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Abstract 21 

In addition to specific regulatory circuits, gene expression is also regulated by global physiological 22 

cues such as the cell growth rate and metabolic parameters. Here we examine these global control 23 

mechanisms by analyzing an orthogonal multi-omics dataset consisting of absolute-quantitative 24 

abundances of the transcriptome, proteome, and intracellular amino acids in 22 steady-state yeast 25 

cultures. Our model indicates that transcript and protein abundance are coordinately controlled by 26 

the cell growth rate via RNA polymerase II and ribosome abundance, but are independently 27 

controlled by metabolic parameters relating to amino acid and nucleotide availability. Genes in 28 

central carbon metabolism, however, are regulated independently of these global physiological cues. 29 

Our findings can be used to augment gene expression profiling analyses in the distantly related yeast 30 

Schizosaccharomyces pombe and a human cancer cell model. Our results provide a framework to 31 

analyze gene expression profiles to gain novel biological insights, a key goal of systems biology. 32 

  33 
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Introduction 34 

In the presence of genetic or environmental perturbations, differential expression of genes, 35 

orchestrated by dedicated regulatory circuits, shapes the physiological responses of the cell. 36 

Common physiological responses to perturbations, e.g. in response to stress or during oncogenic 37 

transformation, often include changes in the cell growth rate and metabolism. In turn, both growth 38 

rate and metabolic parameters of the cell can exert global influences on gene expression, as 39 

demonstrated by landmark studies in E. coli (1-4) and in yeast (5-8). Thus, the gene expression 40 

program following a perturbation reflects a joint effect of the specific regulatory circuits that are 41 

induced (or repressed) by the perturbation, as well as the global influence on gene expression by an 42 

altered physiological state (Fig 1A). Further complexities arise as gene expression and cell physiology 43 

operate in mutual feedback (4, 9), which can lead to the emergence of complex behaviours (10). 44 

Currently, a quantitative framework to understand the global effects of cell physiology on gene 45 

expression is lacking. Development of such a framework would allow perturbation-specific gene 46 

regulation mechanisms to be uncoupled from global gene expression control, and allow synthetic 47 

gene circuits with complex behaviours to be designed (9, 10).  48 

Seminal studies in the field (11-13) have previously examined the interaction between growth rate, 49 

metabolic parameters, and gene expression, using microarrays and relative-quantitative 50 

metabolomics, in the eukaryal model organism Saccharomyces cerevisiae. Herein we revisit these 51 

interactions using RNAseq-based absolute-quantitative transcriptomics, showing substantial changes 52 

in absolute quantities of mRNA between different growth conditions which cannot be captured with 53 

relative-quantitative data. We further provide absolute-quantitative proteomics and intracellular 54 

amino acid abundance, in a total of 22 steady-state yeast cultures in biological triplicates, as a high-55 

quality resource to the community. The 22 steady-state conditions were designed to orthogonally 56 

probe the effects of growth rate and metabolic parameters related to amino acids on gene 57 

expression (Fig 1B). We found that ~90% of genes are globally influenced by the cell growth rate 58 

and/or metabolic parameters. The growth rate-induced gene expression changes were coordinated 59 

at the transcript and protein levels, and were associated with the availabilities of the transcription 60 

and translation machineries. In contrast, gene expression control by metabolic parameters were not 61 

associated with the availability of transcription and translation machineries, but were likely 62 

regulated by the availabilities of amino acids and nucleotides. We found that genes related to 63 

central carbon metabolism (CCM) were distinctly regulated, reflecting unique control mechanisms to 64 

ensure robust expression of this metabolic pathway. Finally, by re-analyzing gene expression profiles 65 

of a distantly related yeast, Schizosaccharomyces pombe, and of the human Burkitt’s lymphoma cell 66 

line P493-6, we demonstrated that our findings can be broadly applied to uncouple global gene 67 
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expression control from regulation by specific transcriptional and translational circuits, allowing 68 

novel biological insights in gene regulation to be uncovered. 69 

Results 70 

Data description 71 

We performed a series of 14 steady-state chemostat cultures of S. cerevisiae (Fig 1B and Table S1) 72 

which orthogonally modulated either the growth rate (GR experiments) under nitrogen limitation, or 73 

the amino acid metabolic parameters (AA experiments) under either nitrogen or carbon limitation. 74 

The nitrogen sources in the AA experiments were chosen to represent those that are preferred (NH4 75 

and Glu) and non-preferred (Phe and Ile), as previously defined (14). Depending on the growth 76 

condition, the total protein content in the dry cell weight ranged between 20.6% and 59.4%, and the 77 

total RNA content ranged between 1.8% and 8.9%, (Table S1), in agreement with previous 78 

observations of total protein and RNA content with changing growth rate and nitrogen source (8, 15, 79 

16). We then profiled the absolute-quantitative transcriptomic and proteomic abundances 80 

(mmol/gDW) of these chemostat cultures in biological triplicates, generating a multi-omics dataset 81 

containing 3,127 transcript-protein pairs across 14 conditions (Table S2). In both the GR experiments 82 

and the AA experiments, we found >2,000 genes (68-70%) to be differentially expressed at both the 83 

transcript and protein levels with FDR < 0.01 (Fig 1C), indicating that gene expression is subject to 84 

extensive global control by growth rate and metabolic parameters. A total of 1,493 genes (48%) in 85 

the GR experiments, and 1,959 genes (63%) in the AA experiments, were differentially expressed not 86 

only significantly, but by more than two-fold. In Supplemental Fig 1 we present the total protein-87 

RNA correlation of these chemostat cultures, with a Pearson r of 0.51 and a Spearman ρ of 0.27, and 88 

sample-wise proteome-transcriptome correlations, with a median Pearson r of 0.40 and Spearman ρ 89 

of 0.63; agreeing well with previous studies (8, 17-19). In Supplemental Fig 2, we present the 90 

measured absolute quantities of subunits for several complexes (8, 20), showing that our measured 91 

protein abundances agree with the known subunit stoichiometry within 1-2 orders of magnitude, 92 

typical of iBAQ-based proteomics quantitation (8, 18, 21). This variability in the proteomics data 93 

reflects a mixed effect of inaccuracies in the proteomics methodology, and proteins that are partially 94 

synthesized, partially degraded, and not being part of its dessignated protein complex. For f1f0 ATP 95 

synthase, ATP15 and TIM11 were 4 orders of magnitude lower than the abundance of other subunits 96 

