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Overview 17 

Significance:  fNIRS is an increasingly popular tool in auditory research, but the range of 18 

analysis procedures employed across studies complicates interpretation of data. 19 

Aim: To assess the impact of different analysis procedures on the morphology, detection, and 20 

lateralization of auditory responses in fNIRS. Specifically, whether averaging or GLM-based 21 

analyses generate different experimental conclusions, when applied to a block-protocol 22 

design. The impact of parameter selection of GLMs on detecting auditory-evoked responses 23 

was also quantified. 24 

Approach: 17 listeners were exposed to three commonly employed auditory stimuli: noise, 25 

speech, and silence. A block design was employed, comprising sounds of 5-s duration, and 26 

10–20 s silent intervals.  27 
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Results: Both analysis procedures generated similar response morphologies and amplitude 28 

estimates, and both also indicated responses to speech to be significantly greater than to 29 

noise and silence. Neither approach indicated a significant effect of brain hemisphere on 30 

responses to speech. Methods to correct for systemic hemodynamic responses using short 31 

channels improved detection at the individual level.  32 

Conclusions: Consistent with theoretical considerations, simulations, and other experimental 33 

domains, GLM and averaging analyses generate the same group-level experimental 34 

conclusions. We release this dataset publicly for use in future development and optimization 35 

of algorithms. 36 

 37 

1. Introduction 38 

Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technique (Yücel et 39 

al., 2017) employed to investigate auditory-cortical function, and provides for a unique set of 40 

qualities that make it ideal for auditory research. fNIRS devices are typically very quiet 41 

compared to functional magnetic resonance imaging (fMRI) with which it shares a similar 42 

biologically generated signal. fNIRS is unaffected by electrical or magnetic interference from 43 

hearing devices such as cochlear implants or hearing aids, all of which are either contra-44 

indicated or generate large artifacts in fMRI as well as in electro- and magneto-45 

encephalography (EEG and MEG, respectively). fNIRS devices are generally relatively portable 46 

and do not require participants or patients to be isolated in a shielded chamber, or to have 47 

their head-position fixed, making it well suited for use in low- or non-compliant groups, 48 
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including children, the elderly, and the cognitively impaired. It therefore provides an ideal 49 

imaging modality for clinical applications. 50 

fNIRS has been used to investigate a variety of auditory research questions and applications. 51 

A primary use has been the investigation of cortical processing of physical qualities of sound, 52 

such as intensity, and amplitude and frequency modulations, and auditory-spatial cues 53 

(Weder et al., 2020; Weder et al., 2018; Zhang et al., 2018). fNIRS has also been employed to 54 

evaluate the perceptual qualities of speech and listening effort, as well as language 55 

development in normal-hearing and hearing-impaired populations (Anderson et al., 2019; 56 

Lawrence et al., 2018; Mushtaq et al., 2019; Pollonini et al., 2014; Rovetti et al., 2019; 57 

Rowland et al., 2018; Sevy et al., 2010; Wiggins et al., 2016b; Wijayasiri et al., 2017; Zhang et 58 

al., 2020). Research questions relating to the development of auditory cortical function  59 

(Gervain et al., 2008), and cortical reorganization following impaired sensory input and 60 

subsequent rehabilitation (Anderson et al., 2017; Wiggins and Hartley, 2015) have been 61 

investigated using fNIRS, as have outcomes related to cochlear implantation (Anderson et al., 62 

2019) and auditory pathologies such as tinnitus (Basura et al., 2018; Shoushtarian et al., 63 

2020). 64 

Despite this utility, however, relative to other neuroimaging modalities such as fMRI, EEG, 65 

and MEG, fNIRS has been employed only recently by hearing scientists, and considerable 66 

variability exists in the experimental designs and analysis techniques used by different 67 

researchers. This variability can make it difficult to interpret data sets, or to replicate or 68 

compare findings across studies, or between research teams. The experimental designs most 69 

commonly employed by auditory fNIRS researchers are block- and event-related designs. 70 

Experimenters must consider a range of factors in their experimental design, including the 71 
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statistical power of the protocol, the duration of the experiment, and whether the design 72 

provides the flexibility to study the effect of interest ( Birn et al., 2002; Friston et al., 1999; 73 

Henson, 2007; Mechelli et al., 2003). For example, an event-related design may enable an 74 

investigator to examine the response to individual words in an ongoing sentence, something 75 

not possible when employing a block design. 76 

Here, we compare two common analysis procedures that can be applied in experiments 77 

employing a block design.  Block-design experiments present a single stimulus type 78 

continuously for an extended time interval (e.g. 5 s), followed by an inter-stimulus interval 79 

