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Abstract 11 

Identifying the additive genetic variation underlying complex traits is important for species of 12 

economic and/or ecological value. In particular, where DNA markers can be associated with 13 

trait variation they can be used to develop models to predict phenotypes as the basis of future 14 

selection and conservation programmes. Here, SNPs associated with growth (height and 15 

annual increment) and phenology (budburst and bud set) were identified in three closely 16 

related pine species including Pinus sylvestris (Scots pine). A genotyping array was used to 17 

screen 20,795 SNPs from coding regions for their association with trait variation using mixed 18 

linear model (MLM) and multilocus mixed model (MLMM) approaches: 113 SNPs located at 19 

111 loci were significantly associated with the traits, with the majority associated with either 20 

budburst or growth increment in P. sylvestris. Common SNPs  (MAF > 0.05) identified as 21 

significantly associated with bud set were found in genes putatively involved in only growth 22 
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and development, whereas SNPs associated with growth and budburst were located in genes 23 

putatively involved in growth and development, response to environment and, to a lesser 24 

extent, reproduction. Predicted values estimated using the model for growth had highly 25 

significant correlations with phenotypes quantified in a P. sylvestris common environment 26 

experiment established at two sites in Scotland (YA and GS), but only at one of the sites (YA, 27 

height at 2020: r = 0.376, p < 0.001). Predicted values estimated with the model for budburst 28 

were found to be weakly but significantly correlated with duration of budburst at one of the 29 

field sites (GS, duration at 2018: r = 0.242, p = 0.012) and negatively associated with timing 30 

of budburst at the other (YA, stage six: r = -0.216, p = 0.033). Genomic prediction using the 31 

model for growth was more successful than random selection as a method of selecting tall 32 

trees at both sites. This study provides tentative support for the development of prediction 33 

models for traits that are of interest to both foresters and conservationists, while highlighting 34 

the need for caution when applying them to trees growing in different environments.  35 
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1. Introduction 39 

A primary goal of association genetics studies of trees is to accelerate research, in what are 40 

typically very long-lived organisms, by developing a capability to predict phenotype from 41 

genotype. However, phenotypic traits are mostly complex, i.e. quantitative and controlled by 42 

many genes (Goddard and Hayes, 2009), and may vary in expression and heritability 43 

depending on the environment in which they are assessed (Schlichting, 1986). Therefore, a 44 

combination of a high number of markers applied to a large number of samples and well-45 
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assessed phenotypes, ideally from multiple environments, are required to develop robust 46 

predictive models. The popularity and power of genetic association studies continues to grow 47 

thanks to improvements in the scale, quality and cost of high-throughput sequencing and 48 

genotyping. In particular, the accessibility of cost-effective high-throughput genotyping has 49 

benefited those studying nonmodel organisms for which genome assembly is challenging due 50 

to genome size and/or complexity (Prunier et al., 2016, Zimin et al., 2017).  51 

Pines are among the most important commercial forest tree species in the world (Kanninen, 52 

2010), and have high ecological value in forests across the northern hemisphere. 53 

Understanding the genetic architecture of key adaptive traits such as growth, form, disease 54 

resistance and phenology is of interest to a range of stakeholders that include the forestry 55 

industry and conservationists. Due to their large size and complexity, pine genomes are 56 

particularly challenging to assemble, and this has only been achieved for loblolly pine (Pinus 57 

taeda; Zimin et al., 2014) and sugar pine (Pinus lambertiana; Stevens et al., 2016), which are 58 

among the largest genomes ever sequenced and assembled. However, thousands of 59 

polymorphic regions potentially suitable for use in high-throughput genotyping for 60 

association studies in pine have been discovered using high-throughput sequencing methods 61 

including whole transcriptome studies (Blanca et al., 2012, Chancerel et al., 2011, Durán et 62 

al., 2019, Geraldes et al., 2011, Liu et al., 2014, Parchman et al., 2010, Trick et al., 2009, 63 

Wachowiak et al., 2015).  64 

Using genome-wide DNA markers and their estimated effects to predict breeding values was 65 

first proposed by (Meuwissen et al., 2001) who found that selection based on this method 66 

could significantly increase the rate of genetic gain in subsequent generations. Since then, a 67 

large number of studies have focussed on the development of prediction models and their 68 
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accuracy in predicting phenotypes, with a focus on wood or fruit quality in tree species 69 