(Supplemental Fig 2), likely reflecting the difficulty in extracting and quantifying membrane-97 

embedded proteins.  98 

We further mined absolute-quantitative transcriptomics and proteomics data from Xia et al (22, 23) 99 

(XIA experiments), wherein S. cerevisiae were grown at 9 different dilution rates with glucose being 100 
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the limiting nutrient (Fig 1B-C). Data from the XIA experiments, containing paired transcript-protein 101 

abundance of 2,235 genes (Table S3), allowed us to validate our findings in the GR experiments in a 102 

different nutrient limitation setting.  103 

 104 

Fig 1. Global regulation of gene expression by the physiological state of the cell. 105 
A. Gene expression profiles of a cell depends on both specific gene expression programs 106 

induced by specific perturbations, as well as the global influence on gene expression by the 107 
physiological state of the cell. 108 

B. Experimental design to orthogonally probe the effects of growth rate and amino acid 109 
metabolism on gene expression. Cells were grown in chemostats at controlled growth rates 110 
and media composition. GR, growth rate; AA, amino acid; XIA, Xia et al (22,23). In AA 111 
experiments, carbon-limited conditions (blue rows), the “Gln” condition and the “Gln*” 112 
condition differ in the concentration of Gln and glucose in the chemostat feed media; see 113 
Table S1 for full details. 114 

C. Number of differentially expressed (DE; FDR < 0.01) genes at mRNA and protein (prot) levels 115 
in the GR experiments, AA experiments, and XIA experiments, showing that a large number 116 
of genes are regulated by growth rate and metabolic parameter. 117 

 118 

Global regulation of transcription by growth rate and metabolic parameters 119 

We first considered the global control of mRNA abundance by growth rate and metabolic 120 

parameters. We used 25 clustering indices (24) to determine the best clustering scheme for 121 

AA experimentsGR experiments

Dilution 
rate (h-1)

Nitrogen 
source

0.10 Phe

0.10 Ile

0.10 NH4

0.10 Gln

0.10 Phe

0.10 Ile

0.10 NH4

0.10 Gln*

0.10 Gln

A

B

Carbon-limited

Nitrogen-limited

Dilution 
rate (h-1)

Nitrogen 
Source

0.05 NH4

0.10 NH4

0.13 NH4

0.18 NH4

0.30 NH4

0.35 NH4

perturbation

expression
gene 

state
physiological 

C

XIA experiments

Dilution 
rate (h-1)

Nitrogen 
source

0.025 NH4

0.05 NH4

0.10 NH4

0.15 NH4

0.22 NH4

0.26 NH4

0.28 NH4

0.35 NH4

0.40 NH4

1,418

DE mRNA 
(2,039)

DE prot
(1,555)

2,181

DE mRNA 
(2,976)

DE prot
(2,270)

2,123

DE mRNA 
(3,126)

DE prot
(2,123)

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.423946doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423946
http://creativecommons.org/licenses/by/4.0/


5 
 

transcript abundance in the GR experiments, and found that they fell into an optimal number of 3 122 

clusters (Fig 2A). The list of genes in each of the clusters can be found in Table S2 and filtering by the 123 

column “GR.cluster”. Expression of transcripts in GR.cluster.1 and GR.cluster.3, together including 124 

2,895 genes (92%), exhibited strong associations with growth rate (Fig 2B). In contrast, expression of 125 

232 transcripts (7%) in GR.cluster.2 did not increase with increasing growth rate (Fig 2C). These 126 

growth rate-independent genes in GR.cluster.2 were enriched in GO-slim terms (25) related to CCM, 127 

including “carbohydrate metabolic process” and “generation of precursor metabolites and energy” 128 

(Fig 2D). We further observed that genes in GR.cluster.1 and GR.cluster.3 approximately followed 129 

the protein abundance of RNA polymerase II (26) (Fig 2E), suggesting that transcript abundance of 130 

these 92% of genes largely reflected the availability of RNA polymerase II, consistent with previous 131 

studies (4, 27, 28). In contrast, the 232 genes in GR.cluster.2 exhibited slightly decreased abundance 132 

with increasing RNA polymerase II expression (Fig 2E), indicating that these genes were regulated by 133 

a mechanism independent from growth rate-associated changes in RNA polymerase II.  134 

 135 

Fig 2. Global control of transcript abundance by growth rate. 136 
A. Using 25 clustering indices, we found that most indices suggest an optimal number of 3 137 

clusters for transcript abundance in the GR experiments.  138 

A B
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C
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B. Abundance of transcripts in GR.cluster.1 (green) and GR.cluster.3 (purple). Center line, 139 
median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. 140 

C. Abundance of transcripts in GR.cluster.2. Center line, median; box limits, upper and lower 141 
quartiles; whiskers, 1.5x interquartile range. 142 

D. GO-slim enrichment of genes in GR.cluster.2 showing enrichment in GO-slim terms related 143 
to CCM, among others. 144 

E. Expression of RNA polymerase II protein abundance and mRNA abundance of the three 145 
clusters in the GR experiments. Colors are as panels B-C. Median mRNA expression values in 146 
each cluster and median protein expression of RNA polymerase II are shown. Grey dashed 147 
line represents y=x. 148 

 149 

To confirm these findings, we performed similar analyses using data from the XIA experiments (22, 150 

23), where the optimal number of clusters was calculated to be 2 clusters (Supplemental Fig 3A). The 151 

list of genes in each of the clusters in the XIA experiment can be found in Table S3 and filtering by 152 

the column “XIA.cluster”. XIA.cluster.2 contained 1,964 genes (88%) which exhibited growth rate-153 

dependent transcript abundance (Supplemental Fig 3B), while XIA.cluster.1 contained 271 genes 154 

(12%) showing growth rate-independence. Genes in XIA.cluster.1 were enriched in CCM GO-slim 155 

terms (Supplemental Fig 3C-D), including “carbohydrate metabolic process” and “generation of 156 

precursor metabolites and energy”, validating our results in the GR experiments. Of note, GO-slim 157 

terms related to CCM (“carbohydrate metabolic process”; “cellular respiration”; and “generation of 158 

precursor metabolites and energy”) were enriched among the most abundant 10% genes in both 159 

datasets (Supplemental Fig 3E-F), demonstrating that the transcript expression of vast majority of 160 

genes were controlled by the cell growth rate, but a distinct mechanism regulated a small number of 161 