(i.e., where no stimulus is presented) of sufficient duration for the hemodynamic response to 80 

return to an approximate basal level (Brockway, 2000; Rombouts et al., 1997). Although 81 

commonly employed, no consensus exists as to the most appropriate analysis procedures for 82 

this type of experimental design; new algorithms and procedures are regularly published 83 

without cross-validation or theoretical consideration.  84 

Analysis procedures for block designs typically lie in one of two categories: averaging analysis, 85 

where the fNIRS measurement is segmented and averaged relative to the onset of the 86 

stimulus (Dawson, 1954); and general linear model (GLM) analysis, where one or more model 87 

hemodynamic responses are fitted to the entirety of the measured fNIRS signal (Cohen, 1997;  88 

and for a recent overview in the context of fNIRS see Huppert, 2016). The signal averaging 89 

approach assumes that the noise component of the measured fNIRS signal is a random 90 

process with zero mean, and unrelated to the biological signal of interest. In contrast, the 91 

GLM is capable of accounting for a more complex model of signal noise (Barker et al., 2013). 92 

Although for non-overlapping responses such as are assumed in a block design, the GLM 93 

model is reduced to a block average, suggesting that both analyses should tend to generate 94 
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similar outcomes (Dale and Buckner, 1997; Santosa et al., 2019), due to the statistical 95 

properties of the fNIRS signal, GLM analysis may be a more appropriate method with which 96 

to analyze fNIRS data (Huppert, 2016). These two analysis methods have been described and 97 

evaluated for different fNIRS analysis parameters in computer simulations and behavioral 98 

motor experiments (Santosa et al., 2019; Tak and Ye, 2014), but a direct comparison has yet 99 

to be made for research investigating audition.  100 

In general, auditory-cortical responses in fNIRS have been shown to be reliable at a group 101 

level (Wiggins et al., 2016a). Many investigations of auditory cortical function target relatively 102 

deep (relative to the skull) cortical regions such as Heschl’s gyrus, of which a typical fNIRS 103 

device might generate less than 1% specificity (Zimeo Morais et al., 2018). This low specificity 104 

makes individual-level measurements unreliable, largely due to the poor signal-to-noise ratio; 105 

the measured stimulus-evoked hemodynamic response is small compared to all other sources 106 

of bio-generated changes in the fNIRS signal. This challenge has motivated the need for a 107 

comparison of averaging and GLM analysis specifically for auditory fNIRS signals, in order to 108 

understand the influence of analysis choices when analyzing such a small signal-of-interest. 109 

Here, we investigate whether averaging and GLM style analysis applied to the same dataset 110 

generate data that support the same experimental conclusions. 111 

Due to the statistical properties of the noise within fNIRS signals, GLM-style analysis has been 112 

suggested to be a more appropriate method with which to analyze fNIRS data (Huppert, 113 

2016). As such, we also investigated the influence of the parameters employed in GLM 114 

analysis on the true and false detection-rates of sound-generated fNIRS responses. Of 115 

particular importance in fNIRS experiments is the separation (and possible reduction) of 116 

systemic contributions (changes in the measured fNIRS signal that are not due to the effect 117 
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of neurovascular coupling) to the measured signal when estimating neural responses 118 

(Tachtsidis and Scholkmann, 2016). This has particular relevance for auditory experiments, as 119 

systemic components of fNIRS measurements have been shown to be related to the 120 

characteristics of acoustic stimuli (Shoushtarian et al., 2019).  121 

Many approaches have been proposed to remove the influence of systemic components on 122 

the estimation of the neural response (Fabbri et al., 2004; Saager and Berger, 2005; Santosa 123 

et al., 2020; Scholkmann et al., 2014; Wyser et al., 2020). Most use specialized channels 124 

designed not to measure neural activity but the systemic response only. These channels 125 

typically have a source-detector separation of less than 1 cm, and are often referred to as 126 

‘short’ channels. Recently, Santosa et al. (2020) concluded that including short-channel 127 

information as a regressor of no interest within a GLM analysis resulted in the most accurate 128 

estimation of the underlying neural response compared to spatial and temporal filtering, 129 

regression, and component analysis.  130 

We therefore investigated the effect of including information from short channels on the 131 

detection of auditory fNIRS responses. Algorithms that remove systemic components have 132 

previously been evaluated and contrasted (Santosa et al., 2020; Scholkmann et al., 2014; 133 

Wyser et al., 2020), but we apply these methods specifically in the context of two commonly 134 

used auditory stimuli: speech and band-pass noise.  135 

Speech is the primary mode for auditory communication, and is therefore widely employed 136 

in auditory experiments. Noise signals are often used to investigate basic auditory processing, 137 

as the statistical properties of the signal can be precisely controlled. These two stimuli are 138 

often contrasted to investigate language-specific processing, or combined to investigate 139 

speech processing in challenging listening environments. Both stimuli can hold an infinite 140 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.423886doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423886


number of forms; speech may contain prosodic cues or be spectrally degraded, and noise may 141 

comprise different frequency ranges, contain modulations in amplitude or frequency, or 142 

transition over time. Here, we employed two different stimuli: speech comprising three 143 

concatenated sentences in quiet, and a 400-Hz band of noise centered at 500 Hz. 144 

We first describe the methods used to produce and present stimuli, and to generate data. We 145 

then undertake qualitative analysis examining the morphology of fNIRS responses to auditory 146 

stimuli using averaging and GLM analyses, and assess the influence of different analysis 147 

parameters on the detection of auditory fNIRS responses, and on the rate of false positives. 148 