(Kumar et al., 2012, Minamikawa et al., 2017, Muranty et al., 2015, Beaulieu et al., 2014, Isik 70 

et al., 2016, Resende et al., 2012a, Resende et al., 2012b, Thistlethwaite et al., 2017), 71 

although there are also efforts to develop genomic selection methods for disease resistance 72 

traits (Westbrook et al., 2020, Stocks et al., 2019). Association studies and tests of the 73 

strength of genomic prediction using the associated single nucleotide polymorphism (SNP) 74 

markers have been performed in a small number of pine species for a few traits including 75 

serotiny (Pinus pinaster, Budde et al., 2014), circumference, height and stem straightness 76 

(Pinus pinaster, Bartholomé et al., 2016), oleoresin flow (Pinus taeda, Westbrook et al., 77 

2013) and growth and wood quality traits in P. sylvestris (Calleja-Rodriguez et al., 2020). 78 

Genomic prediction aims to increase the efficiency of breeding programmes, shorten the 79 

breeding cycle length, improve timber yield and quality and reduce loss of trees due to pests 80 

and diseases in commercial forestry as well as screen natural populations for their adaptive 81 

potential to future threats such as climate change and disease (Isabel et al., 2020, Capblancq et 82 

al., 2020). However, multiple trials are necessary to identify, test and validate the SNPs 83 

associated with each trait before genomic prediction can be applied with any confidence due 84 

to the potentially confounding effect of phenotypic plasticity. Another overlooked aspect is 85 

the difficulty of applying these approaches to species which do not have well-established 86 

breeding populations, and the comparative ‘messiness’ of natural populations from which 87 

much seed for much planting is derived (Herbert et al., 1999). These natural populations are 88 

likely to lack strong selective pressures of the kind which are imposed on breeding 89 

populations by selection for valuable traits, and the lack of pedigree information makes SNP-90 

trait association significantly harder. 91 
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In our study we focused on a set of three closely related species from the Pinus genus, P. 92 

sylvestris, P. mugo and P. uncinata, that differ strongly in phenotype, geographical 93 

distribution and ecology. These species have previously been studied in several biometric, 94 

quantitative trait and population genetic investigations (Boratyńska and Boratyński, 2007, 95 

Lewandowski et al., 2000, Wachowiak et al., 2013, Wachowiak et al., 2018a, Wachowiak et 96 

al., 2018b) and a SNP array has been developed for them, based on candidate gene and 97 

transcriptome sequencing (Perry et al., 2020). They form a monophyletic group within 98 

Pinaceae (Grotkopp et al., 2004), having diverged within the last 5 million years and adapted 99 

to different environments (Wachowiak et al., 2013, Wachowiak et al., 2011, Wachowiak et 100 

al., 2018a). Despite morphological, geographical and ecological differentiation, the three taxa 101 

show high genetic similarity in biochemical and molecular markers, have the same number of 102 

chromosomes (2n = 24), show weak reproductive barriers, and share many ancestral 103 

polymorphisms segregated in the pine genome (Lewandowski et al., 2000; Wachowiak et al., 104 

2013). Consequently, these taxa form a valuable experimental system in which to undertake 105 

comparative analysis for molecular signatures of selection, ecological divergence and local 106 

adaptation at inter- and intraspecific levels.  107 

In this study, using data from common garden experiments and genotypes from a large new 108 

multispecies SNP array, we first identified SNPs associated with growth and phenology in the 109 

three species. Then, to evaluate their potential use as a tool for genomic prediction, we tested 110 

models making use of these SNPs to estimate predicted values for traits in an independent 111 

field trial. Finally, we discuss the potential, and some of the limitations, for making use of 112 

genomic prediction in breeding programmes for P. sylvestris. 113 

 114 
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2. Methods 115 

Experimental design and analyses performed in the study are summarised in Figure 1.    116 

Figure 1. Plant material, datasets and analyses used in the study. MU: P. mugo; SY: P. 117 
sylvestris; UN: P. uncinata. 118 

 119 

2.1. Plant material and phenotype assessments 120 

Collection of plant material, experimental design and phenotype assessments are described by 121 