CCM-related transcripts which are highly abundant.  162 

In the AA experiments, using the same 25 indices (24) we calculated that transcript expression fell 163 

into an optimal number of 2 clusters (Fig 3A). The list of genes in each of the clusters in the AA 164 

experiments can be found in Table S2 and filtering by the column “AA.cluster”. In AA.cluster.1, a 165 

total of 3,011 genes (96%) exhibited increasing expression levels when cells were grown on 166 

preferred nitrogen sources (NH4 and Gln) compared to non-preferred nitrogen sources (Phe and Ile), 167 

under carbon-limiting conditions (Fig 3B). In contrast, 116 transcripts (4%) in AA.cluster.2 exhibited 168 

consistent expression levels regardless of the amino acid metabolic parameters (Fig 3C). These genes 169 

were enriched in processes related CCM, as well as amino acid metabolism (Fig 3D). Taken together, 170 

these results indicate that regulation of CCM-related genes was distinct from global gene expression 171 

control by both growth rate and metabolic parameters of the cell.  172 
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 173 

Fig 3. Global control of transcript abundance by amino acid metabolic parameters. 174 
A. Using 25 clustering indices, we found that most indices suggest an optimal number of 2 175 

clusters for transcript abundance in the AA experiments.  176 
B. Abundance of transcripts in AA.cluster.1. Center line, median; box limits, upper and lower 177 

quartiles; whiskers, 1.5x interquartile range. In AA experiments, carbon-limited conditions 178 
(blue rows), the “Gln” condition and the “Gln*” condition differ in the concentration of Gln 179 
and glucose in the chemostat feed media; see Table S1 for full details. 180 

C. Abundance of transcripts in AA.cluster.2. Center line, median; box limits, upper and lower 181 
quartiles; whiskers, 1.5x interquartile range. In AA experiments, carbon-limited conditions 182 
(blue rows), the “Gln” condition and the “Gln*” condition differ in the concentration of Gln 183 
and glucose in the chemostat feed media; see Table S1 for full details. 184 

D. GO-slim enrichment of genes in AA.cluster.2 showing enrichment in GO-slim terms related 185 
to CCM, among others. 186 

E. Expression of RNA polymerase II protein abundance and mRNA abundance of the two 187 
clusters in the AA experiments. Colors are as panels B-C. Median mRNA expression values in 188 
each cluster and median protein expression of RNA polymerase II are shown. Grey dashed 189 
line represents y=x. 190 

 191 

Examining RNA polymerase II levels in the AA experiments, we found that changes in transcript 192 

abundance did not reflect RNA polymerase II availability in response to metabolic parameters (Fig 193 

3E). As the increased transcripts in the majority of genes when cells were grown on preferred 194 

A B

D

C

E

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.423946doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423946
http://creativecommons.org/licenses/by/4.0/


8 
 

nitrogen sources (Fig 3B) must be supported by increased biosynthesis of nucleotides, we therefore 195 

examined the intracellular concentrations of Ser and Gly, which are substrates for purine synthesis 196 

(Fig 4A), as well as Gln and Asp, which are upstream of both purine (Fig 4A) and pyrimidine synthesis 197 

(Fig 4B). We found that transcript abundance in the AA experiments tracked closely with intracellular 198 

Ser and Gly concentrations (Fig 4C), but not with Gln or Asp (Fig 4D). Moreover, in absolute-199 

quantitative terms (Table S4), Gln and Asp were present at much higher intracellular concentrations 200 

(mean of 166.7 and 12.4 µmol/gDW, respectively, across all AA experiments) compared to Gly and 201 

Ser (mean of 1.5 and 2.8 µmol/gDW, respectively, across all AA experiments). Together, this suggests 202 

that intracellular Gly and Ser were likely limiting for nucleotide synthesis, particularly for purines, 203 

which thereby regulated global transcript abundance when growth conditions change.  204 

 205 

Fig 4. Global control of transcript abundance by amino acid metabolic parameters. 206 
A. Simplified pathway of purine synthesis. 207 
B. Simplified pathway of pyrimidine synthesis. 208 
C. Intracellular concentrations of Gly (G) and Ser (S), and RNA abundance of genes in 209 

AA.cluster.1, showing that transcript abundance for most genes in the AA experiments track 210 
closely with intracellular Ser and Gly concentrations. Median mRNA expression values of 211 
AA.cluster.1 are shown. 212 

D. Intracellular concentrations of Gln (Q) and Asp (D), and RNA abundance of genes in 213 
AA.cluster.1, showing that transcript abundance for most genes in the AA experiments do 214 
not track with intracellular Gln and Asp concentrations. Median mRNA expression values of 215 
AA.cluster.1 are shown. 216 

 217 
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Global regulation of translation by growth rate and metabolic parameters 218 

We next examined the correlation between mRNA and protein abundance of each gene, either in 219 

the GR experiments alone; in the AA experiments alone; or with data from the two experiments 220 

combined. As the underlying distribution of the mRNA and protein abundances in these analyses 221 

were non-normal (pShapiro-Wilk < 0.01) for a large portion of genes, we used Spearman correlations in 222 

the following analyses. We note that Spearman correlation coefficients (ρ) were closely related to 223 

Pearson correlation coefficients (r) in nearly all of our analyses (Supplemental Fig 4), and as such our 224 

observations can be easily compared to previous studies which have used Pearson correlations. In 225 

Table S2 we report both Spearman ρ and Pearson r values. 226 

 227 

Fig 5. Global control of protein synthesis by growth rate and amino acid metabolism. 228 
A. Spearman correlation of absolute mRNA and protein abundances for each gene is calculated 229 

in the GR experiments, and the distribution is shown demonstrating overall high correlation. 230 
B. Protein translation rate (ksP) in the GR experiments increases with growth rate by about 4-231 

fold overall. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5x 232 
interquartile range. 233 

C. Relative ribosomal protein abundance in the GR experiments was calculated as the sum of 234 
all detected ribosomal proteins and normalized to the total protein content, showing a linear 235 
increase with increasing growth rate. 236 