Finally, we investigate whether the averaging and GLM approaches provide similar 149 

experimental conclusions when applied to the same dataset. Both approaches were used to 150 

investigate two common questions in auditory neuroscience. First, do two different stimulus 151 

conditions generate a different response amplitude? Second, are cortical-hemispheric 152 

difference apparent in evoked responses?  153 

One challenge when developing an experimental protocol for fNIRS is to understand the 154 

effects of different analysis choices, and to optimize the signal-processing procedure. Further, 155 

it is important not to optimize a specific analysis pipeline using the same data from which 156 

scientific conclusions will be drawn (Kriegeskorte et al., 2009). The dataset we report here 157 

will be released publicly to assist in the development of future auditory fNIRS pipelines and 158 

algorithm development. In a similar vein, we note that that we are not endeavouring to 159 

generate scientific conclusions concerning the relative cortical processing of speech and 160 

noise. Rather, our intention is to provide an understanding of the choice of parameters on 161 

conclusions reached by statistical analysis of auditory-generated fNIRS responses generated 162 

using averaging and GLM techniques. 163 
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 164 

2. Methods 165 

2.1 Experimental Design  166 

Seventeen participants volunteered for this project. All participants indicated no history of 167 

hearing concerns. Participants were aged between 22 and 40 years. Data were collected 168 

under the Macquarie University Ethics Application Reference 52020640814625. 169 

Participants were seated in a sound-attenuating booth in a comfortable chair for the duration 170 

of the experiment, which lasted approximately 25 minutes. Participants were instructed not 171 

to pay attention to the sounds and were offered the choice of watching a silent, subtitled film 172 

during the experiment; seven participants accepted this option. NIRS data were recorded 173 

using a NIRx NIRScoutX device with APD detectors. The data were saved to disk with a sample 174 

rate of 5.2 Hz. 12 source channels and 12 detector channels were employed in the fNIRS 175 

optode-cap configuration, with eight additional short detectors distributed across the head. 176 

Sources were placed at the positions AF7, F3, F7, FC5, T7, CP5, O1, POz, O2, Iz, CP6, and T8. 177 

Detectors were placed at the positions F5, C5, TP7, CP3, P5, PO3, P04, Oz, P6, CP4, TP8, and 178 

C6. Short detectors were placed at AF7, F7, T7, CP5, O1, O2, CP6, and T8 (Figure 1). These 179 

optodes were selected to target four regions of interest (ROI) using the fOLD toolbox (Zimeo 180 

Morais et al., 2018), including the left inferior frontal gyrus (IFG), the left and right superior 181 

temporal gyri (STG), and the occipital lobe. The left inferior frontal gyrus is indicated in speech 182 

and language processing, whilst the superior temporal gyri are indicated in auditory 183 

processing. The occipital lobe is indicated in visual processing and as a possible additional site 184 
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for speech processing, particularly in cross-modal plasticity studies, but this region was not 185 

expected to show significant responses in the current study. 186 

 187 

 188 

Figure 1: Location of sources and detectors. Four regions of interest were created to cover the left inferior frontal gyrus, the 189 
left and right superior temporal gyri, and the occipital region. Sources are shown as red dots, detectors are shown as black 190 
dots, channels are shown as white lines with an orange dot representing the midpoint. The montage is shown from the left 191 
(a), back (b) and right (c) views of the brain. 192 

Participants listened to auditory stimuli presented diotically (i.e., the same sound to both 193 

ears) via Etymotic Research ER-2 insert-phones connected to an RME Fireface UCX soundcard 194 

(16 bits, 44.1 kHz sampling rate). Speech was presented at 80 dB SPL, and noise (separately) 195 

at 85 dB SPL. Stimuli were calibrated to a Casella Cel-110/2 sound source using a Norsonic 196 

sound-level meter (Norsonic SA, Norway) and an ear simulator (RA0045 G.R.A.S., Denmark).  197 

Participants were exposed to three stimulus conditions: speech, noise, and silence. The 198 

speech stimulus consisted of three concatenated sentences from the AusTIN speech corpus 199 

(Dawson et al., 2013) with a total duration of 5.25 s. The noise stimulus consisted of a uniform 200 

distribution of frequency content between 300-700 Hz, and was of 5-s duration. Five seconds 201 

of silence was used as the control condition. Stimuli were presented in random order with an 202 

inter-stimulus interval selected randomly for each trial from a uniform distribution in the 203 

range 10-20 s. Twenty trials were presented for each condition, resulting in a total of 60 trials 204 

per participant. 205 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.423886doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423886


 206 

2.2 Analysis 207 

All analyses were performed using MNE (version 0.21.2) (Gramfort et al., 2013; Gramfort et 208 

al., 2014) and MNE-NIRS (version 0.0.1) (https://mne.tools/mne-nirs/), which makes 209 

extensive use of the Nilearn package (version 0.70) (Abraham et al., 2014) for GLM analysis. 210 