(Wachowiak et al., 2018a). Briefly, open-pollinated seeds of the three pine species were 122 

collected from three to five families per population from twenty-eight natural populations in 123 

Europe covering the extent of each species’ range, including thirteen populations of P. 124 

sylvestris (SY), nine P. mugo (MU), and six P. uncinata (UN). Seeds were sown on trays of 125 

compost in spring 2010. After germination, a provenance–progeny trial was established in an 126 

unheated glasshouse at the UK Centre for Ecology and Hydrology, Edinburgh, UK (latitude 127 

55.861261, longitude -3.207819). Seedlings were grown under natural light with automatic 128 

watering applied during the growing season. The trial was divided into 25 randomized blocks 129 
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with up to five families per population of which the first 18 blocks were analysed by 130 

Wachowiak et al. (2018a).  131 

Phenology (traits assessed: BS, timing of bud set, BB, timing of budburst) and growth (traits 132 

assessed: H, total height; I, annual increment - the increase in height from one year to the 133 

next) were recorded for every seedling to evaluate within- and between-species variation 134 

(species means for trees sampled in this study recorded in Table S1). Nested analyses of 135 

variance (ANOVA) were performed in Minitab 17 (Minitab Statistical Software, 2010) with 136 

species, and population nested within species, as fixed effects, families nested within 137 

population as a random effect, and block as a random effect. Response variables were growth 138 

and phenology traits. Analyses were also performed for each species separately. Families with 139 

a single individual were removed from the analyses (four families from MU: family 26 from 140 

population M5; family 9 from population M12; and families 5 and 9 from population M8). To 141 

assess the proportion of variation that is under genetic control, the narrow sense heritability 142 

(h2) for each trait was estimated. Narrow-sense heritability, which is the proportion of total 143 

phenotypic variance (VP) explained by additive genetic effects (VA; Falconer and Mackay, 144 

1996), was estimated using among family, block and residual variance (Vfam, Vblock and Vres, 145 

respectively) from data pooled across populations: 146 

�
�

�
��

��
�

�����

���� �  ���	
� � ��
�   
 

where R is the relatedness of individuals within families (individuals within a family are 147 

assumed to be half-siblings as they are from a single mother tree with an unknown paternal 148 

contribution).  149 
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Bud set was scored when a visible apical bud with clearly developed scales was formed at the 150 

tip of a stem in each seedling and was measured as the number of days since the date on 151 

which the first plant that set a terminal bud was observed (in the first year of growth: 152 

BS2010). Budburst was scored when new needles emerged around the tip of the apical bud in 153 

the main stem and was measured as the number of days since the date on which the first plant 154 

to burst bud was observed (in the second and third years, BB2011, BB2012). Phenology 155 

observations were conducted twice a week. The height of young pines was measured from the 156 

second to fourth year of the pine growth (H2011, H2012, H2013). The annual increment was 157 

estimated for growth between 2011-12 (I2012) and 2012-13 (I2013).  158 

An independent multi-site, field-based provenance-progeny trial of P. sylvestris was also 159 

phenotyped and used to test results from the glasshouse trial described above. Seeds from 160 

eight families from each of 21 native Scottish P. sylvestris populations were collected in 161 

March 2007 and germinated at the James Hutton Institute, Aberdeen (latitude 57.133214, 162 

longitude -2.158764) in June 2007. Germinated seedlings were grown either in a glasshouse 163 

with automatic watering or in pots outside (with additional watering when necessary) until the 164 

trees were moved to one of three transplant sites. A subset of trees from two of these sites 165 

were genotyped as part of this study: a site in the Borders of Scotland (Yair, YA: latitude 166 

55.603625, longitude -2.893025) was planted in October 2012; a site in Aberdeenshire 167 

(Glensaugh, GS: latitude 56.893567, longitude -2.535736) was planted in spring 2012. Trees 168 

transplanted to YA were initially grown in a glasshouse whereas trees transplanted to GS 169 

were started in pots outside. The two transplantation sites also generally experience different 170 

climates, with the YA site typically warmer and drier than the GS site (Table S2) and with a 171 

longer growing season. 172 
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Trees were planted in four randomised blocks at 3 m x 3 m spacing. A guard row of Scots 173 

pine trees was planted around the periphery of the blocks. Each block comprised one 174 

individual from each of eight families per 21 populations (168 trees). Budburst and height 175 

have been assessed annually since 2015. Height was measured in the winter before the 176 

growing season began from 2015 to 2020. Height was also measured before the start of the 177 

second growing season in March 2008. The annual increment was estimated as the increase in 178 

growth from one year to the next. Each tree was assessed for budburst stage annually from 179 