D. Spearman correlation of absolute mRNA and protein abundances for each gene is calculated 237 
in the AA experiments, and the distribution is shown demonstrating overall poor correlation.  238 
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E. Protein translation rate (ksP) in the AA experiments decreases when cells were grown on 239 
preferred nitrogen sources (NH4 and Gln) compared to non-preferred nitrogen sources (Phe 240 
and Ile). In N-limited cultures (orange) there is an overall 2-fold decrease, and in C-limited 241 
cultures (blue) there is an overall 4-fold decrease. Center line, median; box limits, upper and 242 
lower quartiles; whiskers, 1.5x interquartile range. In C-limited conditions (blue), the “Gln” 243 
condition and the “Gln*” condition differ in the concentration of Gln and glucose in the 244 
chemostat feed media; see Table S1 for full details. 245 

F. Relative ribosomal protein abundance (sum of all detected ribosomal proteins normalized to 246 
total protein) is constant in the AA experiments, where the growth rate is controlled to a 247 
constant as seen in Fig 1B. In C-limited conditions (blue), the “Gln” condition and the “Gln*” 248 
condition differ in the concentration of Gln and glucose in the chemostat feed media; see 249 
Table S1 for full details. 250 

 251 

Several previous studies have suggested that, comparing the mRNA and protein abundances of the 252 

same genes across different experimental conditions, generally there is a high correlation between 253 

protein and mRNA abundance (17, 29-31). Here, in the GR experiments, we observed high protein-254 

mRNA correlations consistent with these previous studies, with a median ρ of 0.76 (Fig 5A) and 255 

2,379 genes (78%) having ρ > 0.5. Calculating the protein translation rate for each gene (ksP, in the 256 

unit of protein/mRNA/h; see Methods section for full details) (17, 18), we found that overall ksP is 257 

increased with increasing growth rate (Fig 5B). Concurrently we observed an increase in the % 258 

(mol/mol) of ribosomal proteins in the total proteome (Fig 5C), consistent with previous reports (29, 259 

32) and suggesting that the increase in ksP in the GR experiments were linked to the availability of 260 

ribosomes. Taken together, our data indicate that increasing growth rate modulated global gene 261 

expression via coordinated increases in both transcription and translation, by increasing the 262 

availability of RNA polymerase II and ribosomes.  263 

In contrast to the GR experiments, the gene-specific protein-mRNA correlations in the AA 264 

experiments were surprisingly poor, with a median ρ of 0.07 (Fig 5D) and most genes with -0.5 < ρ < 265 

0.5 (2,763 genes, 88%). To check whether the poor correlations stem from lower range of 266 

differential gene expression, we split the total of 3,127 genes into quartiles by mRNA differential 267 

expression (fold-change of largest to smallest measured value) and found that, even in the 4th 268 

quartile where the range of differential expression was >5.3-fold, the protein-mRNA correlations 269 

remained very low, with a median ρ of 0.24 (Supplemental Fig 5A). Similar results were found when 270 

genes were split into quartiles by protein differential expression (Supplemental Fig 5B), indicating 271 

that the poor protein-mRNA correlations observed for most genes in the AA experiment cannot be 272 

explained by the range of differential gene expression alone. Calculating the protein translation rate 273 

ksP, we found that gene-specific ksP in the AA experiments were globally reduced when cells were 274 

grown on preferred nitrogen sources, in both nitrogen-limited cultures and in carbon-limited 275 

cultures (Fig 5E). These global changes in ksP occurred without any changes in the % of ribosomal 276 
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proteins in the total proteome (Fig 5F). As the growth rate of the AA experiments were controlled to 277 

a constant 0.1 h-1 (Fig 1B), this indicates that the % of ribosomal proteins in the total proteome was a 278 

direct reflection of the cell growth rate, while changing metabolic parameters modulated protein 279 

translation rates without modifying the abundance of ribosomes.  280 

 281 

Fig 6. Global control of protein synthesis. 282 
A. Spearman correlation of absolute-quantitative mRNA and protein abundances for each gene 283 

is calculated using data from both the GR and the AA experiments combined, and the 284 
distribution is shown demonstrating overall poor correlation.  285 

B. Enrichment of GO-slim terms in 200-gene sliding windows of increasing Spearman 286 
correlations was analyzed by two-tailed Fisher’s exact test. Shown are GO-slim terms related 287 
to central carbon metabolism (CCM), and amino acid (AA) and protein metabolism, with at 288 
least one sliding-window with pFisher<0.05, indicating that genes with poor protein-mRNA 289 
correlations are enriched in CCM, while genes with good protein-mRNA correlations are 290 
enriched in AA and protein metabolism.  291 

C. Spearman correlation of absolute-quantitative mRNA and protein abundances for each gene 292 
is calculated using data from both the GR and the AA experiments combined, and the 293 
distribution is shown demonstrating overall poor correlation.  294 
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D. Relative intracellular concentrations of amino acids in chemostat cultures constituting the 295 
AA experiments. Orange colored column labels (first 4 columns) indicate nitrogen-limited 296 
cultures; blue colored column labels (last 5 columns) indicate carbon-limited cultures. 297 
Column labels indicate the nitrogen source. In C-limited conditions (blue), the “Gln” 298 
condition and the “Gln*” condition differ in the concentration of Gln and glucose in the 299 
chemostat feed media; see Table S1 for full details. Here 15 amino acids are shown; Table S4 300 
contains also the measurements of Gln, Ile, and Phe, which are not plotted here as the 301 
concentrations of these 3 amino acids, in the cultures where they are the non-limiting 302 
nitrogen source, are very high and skews the colour scale of the heatmap.  303 

 304 

Considering all gene expression measurements in GR and AA experiments combined, the protein-305 

mRNA correlations remained poor, with a median ρ of 0.22 (Fig 6A). To further examine these 306 

protein-mRNA relationships, we tested for enrichment of GO-slim terms in 200-gene sliding windows 307 

of increasing ρ (8, 19). We found that genes with high correlations between protein and mRNA 308 

abundance (median ρ of 0.4 to 0.7 in 200-gene windows) are enriched in GO-slim terms related to 309 

amino acid metabolism, as well as processes related protein translation, including ribosome 310 

biogenesis; rRNA processing; tRNA aminoacylation; and so on (Fig 6B). This indicates that processes 311 

related to protein translation were themselves regulated transcriptionally, consistent with previous 312 

reports (17, 32). Interestingly, we also found that genes with poor protein-mRNA correlations 313 

(median ρ of -0.2 to 0.2 in 200-gene windows) were enriched in GO-slim terms related to CCM 314 

