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Abstract 

Single-cell technologies are revolutionizing biology but are today mainly limited to 

imaging and deep sequencing. However, proteins are the main drivers of cellular 

function and in-depth characterization of individual cells by mass spectrometry (MS)-

based proteomics would thus be highly valuable and complementary. Chemical 

labeling-based single-cell approaches introduce hundreds of cells into the MS, but 

direct analysis of single cells has not yet reached the necessary sensitivity, robustness 

and quantitative accuracy to answer biological questions. Here, we develop a robust 

workflow combining miniaturized sample preparation, very-low flow-rate 

chromatography and a novel trapped ion mobility mass spectrometer, resulting in a 

more than ten-fold improved sensitivity. We accurately and robustly quantify 

proteomes and their changes in single, FACS-isolated cells. Arresting cells at defined 

stages of the cell cycle by drug treatment retrieves expected key regulators such as 

CDK2NA, E2 ubiquitin ligases such as UBE2S and highlights potential novel ones. 

Comparing the variability in more than 420 single-cell proteomes to transcriptome data 

revealed a stable core proteome despite perturbation. Our technology can readily be 

applied to ultra-high sensitivity analysis of tissue material, including post-translational 

modifications and to small molecule studies.
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Introduction 

In single-cell analysis, biological variability can directly be attributed to individual cells 

instead of being averaged over a population or a tissue 1–3. While microscopy has 

always been single-cell based, specialized deep sequencing technologies have 

achieved this for systems biological approaches 4–7. At the level of proteins, the 

functional actors of cells, single cells are currently studied by antibody-based 

technologies, which are by necessity directed against previously chosen targets 8–10. 

In contrast, mass spectrometry (MS)-based proteomics is unbiased in the sense that 

it measures all proteins within its range of detection 11,12. Thus it would be highly 

desirable to apply this technology to single cells if the required sensitivity and 

robustness could be achieved. Previous approaches that employed chemical 

multiplexing of peptides have labeled a small number of single cells but combined 

them with a dominant booster channel for MS-analysis 13,14, which can hamper signal 

deconvolution 15,16. Alternatively, proof of principle has been demonstrated for 

unlabeled approaches using sophisticated sample preparation methods in pico-liter 

devices 17,18. However, a single-cell proteomics technology that answers biological 

questions is still outstanding.

Sensitivity evaluation of our current MS setup  

We recently introduced parallel accumulation – serial fragmentation (PASEF), a mass 

spectrometric acquisition scheme in which peptide ions are released from a trapped 

ion mobility (TIMS) device in the vacuum system in concentrated packages 19,20. 

Chemical noise is widely distributed as a result of its heterogeneous nature and the 

ten-fold increased peak capacity due to TIMS (Fig. 1a, b). These precursors can be 

fragmented in a highly sensitive manner, either in data dependent (ddaPASEF) or data 

independent (diaPASEF) mode, resulting in very high ion utilization and data 

completeness 21. To explore sensitivity limits, we measured a dilution series of HeLa 

cell lysate from 25 ng down to the equivalent of a few single cells on a quadrupole 

time-of-flight instrument (TIMS-qTOF). This identified more than 550 proteins from 0.8 

ng HeLa lysate with the dda acquisition mode and a conservative MaxQuant analysis 

(Methods, Fig. 1B) 22–24. Proteins were quantified with the linear signal response 

expected from the dilution factors (Fig. 1D). Furthermore, quantitative reproducibility 

in replicates at the lowest level was still excellent (R = 0.96, Fig. 1F). Given that the 

protein amount of a single HeLa cell is as low as 150 pg 25, and accounting for 

inevitable losses in sample preparation including protein digestion, we estimated that 

we would need to increase sensitivity by at least an order of magnitude to enable true 

single cell proteomics.  
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Figure 1: A, B: The TIMS-qTOF principle separating singly charged background peaks from multiply 

charged peptide precursor ions, making precursor ions visible at extremely low signal levels (0.8 ng 

HeLa digest). C: Quantified proteins from a HeLa digest dilution series from 25 ng peptide material 

down to 0.8 ng, roughly corresponding to the protein amount contained in three HeLa cells 25. D: Linear 

quantitative response curve of the HeLa digest experiment in B. E: Quantitative reproducibility of two 

successive HeLa digest experiments at the lowest dilution (technical LC-MS/MS replicates).  