2015 until 2019 at weekly intervals from early spring until budburst was complete. Seven 180 

distinct stages of budburst were defined (Table S3). The number of days for each tree to reach 181 

each stage of budburst, starting from the day the first tree was observed at each stage, was 182 

recorded. When trees progressed through budburst stages rapidly, skipping a stage between 183 

assessments, a mean value was taken between the two. The duration of the core stages of 184 

budburst (time taken to progress from stage 4 to stage 6) was also estimated. Although the 185 

method used to record budburst was not identical in the glasshouse and multi-site field trials, 186 

the observation of needles as described by (Wachowiak et al., 2018a) is equivalent to stages 5 187 

and 6 in the multi-site field trial. To better understand the relationship between budburst 188 

timing and duration among years and stages, Pearson’s correlation coefficient and 189 

significance values between the two were estimated using a package ‘Hmisc’ (Harrell Jr, 190 

2020) in R (R Core Team, 2020), for each site separately. 191 

2.2. Genotyping array 192 

The design of the array, genotyping and SNP calling are as described by (Perry et al., 2020). 193 

Briefly, an array comprising 49,829 single nucleotide polymorphisms (SNPs) was used to 194 

genotype 1,920 DNA samples (from needles of four pine species: the species included here 195 
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plus Pinus uliginosa) according to the Affymetrix Axiom Assay protocol on a GeneTitan and 196 

following genotyping, genotype calls were performed using Axiom Analysis Suite as 197 

recommended by the manufacturer. A subset of trees from the experimental glasshouse trial 198 

described in the previous section were genotyped including twelve populations of P. sylvestris 199 

(N = 461) and five populations of P. mugo (N = 145) and P. uncinata (N = 201). Up to 10 200 

trees were genotyped per family (except for population SY33 which was genotyped up to a 201 

maximum of 14 trees per family). Five families were genotyped per population with the 202 

exception of SY44 (N families = 4), SY30 (N families = 3) and MU5 (N families = 3). 203 

Samples were filtered to remove all those with a call rate < 80 % (N = 45). 204 

The multi-site field trial of P. sylvestris was also partially genotyped: 100 trees from YA and 205 

108 trees from GS, each comprising the same five populations (Beinn Eighe, BE; Glen Affric, 206 

GA; Glen Loy, GL; Glen Tanar, GT; Rhidorroch, RD) with 19-22 individuals per population 207 

for each site. There were 7-8 families genotyped for each population with 1-3 half-siblings in 208 

each family at each site. These datasets are henceforth referred to as YA-SY and GS-SY. 209 

2.3.Population genetic structure, kinship and statistical power 210 

Population genetic structure was assessed visually by constructing a neighbour joining (NJ) 211 

tree in the R package ‘ape’ (Paradis and Schliep, 2019) based on a distance matrix generated 212 

in TASSEL version 5.2.39 (Bradbury et al., 2007) using all samples with call rate > 80 % in 213 

all species (N = 762). SNPs with call rate < 80 % (N = 48) were excluded. Pairwise kinship 214 

(centred identity by state) was estimated for each species independently including only 215 

samples with call rate > 80 % (MU: N = 115; SY: N = 456; UN: N = 191) using all 216 

polymorphic markers in TASSEL. The skewness of the distribution within each species’ 217 

matrix was calculated using the D’Agostino skewness test in the R package ‘fBasics’ (Wuertz 218 
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et al., 2020). The statistical power of each species’ dataset (MU; SY; UN), the P. mugo 219 

complex (MU-UN), and the full dataset including all species (MU-SY-UN) to detect true 220 

associations between SNPs and adaptive traits was estimated using the method reported by 221 

(Wang and Xu, 2019) under the following assumptions: nominal type 1 error (false positive) 222 

= 0.05; QTL size = 0.05. Statistical power was estimated at different levels of polygenic effect 223 