(“carbohydrate metabolic process”, “cellular respiration”, and “generation of precursor metabolites 315 

and energy”; Fig 6B), indicating a distinct role of protein translation in regulating CCM gene 316 

expression which reflects the unique and complex mechanisms that regulate this important part of 317 

metabolism (8).  318 

Relative protein abundance is not controlled by relative mRNA abundance 319 

One question that arises from the AA experiments is why 96% of transcripts consistently exhibited 320 

large differential expression (Fig 3B), which for most genes do not translate into changes in protein 321 

abundance in a concordant way (Fig 5D). One possibility is that relative mRNA expression provides 322 

information on how to partition ribosomes in the cell to translate different proteins, while the 323 

absolute abundance of mRNA may be irrelevant. Numerous ribosome profiling studies (33, 34) have 324 

shown that ribo-seq data are highly correlated with RNAseq data, suggesting that ribosomes are 325 

binding to mRNA according to relative mRNA quantities. In the AA experiments, ribosomal proteins 326 

constituted a constant ~27% (mol/mol) of the proteome (Fig 5F), which seems to suggest that 327 

ribosome availability may place an overall constraint on protein synthesis and hence protein 328 

abundance. However, the correlation of relative-quantitative mRNA abundance (% mol/mol of total 329 

mRNA) with relative-quantitative protein abundance were also poor (median ρ of 0.22; Fig 6C). Thus 330 

we conclude that protein abundance was not simply controlled by relative mRNA abundance and 331 
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constrained by total ribosome content. Rather, transcription and translation appeared to be two 332 

distinct points of control that were independently modulated via metabolic cues, which combined to 333 

produce proteins at the observed abundances. 334 

To search for such metabolic cues, we measured the intracellular concentrations of 18 amino acids 335 

in the AA experiments, and found that most amino acids were accumulated by several fold when 336 

cells were grown under carbon-limitation on preferred nitrogen sources (Fig 6D and Table S4). Our 337 

data therefore suggest a model of global gene expression control by metabolic parameters, whereby 338 

protein abundance was tuned primarily through gene-specific translational regulation. When the 339 

growth condition improved such that excess amino acids could accumulate (Fig 6D), the increase in 340 

Gly and Ser promoted purine synthesis (Fig 4A) which allowed for an increase in transcript 341 

abundance for most genes (Fig 3B and Fig 4C), leading to the observed uncoupling of transcript 342 

abundance and protein abundance (Fig 5D). Of note, CCM genes (as well as amino acid metabolism 343 

genes) were enriched in the 4% of genes that did not show this characteristic change in transcript 344 

abundance (Fig 3C-D), suggesting that the transcript abundance of these genes were actively 345 

controlled by the cell, again highlighting that CCM gene expression is regulated by mechanisms that 346 

are distinct from global physiological control. Together, our overall model of global gene expression 347 

regulation by growth rate and metabolic parameters is presented in Fig 7. 348 

 349 

Fig 7. Model of information flow, material flow, and global control of material abundance in the 350 
central dogma. Nuc, nucleotides; AA, amino acids; pol II, RNA polymerase II; ribo, ribosome; CCM, 351 
central carbon metabolism. In material flow, intracellular amino acids satisfy both protein synthesis 352 
as well as nucleotide and mRNA synthesis. In global gene expression control, intracellular amino acid 353 
begins to accumulate when protein synthesis is satisfied, thus protein abundance controls amino 354 
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acid abundance. Increased amino acid abundance then leads to increased nucleotide and mRNA 355 
synthesis, hence high amino acid abundance is associated with lower protein translation rate (ksP). 356 
 357 

Augmenting gene expression profiling analyses 358 

With an understanding of the global effects of the cell growth rate and amino acid metabolic 359 

parameters on gene expression (Fig 7), these effects can be factored into gene expression analyses 360 

to allow the extraction of gene expression programs related specifically to the perturbation of 361 

interest (Fig 1A). Here we showcase two such applications of our findings, first using a dataset in a 362 

distantly related yeast, S. pombe, and second using a dataset from a human cancer cell model.  363 

 364 

Fig 8. Augmenting gene expression profiling analyses. 365 
A. Measured mRNA abundances in quiescent S. pombe are compared to the calculated mRNA 366 

abundance, given the mRNA abundance in proliferating S. pombe and the difference in cell 367 
growth rate and metabolic parameters. Grey data points are those where calculated and 368 
measured values agree within 2-fold change (-1 < log2 < 1). 369 

B. Protein translation rate kxP calculated in quiescent S. pombe cells are compared to the 370 
protein translation rate ksP calculated based on protein and mRNA abundance in 371 
proliferating S. pombe and the difference in cell growth rate and metabolic parameters. Grey 372 
data points are those where calculated and measured values agree within 2-fold change (-1 373 
< log2 < 1). 374 

C. Measured mRNA abundance in MYC-overexpressing (MYChigh) P493-6 cells are compared to 375 
the calculated mRNA abundance, given the mRNA abundance in P493-6 cells without MYC 376 
overexpression (MYClow) and the difference in cell growth rate and metabolic parameters. 377 

A B

C D
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Grey data points are those where calculated and measured values agree within 2-fold 378 
change (-1 < log2 < 1). 379 

D. Protein translation rate kxP calculated in MYC-overexpressing (MYChigh) P493-6 cells are 380 
compared to the protein translation rate ksP calculated based on protein and mRNA 381 
abundance in P493-6 cells without MYC overexpression (MYClow) and the difference in cell 382 
growth rate and metabolic parameters. Grey data points are those where calculated and 383 
measured values agree within 2-fold change (-1 < log2 < 1). 384 

 385 

Marguerat et al (19) have shown that in S. pombe, gene expression in quiescent cells was 386 

characterized by a drastic downregulation of the total transcriptome compared to proliferating cells, 387 

with >85.3% transcripts being lowered by >2-fold. However, there is an inherent difference in 388 

growth rate between proliferating and quiescent cells, and quiescence was induced experimentally 389 

by nitrogen starvation (19). Together, we expect these differences in growth rate and metabolic 390 

parameters to influence the abundance of >90% of transcripts. To account for genes whose 391 

expression was independent of regulation by growth rate or nitrogen limitation, we took a coarse-392 

grained approach (9) and considered all genes involved in CCM (PomBase GO slim term 393 