 

A mass spectrometer with much increased sensitivity 

Three main factors govern MS sensitivity: ionization efficiency, transfer efficiency into 

the vacuum system and ion utilization by the instrument 26. We first constructed an 

instrument with a brighter ion source, introduced different ion optic elements and 

optimized parameters such as detector voltage. Together, this led to a 4.7-fold higher 

ion current (Fig. 2A).  Next, we FACS sorted 0, 1 and up to 6 HeLa cells in triplicate 

into individual 384-wells, processed them separately and analyzed them on this 

modified mass spectrometer. This resulted in 824, 1364 and 1946 identified proteins 

for one, two and six cells, respectively. Note that this analysis benefited from 

transferring peptide identifications on the MS1 level, as expected from extremely low 

sample amounts 27 (Fig. 2B). Quantification accuracy was high when comparing single 

cells, not much reduced from comparing six cells (Fig. 2 C, D). A rank order 

abundance plot revealed that the measured single-cell proteome preferentially 

mapped to the higher abundant part of the six-cell proteome, indicating that proteome 

coverage depended deterministically on overall sensitivity (Fig. 2E). Inspecting the 

lowest abundant peptide that was shared between all samples showed that clearly 

interpretable fragment ion series were still present at high signal to noise levels (Fig. 

2F). 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.423933doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423933


4 
 

 
 
Figure 2: A: Raw signal increase from standard versus modified TIMS-qTOF instrument (left) and at 

the isotope pattern level (quantified features in MaxQuant) (right). B: Proteins quantified from one to six 

single HeLa cells, either with ‘matching between runs’ in MaxQuant (orange) or without matching 

between runs (blue). The outlier in the three cell measurement in grey is likely due to failure of FACS 

sorting as it identified a similar number as blank runs. C: Quantitative reproducibility in a rank order plot 

of a six-cell replicate experiment. D: Same as C for one cell against another.  E: Rank order of protein 

signals in the six-cell experiment (blue) with proteins quantified in a single-cell colored in orange. F: 

Raw spectrum of one precursor isotope pattern of the indicated sequence and shared between the one-

cell and six-cell experiments.   

 

Single-cell protein extraction coupled to low flow chromatography 

As electrospray (ES) is concentration dependent, sensitivity increases with decreasing 

flow-rate, however, very low flow systems are challenging to operate robustly and are 

consequently not widely available 28–31. We recently described a chromatography 

system that decouples sample loading and gradient formation from the LC-MS run and 

operates at a standardized flow-rate of 1 ul/min for high reproducibility 32. This flow is 

fully controlled by a single pump instead of the binary gradients produced by other 

systems. We found that it worked robustly when scaled down to 25 nl/min but we 

standardized on 100 nl/min, which enabled stable operation for the entire project with 

the same column (Suppl. Fig. 1). ES sprayer diameter and gradient length (30 min 

with 35 min between injections, 40-samples per day) were optimized for turnover, 

minimizing carry-over and stability.
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Figure 3: A: Single cells are sorted in a 384-well format into 1 µl lysis buffer by FACS, with outer wells 

serving as qualitative and quantitative controls. Single cells are lysed, proteins are solubilized and 

digested at 72 °C in 20 % acetonitile. Petides are concentrated  into 20 nl volumes (nanopackages) in 

StageTips in a 96-well format. B: These tips are automatically picked and peptide nanopackages are 

eluted in a sub-100 nl volume. After valve switching, the peptide nanopackage is pushed on the 

analytical column and separated by the single high-pressure pump at 100 nl/min. C: Basepeak 

chromatogram of the standardized nano-flow (100 nl/min, orange) and micro-flow (1 µl/min, blue) 

gradients with 1 ng of HeLa digest on the stage-tip. Asterices indicate polyethylene glycole 

contaminants in both runs. D: Nano-flow (100 nl/min) and short gradient diaPASEF method combined. 

Summation of 1, 3 or 5 diaPASEF scan repetitions was used to find the optimum for high-sensitivity 

measurements at 1 ng of HeLa digest. 

 

Single-cell proteomics requires nearly loss-less sample preparation from cells through 

protein digestion and to purified peptides ready for MS-analysis 17,18,33. We found that 

the small volumes of 384-well plates intended for polymerase chain reactions provided 

a versatile and automatable environment for cell lysis and protein digestion in minimal 

volumes 34 (Methods, Fig. 3A). Briefly, single cells were sorted into wells containing 1 

uL lysis buffer, followed by a heating step and further addition of buffer containing 

digestion enzymes to a total of 2 uL, all in an enclosed space. Peptides were 

concentrated in StageTip devices (standard EvoTips) into 20 nL nanopackages, from 

which they were eluted in minimal volumes (Fig. 3B). To benchmark the effect of 

reduced flow-rate and the concentrated elution, we directly compared signal traces of 

the normal 1 uL/min to the 100 nL/min set up. For 1 ng peptide material this resulted 

in a ten-fold increase in signal (Fig. 3C). To achieve high data completeness between 

single-cell measurements, we next replaced dda by diaPASEF, in which fragment level 

matching is further supported by ion mobility data 35. We found that combining 

diaPASEF scan repetitions further improved protein identification numbers (Fig. 3D). 