(λ): from 0.1 (where polygenic variance is 10 % of phenotypic variance) to 10 (where 224 

polygenic variance is 10 x phenotypic variance). Allele frequencies of all SNPs subsequently 225 

found to be significantly associated with the adaptive traits in the MU-UN dataset were 226 

checked in each species separately (MU and UN) to assess the contribution of each species to 227 

associated genetic variation. 228 

2.4. Genetic associations and putative functions 229 

Identification of SNPs potentially associated with phenology (traits: budburst and bud set) and 230 

growth (traits: height and increment) was conducted for each trait in each year. Association 231 

with SNPs was tested in each species separately (MU; SY; UN) as well as in all species 232 

together (MU-SY-UN) and in the P. mugo complex (MU-UN). A mixed linear model (MLM) 233 

with a covariance (kinship: centred identity by state) matrix and a matrix derived from 234 

principal component (PCA) scores, to allow for population stratification, among individuals 235 

was fitted to each locus independently in TASSEL (version 5.2.39). The proportion of true 236 

null hypotheses was estimated using a false discovery rate (FDR) approach, retaining SNPs 237 

associated with traits with adjusted p values < 0.05.  238 

A multi-locus mixed model (MLMM) approach, with 10 steps, was used to identify whether 239 

any loci have large effects (Segura et al., 2012). Highly significant SNPs (based on 240 

estimations of genetic variance, p < 0.001) were included in a forward-backward stepwise 241 
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approach, one by one, as cofactors in the model. The multiple Bonferroni criterion, defined as 242 

the largest model whose cofactors all have a p-factor below a Bonferroni-corrected threshold 243 

of 0.05, was used to indicate the best model.  244 

SNPs were divided into two classes on the basis of their minor allele frequency (MAF): MAF 245 

> 0.05: common; MAF < 0.05: rare. As it is likely that the majority of traits are controlled by 246 

many genes of very small effect it is important to consider every SNP identified. The narrow 247 

sense heritability of each trait and the proportion of common SNPs identified as associated 248 

with each trait were examined to determine whether traits associated with high frequency 249 

SNPs are also associated with high levels of narrow sense heritability, e.g. due to their 250 

prevalence across the populations in question. Each SNP found to be significant was also 251 

examined to compare the putative function of the genes on which they are located with the 252 

trait in question. To do this, the full unigene sequence for each SNP was BLASTed against 253 

the uniprotkb_viridiplantae database, the result with the highest score (minimum e-value 1E-254 

50) for each unigene was retained, and the putative function determined by a literature survey 255 

using the search term ‘protein name function plant’. Where the protein was uncharacterised, 256 

the protein domain and/or family was recorded and the most likely function inferred. Where 257 

putative functions could be determined the genes were grouped according to their role in the 258 

following phenotypic responses: ‘Response to environment’ (including abiotic and biotic 259 

stress response), ‘Growth and development’ (including cell division, differentiation and 260 

senescence); ‘Reproduction’ (including flowering time and seed yield). Although many 261 

cellular processes (e.g. metabolism, signalling pathways, DNA binding, transcription, 262 

translation) were also identified as putative functions, these were assumed to be underlying 263 

control and expression of phenotypic functions and were not assigned a function. 264 
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2.5 Prediction models: construction and internal testing 265 

Phenotypic prediction multiple linear regression models were constructed in R. A number of 266 

different models were constructed and compared using different sets of SNPs and different 267 

traits to train the model. Predictive models were constructed using SNPs identified as 268 

potentially associated with variation in phenology (trait: budburst: BB2011) and growth 269 

(traits: height and increment: H2013 and I2013). Because the SNPs used in these models were 270 

identified in both the SY and in the MU-SY-UN datasets, separate models were also 271 

constructed comprising just SNPs identified in the SY dataset. Predictive models were also 272 

constructed using the same number of randomly selected SNPs from all polymorphic loci 273 

with similar MAF to the SNPs from each prediction model. Additionally, predictive models 274 

were constructed using all available polymorphic SNPs for SY. All models (phenology and 275 

growth from SY and MU-SY-UN; phenology and growth from SY; random; all polymorphic 276 