First, a qualitative analysis was performed to understand the morphology of the measured 211 

signal, followed by a quantitative analysis to evaluate the influence of different parameter 212 

selection on the detection of auditory responses. Finally, both the averaging and GLM analysis 213 

techniques were used to compare the response amplitude to speech vs. noise, and for relative 214 

activation in the left vs. right cortical hemispheres. All analyses were applied to the same 215 

dataset described in Section 2.1. 216 

 217 

2.2.1 The morphology of auditory responses 218 

 219 

Hemodynamic responses vary with location on the scalp and experimental condition (Cui et 220 

al., 2011; Stoppelman et al., 2013). As such, morphology of fNIRS responses to speech and 221 

noise stimuli was investigated qualitatively using two independent procedures. The first 222 

procedure was an averaging style analysis, and the second a finite impulse response (FIR) GLM 223 

approach. Each analysis was performed on each of the three experimental conditions. 224 

 225 

  226 
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2.2.1.1 Averaging analysis 227 

 228 

The averaging analysis consisted of several steps, starting with down-sampling the data to 3 229 

Hz, and conversion to optical density. The scalp-coupling index (Pollonini et al., 2014) was 230 

calculated for each channel between 0.7 and 1.45 Hz, and channels with an index value below 231 

0.8 were removed. Data from each channel were then further cleaned by applying temporal-232 

derivative distribution repair (Fishburn et al., 2019) and short-channel regression based on 233 

the nearest short channel (Saager and Berger, 2005; Scholkmann et al., 2014). Briefly, this 234 

approach to short-channel regression subtracts a scaled version of the signal obtained from 235 

the nearest short channel from the signal obtained from the long channel. The modified Beer 236 

Lambert law was then applied, with a partial pathlength factor of 0.1, converting the optical-237 

density measurements to changes in hemoglobin concentration. Next, channels with source-238 

detector separations outside the range 20-40 mm were excluded, followed by application of 239 

the signal-improvement algorithm based on negative correlation between oxygenated and 240 

deoxygenated hemoglobin dynamics (Cui et al., 2010). A bandpass filter was then applied 241 

between 0.01 and 0.7 Hz with a transition bandwidth of 0.005 and 0.3 Hz for the low- and 242 

high-pass edges, respectively. The data were cut into epochs from 3 s before stimulus onset 243 

to 14 s after, and a linear detrend was applied to each epoch. Epochs with a peak-to-peak 244 

difference in any channel exceeding 100 μM were then excluded. The average response per 245 

participant for each channel and for each condition was exported.  246 

 247 

  248 
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2.2.1.2 Finite impulse response model analysis 249 

 250 

In a second, and independent, analysis, data was entered into a GLM analysis using a 251 

deconvolution FIR model. This method makes no assumptions as to the shape of the 252 

hemodynamic response. Instead, a series of impulses following the onset of the stimulus are 253 

used as regressors to model the neural response. The morphology of the response can then 254 

be estimated by summing all the FIR components after multiplication by each component’s 255 

weight as estimated by the GLM.  See Huppert (2016) and Santosa et al. (2018) for a summary 256 

of FIR and canonical approaches within the fNIRS context. 257 

Prior to the GLM analysis, data were down-sampled to 1 Hz, and then converted to optical 258 

density. A lower sample rate was employed as the scalp-coupling index was not computed, 259 

and therefore, higher frequencies were not required. Next, channels with a source-detector 260 

separation outside the range 20-40 mm were excluded, and the modified Beer-Lambert law 261 

applied to the data, as for the averaging analysis. A GLM was then applied using a FIR model 262 

with 14 components (i.e., 14 s); this number of components was selected to ensure parity 263 

with the epoching-window approach employed in the averaging analysis. Channels were then 264 

combined into a ROI by averaging the estimates with an inverse weighting by the standard 265 

error of the GLM fit. The individual-level FIR results were then entered into a linear mixed-266 

effects (LME) model to extract the effect of FIR delay, condition, and chromophore, whilst 267 

accounting for the random effect of subject. Santosa et al. (2018) provides for a description 268 

of these second-level statistical models. 269 

 270 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.423886doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423886


2.2.2 Canonical model analysis: Effect of parameters on response detection 271 

 272 

Next, the effect of several analysis parameters on the detection rate for auditory responses 273 

was investigated. In contrast to the FIR approach (Section 2.2.1), this analysis used a 274 

predefined canonical model of the evoked hemodynamic response function (HRF), specifically 275 

the canonical SPM HRF, which is generated from a linear combination of two Gamma 276 

functions (Penny et al., 2011). The effect of sampling rate, correction for systemic responses, 277 

and boxcar duration on the true and false-positive detection rates was explored. For 278 

simplicity, we visualized only the data for oxyhemoglobin, and not deoxyhemoglobin, signals, 279 

as the effects of different parameters was similar for both. 280 

Only responses from optodes placed over the superior temporal gyrus were analyzed. A false 281 

positive was defined as a response detected in the (control) condition of silence. A true 282 

positive was defined as a response detected to the speech and noise conditions. Using these 283 

definitions, a receiver operating characteristic (ROC) was defined for each analysis procedure, 284 

and the area under the curve was extracted to quantify the analysis performance. We also 285 

extracted the true positive rate (TPR) resulting from a false-positive rate (FPR) of 5%, as 286 

commonly employed in clinical studies. 287 

Specific analysis parameters were varied in this section, but each analysis consisted of the 288 

same general procedure—a re-sampling the data, followed by conversion to optical density 289 

and hemoglobin concentration. Next, channels with source-detector separation outside the 290 