Together, the very low flow chromatography and this diaPASEF acquisition mode 

resulted in the highly reproducible identification and quantification of more than 3,000 

HeLa proteins from only 1 ng, a drastic increase from the 550 identified in our initial 
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set-up from a similar amount. Data completeness was more than 75% and coefficient 

of variation (CV) less than 11%. This demonstrated that diaPASEF provides its 

advantages also at extremely low sample amounts, prompting us to adopt this 

acquisition mode for the single-cell workflow in the remainder of this work.  

 

Single-cell proteomics dissects drug-arrested cell-cycle states 

The cell cycle is an important and well-studied biological process that has frequently 

been used as a test case in single-cell studies 36,37. To investigate if our proteomics 

workflow could detect biological responses to drug perturbation at the single-cell level, 

we treated HeLa cells with thymidine and nocodazol to produce four cell populations 

enriched in specific cell cycle stages (221 cells; Methods, Fig. 4A). We quantified up 

to 1,209 proteins per single-cell and 1,305 overall, using a HeLa dia spectral library 

with about 29,000 precursors (Methods). This number ranged from a median of 568 in 

G1 to 1,081 in G1/S, 842 in G2, and 946 in G2/M (cutoff minimum for analysis is 400 

proteins, Fig. 4B). To estimate total protein amount, we summed all protein signals 

based on their identifying peptides. G1 and G1/S cells showed least variation whereas 

by protein amounts G2 and G2/M cells varied four-fold (Fig. 4C). Judged by protein 

amount, G2 cells were approximately twice as large as G1 and G1/S cells; thus single-

cell proteomics correctly reflected the proliferation state, while highlighting a 

substantial heterogeneity. The proteomes of the different cell cycle states grouped 

together in a Principal Component Analysis (PCA) plot (Fig. 4D). In addition to these 

drug-perturbed cells, we measured more than 200 untreated ones. The proteomes of 

these asynchronous cells were distributed over the cell cycle states (Fig. 4E).    

Next, we asked whether single-cell proteome measurements can be used to assign 

cellular states, similar to how single-cell RNA-sequencing (scRNA-seq) 

measurements have frequently been applied to cell type and state discovery, 

highlighted by cellular atlas projects 38. In previous proteomics, cell populations had 

been enriched for cell cycle states and sets of regulated proteins had been extracted 
36,37. We here selected cell cycle stage marker proteins as the top 20 most differentially 

expressed in either the G2/M, G1 and S protein set from ref 36,37, as it used similar 

drug treatment on bulk populations and compared how likely our single-cell G2/M 

phase cells can be discriminated based on those (Methods). We used these marker 

proteins to set up a cell cycle stage classifier that we had previously applied to scRNA-

seq cell cycle state prediction, which clearly distinguished cells from G2/M and G1/S 

based on the G2/M phase score (Fig. 4E) 39.  

To directly compare single-cell proteomes between G2/M and G1/S cells, we median 

normalized for protein amounts and stringently filtered our data set for completeness 

(Methods). Among the significantly regulated proteins was a large number of known 

cell cycle regulators, some of which are highlighted (Volcano plot; Figure 4F). 

Quantitative MS data at the fragment ion level was highly significant for these as 

illustrated by the cell cycle regulator CDKN2A and further examples (FDR < 8.3 10-5, 

Fig. 4G; Suppl. Fig. 3A, 4). Our single-cell data set also highlighted proteins not 

previously associated with the cell cycle and the G2/M transition. For instance, the 
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putative pseudogene NACAP1 was clearly identified and regulated (FDR < 10-14, Fig. 

4H, Suppl. Fig. 3B). It might have escaped previous detection because of its small 

size (213 amino acids) as we have noticed previously 40

 

 
 

Fig. 4: A: Arresting single cells by drug perturbation. B: Numbers of protein identifications across 221 

cells in the indicated cell cycle stages as enriched by the drug treatments in A. C: Violin plot of total 

protein signals of the single cells in B. D. PCA of single-cell proteomes of B with non-drug treated single 

cells overlaid in yellow. E.  Receiver Operator Curve (ROC) for the prediction of G2/M cells against 

G1/S based on G2/M marker proteins with the indicated area under the curve (AUC) score. The other 

two curves, based on S and G1 marker proteins, respectively, indicate the inverse predictive power of 

these scores. F. Volcano plot of quantitative protein differences vs. reproducibility in the two drug 
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arrested states. Arrows points point towards colored significantly regulated key proteins of interest with 

at least 0.5-log2 fold-change. G. Quantitative fragment ion level data for CDKN2A and its peptide 

ALLEAGALPNAPNSYGR. H. Quantitative fragment ion level data for the pseudogene NACAP1 and its 

peptide IEDLSQEAQLAAAEK.  

 

Differences between single-cell proteomes and transcriptomes  

Given our set of more than 420 single-cell proteomes, we compared the single-cell 

proteomics measurements with similar single-cell RNA sequencing data (scRNA-seq). 