SNPs) were run both with and without a MAF filter (retaining only SNPs which were 277 

common (MAF > 0.05) in the datasets from which the significant associations were originally 278 

identified). The prediction model for all polymorphic SNPs was constructed using ridge 279 

regression with the R package ‘rrBLUP’ (Endelman, 2011), rather than multiple linear 280 

regression, as recommended when the number of loci is greater than the number of samples. 281 

For all models, where necessary, family means were used to replace missing data. The 282 

predictive models were run using a training set comprising 60 % of P. sylvestris trees from 283 

the glasshouse trial, which had been used to identify associated SNPs, and were internally 284 

tested using the remaining 40 % of P. sylvestris glasshouse trees. Models were run using P. 285 

sylvestris trees and not P. uncinata or P. mugo as subsequent testing of the models was in this 286 

species alone. We used budburst and growth but not bud set data as subsequent model testing 287 

was applied to data from an independent trial for which only these traits were available. 288 
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Pearson’s correlation coefficient and significance for correlations between predicted values 289 

generated by the predictive models and observed values for both phenology and growth (both 290 

H2013 and I2013 were tested to see which performed best for the growth predictive model) 291 

were estimated using the R package ‘Hmisc’ (Harrell Jr, 2020).  292 

SNPs used in each prediction model were assessed for their variation among P. sylvestris 293 

populations using the R package ‘hierfstat’ (Goudet and Jombart, 2020). Basic statistics 294 

including overall observed heterozygosity (HO), mean gene diversities within populations 295 

(HS), inbreeding coefficient (FIS) and population differentiation (FST) were estimated for each 296 

set of SNPs described above. 297 

2.6 Independent testing of the models in two outdoor P. sylvestris trials 298 

SNPs identified as potentially associated with budburst and growth were tested using 299 

genotype and phenotype data from an independent field trial of P. sylvestris, established at 300 

contrasting sites (YA and GS) in 2012. Genotyped trees from the field trials were assigned 301 

predicted values for both phenology and growth) using multiple linear regression models 302 

constructed using either all available SNPs or only those found to be significantly associated 303 

with the trait. The models were those that performed best (i.e. the strongest correlation) in the 304 

internal test and with the full set of P. sylvestris trees from the glasshouse trial (call rate > 80 305 

%, N = 456) as a training set. Observed values for growth (height and increment) and 306 

budburst (number of days to reach budburst stages 4 to 6 from the first observation at each 307 

site, and duration for each tree to progress from stage 4 to stage 6) at multiple years (2015-308 

2020 for increment, 2015-2019 for budburst) were compared with values generated by the 309 

predictive models. Multiple years were used to ensure that annual variation caused by 310 

seasonal differences could also be considered. Because height is a cumulative measure, only 311 
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the most recent (2020) and the measurements made prior to transplantation (2011) were 312 

compared with the predicted values. To assess the performance of the predictive models, the 313 

Pearson’s correlation coefficient and significance values between predicted and observed 314 

values for phenology and growth were estimated for each site (GS and YA) separately using 315 

the R package ‘Hmisc’ (Harrell Jr, 2020). The use of two sites in independent testing also 316 

allowed comparison of the performance of the predictive models in different environments.  317 

The effectiveness of using the predictive model as a genomic selection tool was also tested 318 

and compared with other selection methods. For each method, 10 trees were selected from 319 

each site: for genomic selection the 10 trees at each site with the highest values generated by 320 

the predictive model were chosen; for phenotype selection the 10 tallest trees at each site prior 321 

to the start of the second growing season (measured in March 2008) were chosen; for 322 

comparison, 10 trees were also randomly chosen from each site. The average height at 13 323 

years (2020) of the 10 trees selected using each method was compared. The trees selected 324 

using each method were also compared to the 10 tallest trees at each site at age 13. 325 

3. Results 326 

3.1. Intra- and inter-specific trait variation 327 

Bud set was, on average, earliest for MU and latest for SY with a mean difference of nearly 328 

19 days between the two species (Table S1, Table S4). Bud set for UN occurred, on average, 329 

8.28 days after MU and 10.63 days before SY. Budburst was similarly earliest for MU but 330 

was latest for UN in both years assessed although the mean difference between species was 331 

greater in 2012 (15.17 days) than in 2011 (5.42 days). For all years, on average, MU were the 332 

shortest trees and SY were the tallest with increment similarly greater in SY than in UN or 333 