20- to 40-mm range were excluded, as were any channels outside the superior temporal gyrus 291 

ROI. A design matrix was then constructed by creating a boxcar function based on the trigger 292 

timing, and convolving this with the SPM HRF. A GLM was performed on the data with this 293 
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design matrix, including the use of a 4th-order auto-regressive noise model, generating  294 

channel-level data that were used to construct a ROC curve. Channel-level data were then 295 

combined into a ROI using a weighted-average procedure, in which each channel was 296 

weighted by the inverse of the standard error of the GLM. This procedure was termed the 297 

“No Correction” analysis.  298 

To analyze the effect of different choices of processing, several modifications were made to 299 

the procedure outlined above. Different short-channel approaches were applied to correct 300 

for systemic response, including adding the mean of the short channels as a regressor to the 301 

GLM, adding the individual short channels as regressors to the GLM, as well as adding the 302 

principal components of the short channels as regressors to the GLM (adding either a subset, 303 

or all components, were investigated). These procedures were termed the “Systemic 304 

Corrected” analysis. Similarly, the effect of sample rate was investigated by down-sampling 305 

the raw signal using different rates.   306 

 307 

2.2.3 Comparison of conditions and response lateralization  308 

 309 

Finally, a group-level analysis was performed to determine if the averaging and GLM analyses 310 

both provided the same conclusion to two research questions. First, is there a difference in 311 

response amplitude between the speech and noise stimuli? And second, is there a 312 

hemispheric difference in the response to speech stimuli? We focus on group-level analysis 313 

as this has been demonstrated to be reliable in auditory experiments (Wiggins et al., 2016a). 314 

We also investigate whether including the approach to correcting for the systemic response 315 

correction deemed most effective (see Section 2.3) modifies experimental conclusions. 316 
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 317 

2.2.3.1 Averaging analysis 318 

 319 

For the averaging analysis, the same approach was made as in Section 2.2, after which, the 320 

mean value between 5 and 7 s of the average waveform for each participant was exported 321 

for analysis by statistical testing. 322 

 323 

2.2.3.2 Canonical model analysis 324 

 325 

For the canonical-model GLM analysis, two procedures were used; the No Correction 326 

approach and the Systemic Corrected approach, the latter of which included all principal 327 

components as regressors in the GLM to compensate for systemic responses. Both analyses 328 

used a sample rate of 0.6 Hz and a 3 s duration for the boxcar function. 329 

 330 

2.2.3.3 Statistical analysis 331 

 332 

To summarize the dataset, results from the Systemic Corrected approach were entered into 333 

a linear mixed-effects model that accounted for condition, ROI, and chromophore with 334 

participant as a random variable. In Roger-Wilkinson notation this would be described as β ~ 335 

-1 + Condition:ROI:Chroma + (1|ID). 336 

For each of the three analyses described above (averaging, GLM No Correction, GLM Systemic 337 

Corrected), a response estimate was exported for each participant, each condition, and each 338 
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ROI. These data were then used to address two issues. First, using all channels over both left 339 

and right superior temporal gyri as a single ROI, a linear mixed-effects model was used to 340 

determine if the response to speech was different from that to noise. Participant was included 341 

as a random effect. In Roger-Wilkinson notation this is described as β ~ Condition + (1|ID). 342 

Second, a linear mixed-effects model was used to determine if the left superior temporal 343 

gyrus shows a different response amplitude to the right in the speech condition, described as 344 

β ~ ROI + (1|ID) in Roger-Wilkinson notation. 345 

3. Results & Discussion 346 

To ensure that the filter was parameterized correctly, as to remove unwanted components 347 

of the measurements and retain the frequency content of interest, the spectrum of the raw 348 

fNIRS data extracted from an example data file is plotted along with the expected 349 

hemodynamic response (Figure 2). The spectral content of the model boxcar function of the 350 

experiment convolved with a model neural response (Figure 2, red curve) indicates that the 351 

majority of the signal content is around 0.05 Hz, consistent with the average presentation 352 

rate of the experiment. The spectral content of an example measurement (Figure 2, black 353 

curve) indicates a clear signal generated by the systemic pulse rate of around 1 Hz. The filter-354 

frequency response (Figure 2, blue) clearly retains the peak of the expected response, but 355 

excludes the low-frequency drift and high-frequency (pulse-rate) components. 356 

 357 
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 358 

Figure 2: Summary of frequency information. The frequency content of the expected neural response based on trigger 359 
information and model hemodynamic response function is shown in red (arbitrary scaling). The applied filter is shown in blue. 360 
Raw data from an example file is shown in black, with the solid line indicating the mean value across all channels and the 361 
shading representing 95% confidence intervals across channels. Note that the filter retains most of the experimental 362 
frequency content while removing high-frequency heart rate content (around 1 Hz) and low frequency content in the 363 
measured data. 364 