To minimize bias, we selected assays from two widespread scRNA-seq technologies, 

Drop-seq 41 and the lower throughput SMART-seq2 42, on the same cellular system. 

The Drop-seq assay is based on unique molecular identifiers (UMIs) 43 to control for 

amplification biases in library preparation, whereas the SMART-seq2 assay is not 

UMI-controlled 44. Note that MS-based proteomics inherently does not involve any 

amplification and is not subject to associated artifacts. 

The HeLa cell culture should be relatively homogenous in gene expression states, 

except cell cycle heterogeneity. This biological homogeneity assumption allows us to 

assess self-consistency of the measurement technologies. First we computed the 

distribution over all pairwise correlation coefficients on mutual non-zero observation of 

cells within a technology (Methods). We found that in the protein measurement, cells 

have higher correlation on average than in the droplet-based method and similar 

correlation to the SMARTseq2 method (Fig 5A). The apparent cell-cell correlation in 

SMARTseq2 is an upper bound to the actual transcript based correlation values 

because of lacking amplification bias control.   

When we considered the fraction of non-zero observations across technologies we 

found that on average in 60% of the more than 1,200 observed proteins by MS-based 

proteomics cells had non-zero expression values (Fig 5B). This profile was similar to 

that of SMART-seq2 and both had much less zero observations than the droplet-based 

protocol. Note that this analysis depends on the sequencing depth of the scRNA-seq 

library, whereas there is no such limiting sequencing step in the MS-based proteomics 

experiment. Next, we investigated whether there were detection limiting effects in the 

protein measurements. Such effects are discussed for scRNA-seq measurements as 

“drop-out events” or “zero-inflation”, but are now much reduced in UMI-based 

protocols 45. We did find a bimodality in protein measurements (Suppl. Fig 4), 

suggesting that single-cell protein measurements could benefit from imputation and 

that likelihood-based parameter estimation methods could be based on bi-modal 

likelihood functions 46. 
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Fig. 5: A: Overall Pearson correlations for MS-based proteomics (1,281 proteins), SMART-seq2 

(11,289 genes) and Drop-seq (8,146 genes). B: Violin plot of expression completeness in 

measurements for the three single-cell technologies C. Principal component analysis of single-cell gene 

and protein expression measurements. D: Heat map of cell-cell correlations across individual cells 

measured by proteomics and by both transcriptome technologies. 

 

For bulk measurements, transcript levels generally correlate moderately with the 

corresponding protein levels, however, this correlation strongly depends on the 

biological situation 47. Especially at the single-cell level, this issue is further convoluted 

with technical differences in the measurement technologies. We therefore asked to 

what degree scRNA-seq measurements could be used as proxy for protein 

measurements in our data and found that protein measurements separate strongly 

from RNA in a principal component analysis (Fig 5 C). Single-cell transcript expression 

levels correlate well across scRNA-seq technologies, but not with single-cell protein 

measurements (Fig 5 D). This suggests that single-cell protein and RNA levels are 

very different, re-emphasizing that protein measurements yield complementary 

information to RNA measurements and do not simply re-iterate similar gene 

expression states. This implies distinct RNA and protein abundance regulation 

mechanisms on both modalities, dissection of which would not be possible with RNA 

measurements alone. Further analyses with matched RNA and protein samples could 

help shed light onto this.  
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Single-cells have a stable core proteome  

Prompted by the divergent correlation values between the proteome and transcript 

levels, we next investigated the variability of gene expression as a function of 

abundance. For low expressed proteins, the coefficients of variation (CVs) followed 

the Poisson distribution, whereas this variability measure became much smaller at 

high mean expression levels (Fig. 6A). This suggests that measured variability for the 

proteins below this level is currently dominated by sensitivity limitations of the 

technology. In contrast, the same analysis for UMI-controlled scRNAseq data revealed 

much higher overall transcriptome variability (Supp. Fig. 4). Remarkably, this 

difference is already very apparent with the current sensitivity of MS-based 

proteomics. Comparing single-cell proteome measurements with six-cell proteomes 

(Fig. 2C), suggests that a moderate increase in MS sensitivity would reveal a large 

part of the proteome to be quantitatively stably expressed. Based on these 

observations, we defined a ‘core-proteome’ subset in the MS-based proteomics data 

by selecting the top 150 proteins with the lowest CVs of the proteins shared between 

at least 70% of the more than 420 single-cell measurements, including the drug 

perturbations. As expected, these proteins where in the non-Poisson dominated part 

of the distribution of the proteome (Fig. 6A). Interestingly, this did not appear to be the 

case for the corresponding transcripts, many of which still followed Poisson statistics 