“carbohydrate metabolic process”) (35) to be expressed at a constant level. We found that for most 394 

transcripts, the difference in abundance between proliferating and quiescent cells were largely in 395 

line with the difference in growth rate (Fig 8A). After accounting for the global effect of growth rate 396 

on transcript expression, quiescence per se induced a specific gene expression program by 397 

upregulating 707 transcripts (14%) and downregulating 574 transcripts (11%). In contrast, protein 398 

translation dynamics was extensively remodeled by quiescence, with 90% of ksP being upregulated 399 

(Fig 8B). These results suggest that protein translation dynamics should be emphasized in future 400 

studies of quiescence in S. pombe, more so than transcriptome profiling. 401 

We then applied our findings in a human cancer cell model, to showcase that changes in gene 402 

expression caused by oncogenic perturbation can be uncoupled from those changes that are 403 

induced by global physiological parameters such as increased growth rate and altered metabolic 404 

parameters in cancer cells. We mined gene expression datasets in the B-cell line P493-6 (36, 37), 405 

which carries a conditional c-Myc allele that can be experimentally turned on (MYChigh), mimicking 406 

overexpression of the MYC transcription factor which is the driving oncogenic event in Burkitt’s 407 

lymphoma (38). Lin et al (36) quantified the absolute abundance of 1,263 transcripts in the P493-6 408 

cell system, and found that 707 transcripts (56%) were upregulated by >2-fold in MYChigh cells. 409 

Similarly, Feist et al (37) quantified the absolute abundance of 1,662 proteins, and found that 871 410 

proteins (52%) were upregulated by >2-fold in MYChigh P493-6 cells. However, MYC overexpression in 411 

P493-6 also leads to faster cell growth (38) and dependency on Gln as a nitrogen source (37), both of 412 

which could influence gene expression globally. We therefore sought to uncouple the effects of 413 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.423946doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423946
http://creativecommons.org/licenses/by/4.0/


16 
 

these physiological factors from the specific effects of MYC overexpression, which would help to 414 

elucidate direct MYC targets. Taking a similar coarse-graining approach as before, we considered all 415 

CCM genes (AmiGO 2 term “cellular carbohydrate metabolic process”) (39) to be expressed 416 

independently of global physiological control of gene expression. Our analysis indicated that the 417 

majority of the upregulated transcripts could be accounted for by changes in the cell growth rate 418 

and metabolic parameters (Fig 8C), while MYC overexpression specifically upregulated 309 419 

transcripts (24%) and downregulated 167 transcripts (13%). Similarly, protein translation dynamics in 420 

MYChigh P493-6 cells were also largely accounted for by changes in the cell growth rate and metabolic 421 

parameters (Fig 8D), with MYC overexpression causing the up- and down-regulation of ksP for 101 422 

(6%) and 212 (13%) proteins, respectively. Finally, we observed that genes with upregulated mRNA 423 

abundance generally had lowered ksP, and vice versa (Supplemental Fig 6), indicating that protein 424 

translation plays a buffering role in MYC-overexpressing cancer cells, producing dampened effects 425 

on protein abundance compared to changes in transcript abundance, which will be an important 426 

consideration in efforts to develop therapeutics based on transcriptome profiling studies. 427 

Discussion 428 

Gene expression regulation is necessarily coupled to the physiological state of the cell, which 429 

controls global cellular parameters such as the abundance of RNA polymerases and ribosomes (4), as 430 

well as the sizes of transcriptomic and proteomic reserves (8, 40). Here we quantified the global 431 

effects of cell growth rate and amino acid metabolic parameters on gene expression, by analyzing an 432 

orthogonal multi-omics dataset consisting of paired absolute-quantitative transcript-protein 433 

abundances of 22 stead-state yeast cultures. Overall >90% of genes are regulated by the growth rate 434 

and/or amino acid metabolism of the cell at both the transcript and protein levels, suggesting 435 

widespread confounding effects in gene expression profiling studies where these factors are 436 

commonly neglected. The availabilities of RNA polymerase II and ribosomes are major contributors 437 

of differential gene expression at different cell growth rates, while the availabilities of amino acids 438 

and nucleotides underly the global gene expression changes associated with different metabolic 439 

parameters (Fig 7). Additionally, transcription and translation are regulated in a coordinated manner 440 

in response to growth rate, but are regulated in distinct ways in response to metabolic parameters, 441 

highlighting the complex interaction between different physiological parameters in the global 442 

regulation of gene expression.  443 

Previously we have shown that the cell growth rate determines the allocation of the proteome and 444 

transcriptome to different processes, including the relative abundance of RNA polymerases and 445 

ribosomes (8, 21). Our results here indicate that these growth rate-dependent changes in the 446 
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transcription and translation machineries directly influences the absolute abundance ~90% of genes. 447 

However, the expression of genes involved in CCM are largely independent of the cell growth rate. 448 

Of note, this means that the allocation of the transcriptome and proteome (i.e. the relative 449 

abundance normalized to total transcripts and protein abundance, respectively) to CCM would 450 

decrease with growth rate (41, 42), highlighting this important distinction between absolute and 451 

relative quantification of gene expression. Indeed, in their seminal paper on this subject, Brauer et 452 

al. (11) have shown using relative-quantitative data that the transcript expression of 25% of genes 453 

were linearly correlated with growth rate, which included both upregulation and down regulation. 454 

Further, genes that were downregulated with growth rate were enriched in carbon metabolic 455 

processes and peroxosomal functions (11). Here we showed that, in absolute-quantitative terms, 456 

CCM genes were expressed at constant levels independent of the cell growth rate. However, with 457 

90% of genes having a positive relationship with the cell growth rate, in relative-quantitative terms 458 

CCM genes would appear to be negatively regulated by the cell growth rate, consistent with the 459 

previous report (11).   460 

In addition to the cell growth rate, we showed that the amino acid metabolic parameters of the cell 461 

is also a global regulator of gene expression, consistently modulating the overall abundance of 96% 462 

of transcripts. We found that gene expression in response to amino acid metabolic parameters is not 463 

dependent on how much RNA polymerases and ribosomes are present in the cell, but instead is 464 

closely associated with the availability of amino acids and nucleotides. Genes demonstrating the 465 

strongest uncoupling of transcription and translation as two distinct points of regulation– i.e. genes 466 

whose transcript and protein abundances were poorly correlated – were particularly enriched for 467 