 365 

3.1 The morphology of fNIRS responses to speech and noise 366 

Two approaches were applied to investigate the morphology of responses to auditory stimuli 367 

in each ROI. Here, we provide a qualitative description of morphology. 368 

 369 

3.1.1 Averaging analysis 370 

 371 

To summarize the group-level averaging analysis results, a time series visualizes the average 372 

signal across participants and a bootstrapped 95% confidence band around the mean for each 373 

condition and ROI (Figure 3). Responses were observed in the STG regions for both noise and 374 

speech stimuli, but not for the silent conditions. For the silence condition, flat measurements 375 

were observed over the entire waveform in all ROIs. For both speech and noise conditions, 376 

the largest responses were measured from optodes placed over the left and right superior 377 
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temporal gyri. These responses show a canonical hemodynamic response, with a peak 378 

response around 5- to 7-s after stimulus onset, consistent with the duration of the stimulus. 379 

As such, only channels over the superior temporal gyri were used subsequently to quantify 380 

response morphology. 381 

 382 

 383 
Figure 3: Morphology of auditory fNIRS responses using the averaging approach for all regions of interest and conditions. 384 
Each column represents a different region of interest as illustrated in the top down head view inset. Each row represents a 385 
different stimulus condition. Red represents oxyhemoglobin, blue represents deoxyhemoglobin. Shaded lines indicate 95% 386 
confidence intervals. Responses were observed over the left and right superior temporal gyrus (STG) for both speech and noise 387 
conditions, but not for silence. 388 

 389 

3.1.2 Finite impulse response model analysis 390 

 391 

A FIR GLM analysis was also used to examine the morphology of the hemodynamic response, 392 

using only optodes situated over the superior temporal gyri. A comparison of the estimated 393 

response morphology using the averaging and the FIR (GLM) techniques (Figure 4) indicates 394 

broad agreement between the methods with regard to the timing and amplitude of 395 
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hemodynamic responses, although the FIR approach generates an estimate of the response 396 

to speech greater than that suggested by averaging. 397 

 398 

 399 

Figure 4: Morphology of auditory fNIRS responses over the superior temporal gyrus. Each column represents a different 400 
stimulus condition.  Responses are illustrated for both oxy- and deoxyhemoglobin, red and blue respectively. The shaded areas 401 
and solid line represent the mean and 95% confidence intervals for the averaging approach. The dashed lines illustrate the 402 
estimates for the FIR GLM approach. Note that the averaging and FIR GLM fits are quite similar, except for a larger estimate 403 
for the FIR approach in the speech condition.  404 

 405 

3.2 Canonical model analysis: Effect of parameters on response detection 406 

We next examined the effect of different analysis parameters on the detection of responses 407 

in individual participants. ROC curves for both ROIs (Figure 5a) and individual channels (Figure 408 

5b) indicates ROIs show greater sensitivity to true positives than individual channels, likely 409 

due to noisy channels being inversely weighted. Subsequently, we focus on the channel-level 410 

results (Figure 5c). 411 

Two summary metrics extracted from the ROC curves are reported. First is the traditional area 412 

under the curve (AUC) measure. A larger value indicates better performance across the entire 413 

range of false positive values. Also reported is the true positive rate (TPR) occurring at the 5% 414 

false positive rate (FPR). We chose to focus on the metric at 5% FPR, as opposed to the AUC 415 
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metric, because this tends to be more relevant for clinical purposes. Many of the differences 416 

in the ROC occur at a high FPR at and above 50%, however, this FPR would be considered 417 

unacceptable in a clinical setting.  418 

 419 

3.2.1 Effect of short channel regression on detection of auditory responses 420 

 421 

We first examined the effect of different short-channel based methods of reducing systemic 422 

responses from the estimated neural responses. The effect of adding different 423 

representations of the short channels as regressors in the GLM is explored. These 424 

representations include a limited number of principal components, all principal components, 425 

the individual short channels, or the mean of the short channels per each chromophore. 426 

Without short-channel correction, responses were detected in less than 20% of 427 

measurements for a false-positive rate of 5%. As expected, applying the short-channel 428 

method to remove systemic components resulted in a substantial improvement to the 429 

detection rate (Santosa et al., 2020; Scholkmann et al., 2014; Tak and Ye, 2014; Wyser et al., 430 