(Fig. 6B). This difference is also apparent when separately visualizing the overall 

variability of the core proteome and the corresponding transcriptome (Fig. 6C). This 

highlighted proteins frequently used for normalization such as GAPDH, ACTB and 

PKM, providing a positive control. The rank plot of the core proteome by MS-signal 

also reveals a diverse set of proteins, including representatives of the translation and 

folding machineries, as well as transporters and solute carriers.   
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Fig. 6: A: Coefficient of variation of protein levels as a function of mean expression levels with the ‘core 

proteome’ colored in orange. B.  CV of transcript expression values as a function of mean expression 

levels with transcripts corresponding to the core proteome in orange. C. Box plot of variability of protein 

signals and scRNA-seq across the cell populations for the core proteome and transcriptome and for the 

remainder of the protein measurements and corresponding transcript measurements. D. Rank order 

abundance plot for the core proteome with protein classes color coded (Green: Top six highest 

expressed core proteome members; Orange: Translation initiation factors; Yellow: Translation 

elongation factors; Light blue: Solute carriers (SLCs); Dark blue: Chaperonin family members).       
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Outlook 

Although mainly demonstrated here for single-cell total proteome measurements, the 

sensitivity gain achieved in our workflow will be advantageous in any situation that is 

sample limited. This includes investigation of post-translational modifications from 

small numbers of cells or from in vivo material, measurements directly from paraffin 

embedded formalin fixed (FFPE) pathology specimens and the analysis of other 

compound classes such as metabolites or drugs. Our workflow is also compatible with 

chemical multiplexing with the advantage that the booster channel causing reporter 

ion distortions could be omitted or reduced. Furthermore, there are many opportunities 

for increasing overall sensitivity, including even brighter ion sources, improved 

chromatography and better data analysis and modeling tools, similar to the rapid 

recent advances in the scRNAseq field. 
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Methods 

 

Sample preparation for bulk dilution experiments. For all benchmark 

experiments purified peptides from bulk HeLa cells were used. HeLa was cultured in 

Dulbecco’s modified Eagle’s medium at 10% fetal bovine serum, 20 mM glutamine 

and 1% penicillin–streptomycin. Cells were collected by centrifugation, washed with 

phosphate-buffered saline (PBS), flash-frozen in liquid nitrogen and stored at −80 °C. 

Cells were resuspended in SDC lysis buffer buffer1  and boiled for 20 min at 95°C, 

1500 rpm to denature and reduce and alkylate cysteins, followed by sonication in a 

Branson, cooled down to room temperature and diluted 1:1 with 100 mM TrisHCl pH 

8.5. Protein concentration was estimated by Nanodrop measurement and 500 µg were 

further processed for overnight digestion by adding LysC and trypsin in a 1:50 ratio 

(µg of enzyme to µg of protein) at 37° C and 1500 rpm. Peptides were acidified by 

adding 1% TFA 99% isopropanol in a 1:1 ratio, vortexed, and subjected to StageTip 2 

clean-up via SDB-RPS. 20 µg of peptides were loaded on two 14-gauge StageTip 

plugs. Peptides were washed two times with 200 µL 1% TFA 99% isopropanol followed 

200 µL 1% TFA 99% Isopropanol in an in-house-made StageTip centrifuge at 2000 

xg, followed by elution with 100 µL of 1% Ammonia, 80% ACN, 19% ddH2O into PCR 

tubes and dried at 60°C in a SpeedVac centrifuge (Eppendorf, Concentrator plus). 

Peptides were resuspended in 0.1% TFA, 2% ACN, 97.9% ddH2O.  

 

Sample preparation for single-cell experiments. HeLa cells were cultured 

as described above. Supernatant was removed, cells were detached with trypsin-

treatment, followed by strong pipetting for cell aggregate dissociation. Cells were 

washed three times with ice-cold Phosphat-buffered Saline (PBS), pelleted by 

centrifugation, and the supernatant was removed. For fluorescent-activated cell-

sorting (FACS), DAPI was added and sorting performed on the DAPI-negative cell 

population. Single cells were sorted into 384-well plates containing 1µl of 20% 

acetonitrile (ACN), 100mM TrisHCl pH 8.5, centrifuged briefly, sealed with aluminum 

foil and frozen at -80°C until further use. When needed, single-cell containing 384-well 

plates were incubated for 30 min at 72°C in a PCR cycler, followed by sonication. 

Protein digestion was performed overnight at 37°C in a PCR cycler after adding 1 µl 

of 20% ACN, 100mM TrisHCl pH 8.5, 1ng trypsin/lysC mix. For the peptide bulk and 

cell count dilution experiments, peptides were resuspended in 4 µl of 2% ACN, 0.1% 

TFA, 97.9% ddH2O and injected directly via NanoLC.  