CCM processes, consistent with previous indications that this central metabolic pathway is regulated 468 

by complex mechanisms to ensure robust output (8). We further showed that protein abundance is 469 

unlikely to be controlled by relative mRNA abundance, in line with recent large-scale proteomics 470 

studies showing that the organizing principle of the cell proteome can be substantially different from 471 

that of the transcriptome (43). Our data therefore suggests a model of gene expression regulation by 472 

metabolic parameters, whereby protein abundance is tuned primarily through gene-specific 473 

translational regulation; meanwhile, transcript abundance increases (or decreases) with the 474 

availability of amino acids and nucleotides, with the exception of a small number of genes enriched 475 

in CCM and amino acid metabolism (Fig 7).  476 

In many experimental systems (e.g. drug treatment, wildtype vs mutant, expression of transgenes), 477 

the physiological state of the cell is different between experimental conditions but is difficult to 478 

control for. Recent approaches to gain such control include the development of isogrowth gene 479 

expression profiling, whereby cell cultures treated with a 2D-drug gradient are sampled along a line 480 
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of constant growth (the isobole), in order to dissect the gene expression changes without the 481 

confounding factor of changing growth rate (44). This methodology is however technically 482 

challenging and difficult to scale up. We show here that effects of growth rate and metabolism can 483 

be disentangled with the results presented in this study. Of note, it is particularly important to take 484 

these effects into consideration when the fold-change in gene expression is small (i.e. a few fold), as 485 

very large changes (e.g. by an order of magnitude or more) are unlikely to be regulated by 486 

physiological parameters of the cell (4). One application of this is the gene expression changes in 487 

human cancer cells induced by overexpression of the oncogene MYC, which has been suggested to 488 

play an amplifier role to drive small increases in all expressed transcripts (36), but this effect has 489 

been debated (45). Our analysis indicates that the increase in gene expression is in line with altered 490 

cell physiology during MYC-driven oncogenic transformation (37, 38), which then allowed MYC-491 

specific effects of transcript expression and protein translation to be identified. Thus, by 492 

understanding the global effects of gene expression exerted by the physiological state of the cell, 493 

our results provide a framework to analyze gene expression profiles to gain novel biological insights, 494 

a key conceptual goal of systems biology. 495 

Materials and methods 496 

Culture conditions 497 

The yeast Saccharomyces cerevisiae CEN.PK113-7D (MATa, MAL2-8c, SUC2) was used for all 498 

experiments. Cells were stored in aliquoted glycerol stocks at -80 oC. Chemostat experiments were 499 

carried out in DASGIP 1L bioreactors (Jülich, Germany) equipped with off-gas analysis, pH, 500 

temperature and dissolved oxygen sensors. Chemostat experiments were carried out at 30 oC, pH 5, 501 

working volume 0.5 L, aeration 1 vvm, pO2 >30%, agitation speed 800 rpm. The glucose and nitrogen 502 

source concentrations are in Table S1. Additional media components are: KH2PO4, 3 g L-1; 503 

MgSO4·7H2O, 0.5 g L-1; trace metals solution, 1 ml L-1; vitamin solution, 1 ml L-1; antifoam, 0.1 ml L-1. 504 

The trace metals solution contained: EDTA (sodium salt), 15.0 g L-1; ZnSO4⋅7H2O, 4.5 g L-1; 505 

MnCl2⋅2H2O, 0.84 g L-1; CoCl2⋅6H2O, 0.3 g L-1; CuSO4⋅5H2O, 0.3 g L-1; Na2MoO4⋅2H2O, 0.4 g L-1; 506 

CaCl2⋅2H2O, 4.5 g L-1; FeSO4⋅7H2O, 3.0 g L-1; H3BO3, 1.0 g L-1; and KI, 0.10 g L-1. The vitamin solution 507 

contained: biotin, 0.05 g L-1; p-amino benzoic acid, 0.2 g L-1; nicotinic acid, 1 g L-1; Ca-pantothenate, 1 508 

g L-1; pyridoxine-HCl, 1 g L-1; thiamine-HCl, 1 g L-1 and myo-inositol, 25 g L-1. 509 

Sampling from bioreactor 510 

The dead volume was collected with a syringe and discarded. For transcriptome sampling, biomass 511 

was collected from the reactor with a syringe and injected into chilled 50 ml Falcon tubes filled with 512 

35 mL crushed ice. Samples were centrifuged for 4 min at 3,000 x g at 4 oC; cell pellets were washed 513 

once with 1 mL of chilled water, transferred into Eppendorf tubes, flash frozen in liquid nitrogen, 514 
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and stored at -80 oC until analysis. For proteome sampling, biomass was collected from the reactor 515 

with a syringe and injected into 50 ml Falcon tubes chilled on ice. Samples were centrifuged for 4 516 

min at 3,000 x g at 4 oC; cell pellets were washed once with 20 ml of chilled dH2O, washed again with 517 

1 ml of chilled water, transferred into Eppendorf tubes, flash frozen in liquid nitrogen, and stored at 518 

-80 oC until analysis. For intracellular amino acid analysis, biomass was collected from the reactor 519 

with a syringe and injected into -80 oC MetOH at 10-times the volume of the sample. Sample were 520 

centrifuged to 4 min at 3,000 x g at -20 oC, pellets were flash frozen in liquid nitrogen and stored at -521 

80 oC until analysis. Biomass determination was done by filtration of the culture broth on pre-522 

weighed filter paper, drying in a microwave at 360 W for 20 min, and desiccating in a desiccator 523 

for >3 days.  524 

RNA sequencing 525 

RNA was extracted using Qiagen RNeasy Mini Kit (Qiagen, Hilden, Germany) according to 526 

manufacturer’s protocol. RNA integrity was examined using a 2100 Bioanalyzer (Agilent 527 

Technologies, Santa Clara, CA). RNA concentration was determined using a Qubit RNA HS Assay Kit 528 

(Thermo Fisher, Waltham, MA). The Illumina TruSeq Stranded mRNA Library Prep Kit (Illumina, San 529 

Diego, CA) was used to prepare mRNA samples for sequencing. Paired-end sequencing (MID Output 530 

2x75 bp) was performed on an Illumina NextSeq 500 (Illumina, San Diego, CA). Reads were quality 531 

controlled, mapped to the S. cerevisiae reference genome (Ensembl R64-1-1), and counted using the 532 

nf-core RNAseq pipeline (SciLifeLab, Stockholm, Sweden), available at https://nf-co.re/rnaseq. 533 