MU. By 2013, SY trees were on average over double the height of the average MU tree, with 334 
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UN trees on average just over two-thirds the height of the average SY tree. Narrow sense 335 

heritability estimates for all species were highest for height (h2 = 0.72-1.19) and lowest for 336 

budburst in 2012 (h2 = 0.25) although standard errors for all estimates were very large due to 337 

the small sample sizes (Table S8). Phenotypes for the independent multi-site field trial are 338 

also provided in Table S5. 339 

3.2. Summary of genotyping array 340 

High quality genotypes (call rate > 80 %) were obtained for over 94 % of trees genotyped 341 

within the trial (N = 762): MU, N = 115; SY, N = 456; UN, N = 191 (Table S6). There were 342 

over 9,500 high quality (call rate > 80 %) polymorphic SNPs which were shared among the 343 

three species (Table 1), with a further 1,352 SNPs which were polymorphic in at least two 344 

species and monomorphic in a third. The set of successfully converted SNPs (N = 20,795) 345 

reported by (Perry et al., 2020) was found to be identical to those successfully converted in 346 

this study. Genotyped trees from YA and GS were all high quality (Table S7). 347 

  348 
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Table 1. Count of polymorphic, monomorphic and low call rate SNPs within and among 349 
species 350 

SY (456/461) UN (191/201) 
MU (115/145) 

CR<80 (4,884) Mono (4,639) Poly (11,272) 
CR<80 (9) CR<80 (288)    

 Mono (5,297)  
1 

 
Poly (15,210) 6 

 
2 

Mono 
(5,767) 

CR<80 47 3 8 
Mono 208 3,446 507 
Poly 452 251 845 

Poly (15,019) CR<80 195 
 

35 
Mono 120 723 292 
Poly 3,856 215 9,583 

 351 
Species codes: SY, P. sylvestris; UN, P. uncinata; MU, P. mugo. Parentheses after species code indicates 352 
number of samples with call rate > 80 % compared with number of samples genotyped. SNP codes: CR<80, call 353 
rate < 80 %; Mono, monomorphic; Poly, polymorphic. Parentheses after SNP codes for each species indicates 354 
the total number of SNPs within each category for each species individually. 355 

3.3.  Population genetic structure, kinship and statistical power 356 

The neighbour joining tree generated from the distance matrix indicated weak population 357 

structure as reported in previous studies (Wachowiak et al., 2013, Wachowiak et al., 2018b). 358 

The pairwise kinship distribution was strongly skewed toward positive kinship values for each 359 

species (D’Agostino’s skewness test, MU: z = 101.389, p < 2.2 x 10-16; SY: z = 446.904, p < 360 

2.2 x 10-16; UN: z = 153.664, p < 2.2 x 10-16), as expected given the use of half siblings. These 361 

results support the use of mixed model approaches and correction for population stratification 362 

prior to testing for genetic association.  363 

The statistical power to detect true associations between SNPs and adaptive traits was found 364 

to be extremely low for both MU and UN even when the polygenic effect was assumed to be 365 

10x the phenotypic variance (Table S9). This is likely to be due to the low sample numbers: 366 

the statistical power of SY was similarly low if the sample numbers were reduced to those of 367 

MU and UN, although the statistical power remained low even when the polygenic effect was 368 

increased. The SY dataset was found to have relatively high statistical power, and the joint 369 
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MU-UN dataset had lower power, but significantly more than for each species individually. 370 

The statistical power of a dataset including all three pine species was found to be very high 371 

regardless of the polygenic effect. For these reasons, the following datasets were analysed for 372 

associations with traits: the P. mugo complex (MU-UN), P. sylvestris (SY) and all three pine 373 

species (MU-SY-UN). 374 

3.4. Identification of loci associated with traits 375 

One hundred and thirteen SNPs were identified as associated with phenology and growth in 376 

the three pine species (Table 2; Table S10). These included SNPs which were identified in 377 

more than one species’ datasets. There was very little overlap of identified SNPs among 378 

different traits or among years within the same trait: four SNPs were associated with more 379 

than one trait, of which only one (comp51128_c0_seq1_1529) was associated with both 380 

phenology (trait: BB2011) and growth (trait: I2013). The vast majority of SNPs were 381 

identified using the MLM approach (N SNPs = 108) rather than the MLMM approach (N 382 