For all other single cell experiments, samples were dried in a SpeedVac, resuspended 

in 20 µl 0.1% formic acid (FA), 99.9% ddH2O (Buffer A) before transfer into activated 

EvoTips. These were activated following the standard EvoSep protocol 3. 50 µl buffer 

A was added to each EvoTip followed by centrifugation at 200 xg for 1 min. The sample 

was transferred into the EvoTip, followed by centrifugation at 600xg for 1min, and two 

centrifugation steps after adding 50 µl buffer A. Last, 150µl buffer A was added to each 

EvoTip and spun for 30 sec at 300 xg.  
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Cell cycle experiments. The drug-perturbed cell-cycle arrest experiment was 

designed to trap cells in four cell-cycle stages – G1, the G1/S-transition, G2 and the 

G2/M-transition. HeLa cells were grown to approximately 30 % confluence as 

described above, washed and treated for 24 h with 5 mM thymidine, released for 4.5 

h and treated again with 5 mM thymidine, or 0.1µg/ml nocodazol for 13 h. Cells for the 

G1/S phase (thymidine block) or G2/M phase (nocodazol block) were washed in PBS, 

trypsinated, subjected to strong pipetting to dissociate cell aggregates and ice-cold 

PBS washes before DAPI-negative single-cell FACS sorting. A second batch of G1/S 

phase and G2/M phase blocked cells was washed and cultured for 7 h or 2.5 h to yield 

early G2 and G1-phase HeLa cells. These were washed with PBS, trypsinated and 

subjected to DAPI-negative single-cell FACS sorting into 384-well plates pre-loaded 

with 1 µl 20% acetonitrile, 100 mM TrisHCl pH 8.5 lysis buffer.  

   

High-pH reversed-phase fractionation. To generate a deep library of HeLa 

precursors for all data-dependent benchmark experiments, peptides were fractionated 

at pH 10 with the spider-fractionator4. 50 μg of purified peptides were separated on a 

30 cm C18 column in 96 min and concatenated into 24 fractions with 2 min exit valve 

switches. Peptide fractions were dried in a SpeedVac and reconstituted in 2% ACN, 

0.1% TFA, 97.9% ddH2O for LC-MS analysis.  

 

Liquid-chromatography. For the initial benchmark experiments with HeLa bulk 

dilution and the cell count dilution, liquid chromatography analysis was performed with 

an EASY nanoLC 1200 (Thermo Fisher Scientific). Peptides were loaded on a 50 cm 

in-house packed HPLC-column (75µm inner diameter packed with 1.9µm ReproSil-

Pur C18-AQ silica beads, Dr. Maisch GmbH, Germany). Sample analytes were 

separated using a linear 60 min gradient from 5-30% B in 47.5 min followed by an 

increase to 60% for 2.5 min, by a 5 min wash at 95% buffer B at 300nl/min and re-

equilibration for 5 min at 5% buffer B (Buffer A: 0.1% Formic Acid, 99.9% ddH2O; 

Buffer B: 0.1% Formic Acid, 80% CAN, 19.9% ddH2O). The column temperature was 

kept at 60°C by an in-house manufactured oven.  

For all other proteome analyses, we used an Evosep One liquid chromatography 

system5 and analyzed the single-cell proteomes with a novel 35 min stepped pre-

formed gradient eluting the peptides at 100 nl/min flow-rate. We used a 15 cm × 75 

μm ID column with 1.9 μm C18 beads (EvoSep) and a 10 µm ID electrospray emitter 

(Bruker Daltonik). Mobile phases A and B were 0.1 vol% formic acid in water and 0.1 

vol% formic acid in ACN, respectively. 

Both LC systems were coupled online to a modified trapped ion mobility spectrometry 

quadrupole time-of-flight mass spectrometer (timsTOF Pro, Bruker Daltonik GmbH, 

Germany) via a nano-electrospray ion source (Captive spray, Bruker Daltonik GmbH).  

 

Construction of a novel mass spectrometer with higher sensitivity. 

We modified our ion source to draw more ions into the vacuum system of the 

instrument by modifying the glass capillary that conducts gas and ions between the 
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ionization region at atmospheric pressure and the first pumping region of the mass 

spectrometer. Additional gas is eliminated via an extra pumping stage. Novel prototype 

ion optics, a high pressure ion funnel and a radio frequency (RF) multipole confine the 

ions and transport them to the next vacuum region where the analysis by trapped ion 

mobility mass spectrometry (TIMS) occurs. The glass capillary is oriented orthogonal 

to the high pressure funnel so that neutral contaminants and droplets are first directed 

away from the funnel by the gas flow. Furthermore, the high pressure funnel and RF 

multipole are oriented orthogonal to the TIMS, maintaining the gas dynamics of our 

original design. Remaining neutral contaminants are guided away from the TIMS 

entrance. To accommodate the increased ion current, the TIMS analyzer was updated 

to a new stacked ring (SRIG) design. We use a higher order RF field in the ion 

accumulation region to create a larger effective ion storage volume than the low order 

fields of previous designs. A low order quadrupolar field is maintained in the analyzer 

region to compress the ions towards the analyzer axis during elution to maintain high 

mobility resolution. The transition between the high order and low order parts of the 

device was optimized compared to prior designs to further improve peak shape and 

ion mobility resolution. This results in about a factor of three gain in ion capacity and 

therefore about a factor of three in the instrument’s dynamic range.  