2020). Although it is common to use just the first or second principal components as 431 

regressors (Weder et al., 2020), we observed that including all components resulted in the 432 

best performance, consistent with Santosa et al. (2020). 433 

We also observed that including all the short channels or the mean as regressors, instead of 434 

the principal components, also results in good detection rates. Whilst we observed no effect 435 

of including all principal components or just individual channels, we selected the principal 436 

components for subsequent analysis, as this is suggested to be the most effective method to 437 

compensate for systemic components in the estimation of neural responses (Santosa et al., 438 
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2020). Neither of these approaches require a specific selection criterion, making them easy 439 

to implement, describe, and replicate. 440 

 441 

 442 

Figure 5: The effect of systemic response correction on auditory fNIRS response estimates. Receiver operating characteristic 443 
curves for the superior temporal gyri region of interest (a) and individual channels over the superior temporal gyri (b). 444 
Summary statistics from the individual channel ROC (c) with area under the curve (circle) and true positive rate at 5% false 445 
positive rate (square) metrics for each method. Analysis with no systemic correction is included as a reference (green), analysis 446 
with 1, 2, 4, or all principal components (PC) of the short channels as regressors in the GLM is shown (orange, blue, light 447 
green, yellow), all short channels included as individual regressors (brown) or averaged per chromophore (gray). Note that 448 
all systemic response correction approaches provide improved detection over no correction. Including all principal 449 
components, the mean of the short channels, or all individual channels provides best auditory response detection. 450 

 451 

3.2.2 Effect of sample rate on the detection of auditory responses 452 

 453 

fNIRS devices often require a trade-off between the number of channels and acquisition 454 

sample-rate, and understanding the effect of this trade-off is of practical concern for auditory 455 

experiments; performance generally decreases with lower sample rates (Figure 6). Analysis 456 

of data with a higher sample rate requires more memory and computational resources, so we 457 

selected 0.6 Hz as a sample rate that balances computational cost with accuracy.  458 

 459 
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 460 

Figure 6: The effect of sample rate on auditory fNIRS response estimates. Receiver operating characteristic curves for the 461 
superior temporal gyri region of interest (a) and individual channels over the superior temporal gyri (b). Summary statistics 462 
from the individual channel ROC (c) with area under the curve (circle) and true positive rate at 5% false positive rate (square) 463 
metrics for data sampled at different rates. Analysis indicates improved performance with increasing sample rate, but with 464 
limited improvement above approximately 0.6 Hz. 465 

 466 

3.2.3 Effect of boxcar duration on the detection of auditory responses 467 

 468 

The fNIRS responses to our 5-s block stimuli peaks around 6 to 7 s after stimulus onset (Figure 469 

4). GLM analyses fit an expected neural response to the data, in which the expected neural 470 

response is generated by convolving a model HRF with a boxcar function generated from the 471 

onset times of the stimuli. The length of the boxcar function can be varied to account for the 472 

duration of the neural response, and is typically set to the duration of the stimulus.  However, 473 

response morphology can change with stimuli and brain location. As such, we investigated 474 

the effect of boxcar length on response detection to auditory stimuli, and find that the 3-s 475 

boxcar function provides the greatest true positive rate, for a pre-determined 5% false-476 

positive rate (Figure 7). Note, however, that the reduction in performance that comes from 477 

using swapping out 3-s boxcar function for one of 1-s or 5-s duration is smaller than the 478 

reduction in performance that comes about by not employing systemic correction, or when 479 
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too low a sample rate is used. An alternative approach to account for differences between 480 

the model and the measured response is to include a derivative term in the design matrix 481 

(Mushtaq et al., 2020; Zhang et al., 2020). However, since we observed good correspondence 482 

between the response morphology and the expected canonical response, we did not include 483 

derivative terms in our analysis. 484 

 485 

 486 

Figure 7: The effect of boxcar function duration on auditory fNIRS response estimates. Receiver operating characteristic curves 487 
for the superior temporal gyrus region of interest (a) and individual channels over the superior temporal gyrus (b). Summary 488 
statistics from the individual channel ROC (c) with area under the curve (circle) and true positive rate at 5% false positive rate 489 
(square) metrics for different boxcar durations. Analysis indicates optimal detection rates for a 3 s boxcar function, note that 490 
the stimulus duration was 5 s. 491 

 492 

Additional analysis parameters beyond the scope of the current study include effects arising 493 

from selection of the specific auto-regressive model (Huppert (2016), or alternate canonical 494 

functions (Glover (1999). Based on the data thus far, we maintained a sample rate of 0.6 Hz 495 

in future analyses, and included all principal components as regressors, employing a 3-s 496 

boxcar function to model the hemodynamic response.  497 

 498 
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3.3 Comparison of conditions and response lateralization 499 

Finally, we investigated whether, when applied at a group level, the averaging and GLM 500 

approaches to fNIRS analysis provide for the same experimental conclusions. Two common 501 

questions in auditory experiments were explored. First, could we detect a difference in 502 

response amplitude between two conditions, in this example: speech and noise. And second, 503 

within one condition, is a difference in response amplitudes apparent across brain 504 

hemispheres, often termed “lateralization of responses.” 505 

We first summarized the dataset (GLM analogue of Figure 2) by modelling the response 506 

amplitude as a factor of ROI, condition, and chromophore in a LME model, with participant 507 

as a random factor (Figure 8). Consistent with the observed average waveforms (Figure 3), no 508 

significant responses were obserbed in either the left inferior frontal gyrus or occipital cortice, 509 

and the silent, control condition generated no responses in any ROI. Significant responses 510 

were observed to both speech and noise in the two ROIs of superior temporal gyrus. The lack 511 

of any detectable response to speech stimuli in left inferior frontal gyrus may be due to the 512 

passive nature of the experimental task; this cortical region has been indicated in the 513 

processing of speech, particularly in active tasks with more challenging acoustic conditions. 514 