Quantitative proteome measurements 534 

LC-MS based proteomic analysis was performed largely as described in our previous publication (8). 535 

The Supplementary Methods section contains the detailed description of the protocol. Briefly, cell 536 

pellets were lysed via bead beating in presence of 2% sodium dodecyl sulfate (SDS) and an aliquot 537 

from each sample was digested using Pierce MS grade trypsin (Thermo Fisher), labeled with TMT 538 

10plex isobaric tags (Thermo Fisher), the labeled and combined samples were fractionated into 20 539 

fractions each using basic-pH reversed-phase chromatography and analyzed on an Easy-nLC 1200 540 

chromatography system coupled to an Orbitrap Fusion Tribrid mass spectrometer (both Thermo 541 

Fisher) for the relative protein quantification. The pooled reference mixture that consisted of an 542 

equal amount of protein from each sample was spiked with UPS2 Proteomics Dynamic Range 543 

Standard (Sigma-Aldrich, Saint-Louis, MO) and digested with trypsin, followed by fractionation into 544 

10 fractions and LC-MS analysis for the estimation of the absolute protein amounts via IBAQ (18).The 545 

LC-MS files were processed in Proteome Discoverer 2.2 (Thermo Fisher), including the database 546 

search with Mascot 2.5.1 (Matrix Science, London, United Kingdom) against the S. cerevisiae ATCC 547 

204508 / S288c) reference proteome from Uniprot (February 2018, 6049 sequences) and TMT 548 
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reporter ion quantification. For the IBAQ label-free data, the S. cerevisiae database was 549 

supplemented with the sequences of the 48 UPS2 proteins and the Minora Feature Detector in 550 

Proteome Discoverer 2.2 was used for the precursor ion quantification; the resulting protein 551 

abundances were exported and the linear regression was calculated between the known log10 UPS2 552 

concentrations and the log10 IBAQ abundances for the corresponding proteins. The resulting 553 

regression coefficients were used to estimate the absolute concentrations of the yeast proteins. 554 

Intracellular amino acid measurements 555 

To extract intracellular amino acid, 1-2 ml of boiling 75% ethanol was poured directly onto the cell 556 

pellets. Samples were vortexed for 1 min, boiled for 3 min, and placed on ice until cool. Samples 557 

were centrifuged for 15 min at 13,000 x g at 4 oC. Supernatant containing intracellular amino acids 558 

were collected and stored at -20 oC until labeling and analysis. Amino acids were labeled using the 559 

SCIEX aTRAQ Reagents Application Kit (Danaher, Washington DC) with aTRAQ Reagent Δ8, and mixed 560 

with internal standards pre-labeled with aTRAQ Reagent Δ0, according to manufacturer’s protocol. 561 

Samples were analyzed using a SCIEX QTRAP 6500+ system (Danaher, Washington DC) with a Nexera 562 

UHPLC system (Shimadzu, Japan), on a SCIEX AAA column (150 x 4.6 mm) at an oven temperature of 563 

50 oC. Mobile phase A contained 0.1% formic acid and 0.01% heptafluorobutyric acid in water; 564 

mobile phase B contained 0.1% formic acid and 0.01% heptafluorobutyric acid in methanol. The flow 565 

rate was 0.8 mL min-1, with a gradient profile was as follows: 0 min, 2% B; 6 min, 40% B; 10 min, 40% 566 

B; 11 min, 90% B; 12 min, 90% B; 13 min, 2% B; 18 min, 2% B. The retention time, precursor (Q1 m/z) 567 

and product (Q3 m/z) for each amino acid and internal standard were as described by the 568 

manufacturer’s protocol. The mass spectrometer was set to monitor the transitions with the 569 

following ion source parameters: CUR (curtain gas) 30, CAD (collision activated dissociation) MED, IS 570 

(ionization voltage) 5500, TEM (temperature) 500, GS1 (source gas 1) 60 and GS2 (source gas 2) 50; 571 

and with compound parameters: DP (declustering potential) 30, EP (entrance potential) 10, CE 572 

(collision energy) 30 and CXP (collision cell exit potential) 5.  573 

Data processing and analysis 574 

For transcriptomics, the absolute concentrations of 31 transcripts with >10 FPKM, and covering the 575 

entire dynamic expression range, were measured using lysates of S. cerevisiae CEN.PK 113-7D cells 576 

from the J. Nielsen lab (Chalmers University of Technology, Sweden). Linear regression between the 577 

absolute concentrations of these mRNAs and their corresponding FPKM values from RNAseq were 578 

performed to obtain the slope and y-intercept, which were used to quantify all mRNA in this study. 579 

The calculated mRNA abundance was then scaled to the total RNA content measured by Qubit RNA 580 

HS Assay Kit (Thermo Fisher, Waltham, MA). For proteomics, detailed data processing parameters 581 

are described in the Supplementary Methods.  582 
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Protein translation rate ksP (17, 18) for each protein j was calculated by: 583 

𝑘𝑠𝑃,𝑗 =
𝐶𝑝𝑟𝑜𝑡,𝑗 ∙ (𝑘𝑑𝑃,𝑗  +  𝜇)

𝐶𝑚𝑅𝑁𝐴,𝑗
 584 

The gene-specific protein degradation rate (kdP) for S. cerevisiae was mined from Lahtvee et al (17). 585 

Protein degradation rate for S. pombe was mined from Christiano et al (46). Protein degradation rate 586 

for a cancer cell line (HeLa) was mined from Boisvert et al (47). Where the kdP,j was unavailable in the 587 

mined datasets, the median of all kdP in the dataset was used.  588 

Data and code availability 589 

Processed quantitative transcriptomics and proteomics data are in Supplementary Table 2 and 3. 590 

Processed intracellular amino acid concentrations are in Supplementary Table 4. Raw RNAseq data 591 

are available at ArrayExpress, accession E-MTAB-9117 (48). The mass spectrometry proteomics data 592 

are deposited to the Proteome Xchange Consortium via the PRIDE (49) partner repository with 593 

dataset identifier PXD021218 (50). GO-slim terms for S. cerevisiae genes are available from the 594 

Saccharomyces Genome Database (25, 51). GO-slim terms for S. pombe genes are available from 595 

PomBase (35, 51). GO terms for human genes are available from AmiGO 2 (39, 51). All other 596 

supporting data and custom code are available on request from the corresponding author. 597 
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