 

Mass spectrometry. Mass spectrometric analysis was performed either in a data-

dependent (dda) or data-independent (dia) PASEF mode. For ddaPASEF, 1 MS1 

survey TIMS-MS and 10 PASEF MS/MS scans were acquired per acquisition cycle. 

Ion accumulation and ramp time in the dual TIMS analyzer was set to 50 ms each and 

we analyzed the ion mobility range from 1/K0 = 1.6 Vs cm-2 to 0.6 Vs cm-2. Precursor 

ions for MS/MS analysis were isolated with a 2 Th window for m/z < 700 and 3 Th for 

m/z >700 in a total m/z range of 100-1.700 by synchronizing quadrupole switching 

events with the precursor elution profile from the TIMS device. The collision energy 

was lowered linearly as a function of increasing mobility starting from 59 eV at 1/K0 = 

1.6 VS cm-2 to 20 eV at 1/K0 = 0.6 Vs cm-2. Singly charged precursor ions were 

excluded with a polygon filter (otof control, Bruker Daltonik GmbH). Precursors for 

MS/MS were picked at an intensity threshold of 1.500 arbitrary units (a.u.) and 

resequenced until reaching a ‘target value’ of 20.000 a.u taking into account a dynamic 

exclusion of 40 s elution. For DIA analysis, we made use of the correlation of Ion 

Mobility (IM) with m/z and synchronized the elution of precursors from each IM scan 

with the quadrupole isolation window. We used the Py3-method for library acquisition 

of the single-cell experiments and the short gradient diaPASEF method as described 

in Meier et al. 6, but performed up to 5 consecutive diaPASEF cycles before the next 

MS1-scan (see main text). The collision energy was ramped linearly as a function of 

the IM from 59 eV at 1/K0 = 1.6 Vs cm−2 to 20 eV at 1/K0 = 0.6 Vs cm−2. 

 

Raw data analysis. ddaPASEF data for tryptic HeLa digest dilution series and the 

cell count experiment were analyzed in the MaxQuant environment (version 1.6.7) and 

searched against the human Uniprot databases (UP000005640_9606.fa, 
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UP000005640_9606_additional.fa), which extracts features from four-dimensional 

isotope patterns and associated MS/MS spectra 7,8. False-discovery rates were 

controlled at 1% both on peptide spectral match (PSM) and protein levels. Peptides 

with a minimum length of seven amino acids were considered for the search including 

N-terminal acetylation and methionine oxidation as variable modifications and cysteine 

carbamidomethylation as fixed modification, while limiting the maximum peptide mass 

to 4,600 Da. In case of single-cell count experiment no cysteine carbamidomethylation 

was searched since no alkylation was performed. Enzyme specificity was set to trypsin 

cleaving c-terminal to arginine and lysine. A maximum of two missed cleavages were 

allowed. Maximum precursor and fragment ion mass tolerance were searched as 

default for TIMS-DDA data. Peptide identifications by MS/MS were transferred by 

matching four-dimensional isotope patterns between the runs (MBR) with a 0.7-min 

retention-time match window and a 0.05 1/K0 ion mobility window in case of the single 

cell-count dilution experiment into a deep ddaPASEF library consisting of 24 

fractionations of tryptic HeLa digest. These data were also searched without matching 

between runs to access the MBR-mediated identification increase. Either intensity-

based absolute quantification (IBAQ) or label-free quantification was performed with 

the MaxLFQ algorithm and a minimum ratio count of one 9. 

For all other single-cell experiments, we used a small precursor library consisting of 

29,087 precursors mapped to 23,198 peptides and 4,251 protein groups, which was 

acquired with the Py3 diaPASEF method6 and generated with the Spectronaut 

software (version 14.9.201124.47784; Biognosys AG, Schlieren, Switzerland). A 

minimum of three fragments per peptide, and a maximum of six fragments were 

included. All single-cell measurements were searched against the human UniProt 

reference proteome of canonical and isoform sequences. Searches used protein N-

terminal acetylation, oxidation of the N-terminus and oxidation of cysteins as variable 

modifications. We generated one decoy precursor per precursor in the spectral library 

and used a conservative normal distribution estimator approach for p-value estimation. 

Protein intensities were normalized using the “Local Normalization” (Q-value 

complete) algorithm  in Spectronaut based on a local regression model 10. A protein 

and precursor FDR of 1% was used. Default settings were used for other parameters. 

