consensus and HG00512 personal haploid 

genome. We excluded insertions and deletions for this analysis 

in order to avoid any discrepancies between the internal 

transformed genome generated by STAR and the genome used 

by RSEM to generate its genomic indices. The VCF files used 

to generate the Pan-human consensus and the HG00512 

personal haploid genome were generated by using an awk script 

to remove insertions and deletions from the VCF files that were 

used to generate the genomes for the mapping error section. We 

generated the STAR genomes as previously described, using 

the SNP-only VCF files. We generated the RSEM genome 

indices using transformed genome FASTA files, which were 

made using bcftools to incorporate the SNPs in the VCF files 

into the PAR-masked genome. 

The mapping steps for this analysis were the same as previously 

described, with the addition of 

the --quantMode GeneCounts TranscriptomeSAM 

option to force STAR to export transcriptomic alignments in 

addition to the standard genomic alignments. We ran RSEM 

using these STAR-generated transcriptomic alignments as the 

input. 

We used Python scripts to calculate the transcript expression 

error for each genome, using the TPM values from the RSEM 

predictions. The log2 fold change values shown in Figure 4b 

were plotted without normalization, and the transcripts for 

which either the Pan-human consensus or the Reference had an 

estimated TPM of 0 were represented as arrows. Transcripts for 

which the personal genome had an estimated TPM of 0 were 

excluded because these transcripts would, by definition, have 

an infinite log2 fold change for both the Pan-human consensus 

and the Reference. Additionally, transcripts for which both the 

Pan-human consensus and the Reference had an estimated TPM 

of 0 were excluded in this plot. In Figures 4c-d, all TPM values 

were normalized by an addition of 0.001 in order to prevent 

infinite log2 fold change values. 

Selection of transcript of interest 

We selected transcript ALDH3A2-222 through a manual 

inspection process. We searched for a transcript with significant 

differential expression between the Reference and the Pan-

human consensus, in order to find an example that would 

highlight the differences in transcript expression calculation 

between the two genomes. We used DESeq2 to determine 

statistical significance. However, DESeq2 requires replicates in 

its inputs, and the HGSV reads only contained one sample. In 

order to utilize DESeq2 with this data, we randomly split the 

transcriptomic alignment of each genome into two separate 

BAM files, ensuring that all alignments for a given read were 

grouped in the same file. This splitting was performed using a 

Python script. We then ran RSEM on these split BAM files, and 

used the expected_count column of the RSEM output as the 

input for DESeq2. Because this column can contain non-integer 

values, all expected_count values were rounded down to the 

previous integer. For our selection, we only considered 

transcripts with a DESeq2 adjusted p-value < 0.05. In addition, 

we also required that the gene to which the transcript belongs 

was protein coding. 

Code Availability 

The ConsDB package is available on GitHub at 

https://github.com/kaminow/consdb. STAR-consensus is 

available at https://github.com/alexdobin/star. Scripts to re-
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produce the analysis in this study are available at 

https://github.com/kaminow/ConsDB_analysis. 
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Figure 1: a) Construction of a consensus genome; the minor allele in the Reference is replaced by the most common allele in the 

population. 

b) Visual representation of the individuals used to construct consensus genomes of varying population specificity. 

c) ConsDB workflow. 

d) Number of major alleles for each population consensus genome that were replaced in the Reference. 

e) Number of SNPs and indels shared between different combinations of the Pan-human, Super-population, and Population consensus 

genomes for the African population. The bars in the top bar plot show the number of SNPs and indels that are unique to the intersection 

of genomes indicated in the dot matrix below. The horizontal bars on the bottom left show the total number of SNPs and indels present 

in each genome. 

f) Number of SNPs and indels shared between different combinations of the Pan-human consensus and all 3 super-population consensus 

genomes. The bars in the top bar plot show the number of SNPs and indels that are unique to the intersection of genomes indicated in 

the dot matrix below. The horizontal bars on the bottom left show the total number of SNPs and indels present in each genome. 
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Figure 2 
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Figure 2: a) Internal workflow of STAR-consensus. 

b) Different types of mapping errors based on the read’s mapping status in the individual’s haploid personal genome and the Reference 

or given consensus genome. 

c) Overall mapping error rate for each error type for individual NA19238. Genome is shown on the x-axis and the mapping error rate is 

shown on the y-axis. 

d) Overall mapping error rate for all individuals. Genome is shown on the x-axis and the mapping error rate is shown on the y-axis. 

Individuals from the same population are grouped together by color, with each marker shape representing one individual in the 

population. The dashed line shows the average error rate for the population and the solid vertical line shows the range of the population. 

e) Homozygous mapping error rate for each error type for individual NA19238. Genome is shown on the x-axis and the mapping error 

rate is shown on the y-axis. 

f) Homozygous mapping error rate for all individuals. Genome is shown on the x-axis and the mapping error rate is shown on the y-

axis. Individuals from the same population are grouped together by color, with each marker shape representing one individual in the 

population. The dashed line shows the average error rate for the population and the solid vertical line shows the range of the population. 
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Figure 3 
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Figure 3: a) Each individual from each population is independently mapped to the Reference, Pan-human consensus, and all population 

and super-population consensus genomes. 

b) Homozygous mapping error rate when mapping to different consensus. The color of the marker indicates the population to which 

that individual belongs, while the shape of the marker identifies the individual within the trio. The color of the background rectangle 

indicates the population of the genome. 

c) Each individual from each population is independently mapped to the Reference, Pan-human consensus, and all personal haploid 

genomes. 

d) Homozygous mapping error rate when mapping to different personal haploid genomes. The color of the marker indicates the 

population to which that individual belongs, while the shape of the marker identifies the individual within the trio. The color of the 

background rectangle indicates the population of the genome. The shape at the top of each bar indicates to which individual in the trio 

that genome belongs.  
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Figure 4: a) Counts of variants in the personal haploid genome that cause mapping errors in the Reference, classified by the genomic 

feature in which the variant is located. For each set of bars, the left bar shows the number of homozygous variants and the right bar 

shows the number of heterozygous variants.  

b) Error in transcript quantification in Pan-human vs Reference genome with respect to the Personal genome. Triangles indicate infinite 

error (i.e. zero expression in one of the genomes).   

c) Difference between absolute values of Pan-human to Personal and Reference to Personal log-ratios. Different TPM thresholds are 

represented by different colors.  

d) Cumulative distribution of the transcript quantification error. Solid lines represent transcripts which have larger quantification errors 

in the Reference than in the Pan-human genome; dashed lines represent the opposite cases.  

e) Read coverage and splice junction tracks for HG00512 reads aligned to the Reference, Pan-human consensus, and HG00512 personal 

genome. The regions shown are part of the ALDH3A2 gene. The Variants track shows the location of one MAR that is present in the 

Pan-human consensus and the personal genome. 
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