 515 
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 516 

Figure 8: Estimates of response per condition and region of interest using the GLM analysis. Oxy- and deoxyhemoglobin 517 
responses are shown in red and blue respectively. The presence of a response (statistical difference to zero) is indicated by a 518 
triangle. Error bars represent the 95% confidence intervals of the mean. 519 

 520 

3.3.1 Does speech elicit a greater neural response than noise? 521 

 522 

We next addressed the questions of whether responses to speech are larger than responses 523 

to noise over the superior temporal gyri ROI, and whether inter-hemispheric differences in 524 

activation are observed. 525 

 526 

3.3.1.1 Comparison of averaging and GLM result 527 

 528 
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Using the Systemic Corrected GLM with a LME model, which examined the effect of condition 529 

with participant as a random effect, we observed that the speech-evoked oxyhemoglobin 530 

response was 2.043 μM larger than that evoked by noise (p < .001). Using the average 531 

waveform amplitude 5 to 7 s post stimulus onset, we observed that the estimated response 532 

to speech was 1.0 μM larger than to the noise (p < .01). From this, we conclude that both 533 

analysis methods generate the same experimental conclusion, consistent with visual 534 

inspection of the averaging and FIR GLM analyses (Figure 3). The estimated response 535 

amplitude difference was larger for the GLM approach, possibly due to this approach better 536 

accounting for the statistical nature of the fNIRS noise (Huppert, 2016). The time window 537 

used in the averaging approach may also reduce the estimated response amplitude, whereas 538 

a peak picking approach may result in a slightly larger estimate of the response. However, 539 

automated peak-picking approaches are prone to error, particularly when the signal-to-noise 540 

ratio is low, whilst manual methods of peak-picking reduce the repeatability of an analysis. 541 

 542 

3.3.1.2 Effect of systemic component rejection 543 

 544 

Analyzing the data using the GLM approach, with no correction for systemic responses—the 545 

No Correction analysis—indicates that the speech response was 2.306 μM larger than that to 546 

the noise stimulus (p = .025). Not including corrections for systemic responses generated a 547 

similar effect size to the Systemic Corrected analysis. This correspondence between methods 548 

of analysis may be due to the systemic response being relatively small, or the systemic 549 

response being similar across conditions. Our experiment was a passive listening-task, and 550 

participants were asked not to pay attention to the stimuli. Studies that have observed an 551 
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event-locked systemic component to auditory stimuli required participants to generate a 552 

response, for example, by means of a button press (Shoushtarian et al., 2019). These, more-553 

active, experimental paradigms may generate a larger systemic component, and therefore 554 

elicit greater differences between analyses corrected or uncorrected for systemic effects. 555 

 556 

3.3.2 Does speech elicit a larger response in left or right hemisphere?  557 

 558 

3.3.2.1 Comparison of averaging and GLM result 559 

 560 

Finally, to address whether a difference in response amplitude exists between left and right 561 

cortical hemispheres to speech stimuli, results from the Systemic Corrected GLM were used 562 

in a LME model examining the effect of ROI, with participant as a random effect. The model 563 

reported that estimated amplitude of the fNIRS response in the right hemisphere was not 564 

significantly different to that in the left (β= -0.21, p = .73). Similarly, the same LME model 565 

reported no significant lateralization of the response amplitude when the averaging analysis 566 

was employed (β= 1.0, p=.13).  567 

 568 

3.3.2.2 Effect of systemic-component rejection 569 

 570 

When assessing the No Correction GLM data at a group level, no significant effect of 571 

lateralization was observed (β= 0.18, p=.87), indicating that not compensating for systemic 572 

components does not generate aberrant lateralization effects. However, we cannot conclude 573 
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from these data that, if a lateralization effect were present, it would be detectable without 574 

systemic correction.  575 

 576 

4. Conclusion 577 

A reference block-design auditory fNIRS dataset was created with two common acoustic 578 

stimuli. Using this dataset, it was determined that both an averaging approach and a FIR GLM 579 

analysis resulted in similar response morphology. The effect of correcting for systemic 580 

hemodynamic responses using short optical channels was evaluated on the response 581 

detection of the GLM approach, where it was determined that including the individual short 582 

channels, or the principal components of the short channels, resulted in similar practical 583 

improvements to detection. At a group level, it was observed that both the averaging and 584 

GLM approach produced the same experimental conclusions to two common research 585 

questions. Not including short-channel corrections did not change the group-level 586 

conclusions. This may be due to the fact that the task was passive in nature, and may not hold 587 

for  experiments requiring active participation. 588 

 589 

5. Code, Data, and Materials Availability 590 

The fNIRS data reported in this article will be released on OSF.io and github.com in the BIDS 591 

data format to allow ease of reuse (Gorgolewski et al., 2016). All the code functions used in 592 

this analysis are available at mne.tool/mne-nirs and the associated GitHub page, along with 593 

example analysis tutorials. 594 
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