In brief, a trypsin/P proteolytic cleavage rule was used, permitting a maximum of two 

missed cleavages and a peptide length of 7–52 amino acids.  

 

Visualization and FDR estimates of fragment ion intensities. 

Quantitative fragment ion profiles were generated from the Spectronaut output table 

via the “F.PeakArea” column. Only fragment ions used for quantification in 

Spectronaut were included (EG.UsedForProteinGroupQuantity = True, 

EG.UsedForPeptideQuantity = True, F.ExcludedFromQuantification = False). To 

cancel out cell-size dependent abundance changes, one normalisation factor was 

estimated per cell, using fold-change based normalization of the whole dataset, as 

described in the MS-EmpiRe method, which we also used for FDR control 11. The 

intensities were log2 transformed and subsequently visualized. 
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Proteomics downstream data analysis. Proteomics data analysis was 

performed in the Perseus environment (version 1.6.7) and GraphpadPrism (version 

8.2.1)12. MaxQuant output tables were filtered for ”Reverse“, ”Only identified by site 

modification“, and ”Potential contaminants“ before further processing. For single-cell 

analysis on the Spectronaut output, data were filtered first for at least 400 protein 

observations per cell and at least 15% quantification events across rows and log2-

tranformed. Principal component analysis (PCA) was performed on column-wise 

median-normalized proteins with coefficient of variation of less or equal than 200%. 

Differential expression analysis by two-sided unpaired t-test was performed on two 

groups filtered for at least 50% row-wise quantification events within one group 

followed by column-wise median normalization. False-discovery rate control due to 

multiple hypothesis testing was performed by a permutation-based model and SAM-

statistic with an S0-parameter of 0.3.  For cell-size estimation based on raw MS-signal, 

intensity outputs within cell cycle resolved single-cell proteomics results were summed 

up and visualized as boxplots. The core proteome was calculated by filtering the whole 

single-cell proteomics data set for at least 70% quantification events for each protein 

followed by selection of the top 150 proteins with the smallest coefficient of variation 

across the dataset. 

 

Single-cell protein and RNA comparison. The SMART-Seq2 13,14 data set 

measured 720 HeLa cells in 3 different batches, with a total of 24,990 expressed 

genes. The Drop-seq 15,16 data set  contained 3 batches with a total of 5665 cells and 

41,161 expressed genes. We performed the single cell analysis with scanpy v1.6.0 17. 

We used standardized filtering across all datasets, removed cells with less than 400 

genes expressed and removed genes detected in less than 10% of the remaining cells, 

resulting in 11,289 transcripts in 720 cells in the SMART-Seq2 dataset and 8146 

transcripts and 5625 cells measured with Drop-seq technology. All abundance entries 

were linearly scaled to sum to 1E6 per cell and then log(x+1) transformed. Correlation 

values between the expressions of two cells were computed as the Pearson 

correlation on all entries that were non-zero in both vectors based on the preprocessed 

data. 

 

Cell Cycle State Prediction. Cell cycle predictions were performed using the 

scanpy method score_genes18,19 based on three sets of proteins that are specifically 

expressed in the G1 (EIF4A2, GDA, HIST1H1E, KRT18, HNRNPA1, DBNL), S 

(NOLC1, ATP2A2, CANX, BCAP31, CPT1A, CYC1, CKB) or G2/M (TOP2A, HMGB1, 

CCNB1, EIF5B, TMSB10) phase, respectively. The cell phase specific protein sets 

were selected based on the z-scored fold-change ratios provided in Geiger et al.20. 

The top20 highest differentially expressed genes were selected, but only the 

aforementioned ones were also identified in our data. This scoring method yields the 

average expression on the provided set of genes minus the average expression on a 
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reference set of genes, for each cell. The reference set is chosen to mirror the average 

expression of the target gene set.  
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Supplementary Figures 
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Supplementary Figure 1: 100 nl/min true nanoflow gradient. A: Column and emitter 

setup. B: Pressure and flow profile of the gradient of more than 1000 consecutive runs. 

C: Flow profiles of the 100/50/25 nl/min prototype test gradients. 
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Supplementary Figure 2: A: Comparison of the theoretical and experimental MS2 

spectra of a CDKN2A peptide. B: Comparison of the theoretical MS2 spectrum with 

the experimental one for a NACAP1 peptide. 
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Supplementary Figure 3: A: Fragment ion intensities for a peptide of HDAC2. B: 

Fragment ion intensities for a peptide of UBE2S. C: Fragment ion intensities for a 

peptide of CCNB1.D: Fragment ion intensities for a peptide of HMGA1. 
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Supplementary Figure 4: Correlation of two independently measured single-cell 

proteomes to each other.  

 

 

 
 

Supplementary Figure 5: Distribution of MS-based single-cell proteomics (blue) and 

transcriptomics data of two technologies (Drop-seq (orange), SMART-seq2 (green)).   
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