SNPs = 14) and there were many more common SNPs (MAF > 0.05) identified using the 383 

former method (MLM: N = 36; MLMM: N = 1). There were nine SNPs identified as 384 

significantly associated with traits in both MLM and MLMM. Significantly associated SNPs 385 

were identified for all traits in all years except BB2012. The traits with most associated SNPs 386 

were BB2011 (N = 54), I2013 (N = 34) and BS2010 (N = 18), whereas other years/traits all 387 

had low numbers of associated SNPs (H2011, N = 3; H2012, N = 1; I2012, N = 1).  388 

  389 
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Table 2. SNPs associated with phenology and growth traits in the three pine species identified 390 
from a mixed linear model (MLM) in TASSEL and a multi-locus mixed model (MLMM) in R 391 

MLM  MLMM 
Trait Species Common Rare  Common Rare 
Phenology 
BB2011 MU-UN 9 25  4 

SY 7 11  3 
MU-SY-UN 4 19  3 

BS2010 SY 4 14  
Growth 
H2011 SY 1  

MU-SY-UN 1 1  
H2012 MU-SY-UN 1  
H2013 SY 2  

MU-SY-UN 4  1 
I2012 MU-SY-UN 1  
I2013 MU-UN 6 1  1 

SY 2 20  4 
MU-SY-UN 6 4  1 1 

Species codes: MU, P. mugo; SY, P. sylvestris; UN, P. uncinata;. Trait codes: budburst (BB); bud set (BS); 392 
height (H); increment (I). Common: SNPs with MAF > 0.05; Rare: SNPs with MAF < 0.05 393 
 394 

The MAF of SNPs identified for each trait/species’ dataset were compared with their narrow 395 

sense heritability which was grouped into one of four categories: low, N = 8: h2 < 0.4; 396 

medium, N = 7: 0.4 ≤ h2 < 0.6; high, N = 7: 0.6 ≤ h2 < 1; very high, N = 2: h2 > 1 (Figure 2). 397 

As the narrow sense heritability increased from low to high, the proportion of SNPs which 398 

were common similarly increased, although this relationship did not extend to traits with very 399 

high h2. 400 

  401 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.423987doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423987
http://creativecommons.org/licenses/by/4.0/


 

Figure 2. Variation in the proportion of common SNPs (MAF > 0.05) identified as 402 
significantly associated with each trait for different groupings of narrow sense heritability 403 

(h2): low, < 0.4; medium, 0.4 ≤ h2 < 0.6; high 0.6 ≤ h2 < 1; very high h2 > 1.  404 

 405 

A higher number of associated SNPs were identified in SY (N = 62) than MU-UN (N = 43). 406 

Only one SNP (comp51128_c0_seq1_1529) was identified as significant in both datasets 407 

although it was associated with phenology (BB2011 for MU-UN) and growth (I2013 for SY): 408 

it was common (MAF > 0.05) in MU-UN but rare (MAF < 0.05) in SY (Table S10). A further 409 

45 SNPs were found to be associated with traits when all species were combined within a 410 

single analysis, although 11 of these were also identified in SY and 23 were identified in MU-411 

UN. No MAF filter was applied prior to screening SNPs for association with the traits of 412 

interest: 37 SNPs were common (MAF > 0.05) in at least one dataset. Allele frequencies for 413 

SNPs identified as significantly associated with adaptive traits in MU-UN were compared for 414 

UN and MU separately (Table S11). Diversity was much lower in UN than MU for the 415 
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majority of SNPs: 23 of the 36 SNPs identified as associated with BB2011 were 416 

monomorphic in UN. In contrast, diversity in UN was much higher for SNPs identified as 417 

significantly associated with I2013 (Table S11). Similarly, the standard error for MU was 418 

more than twice that of UN for BB2011 (MU: 0.73; UN: 0.33) whereas the standard error for 419 

both species was similar for I2013 (MU: 0.47; UN: 0.32) (Table S1).  420 

3.5. Putative function of genes containing SNPs associated with traits 421 

One hundred and thirteen SNPs associated with phenology and growth in the three pine 422 

species were located at 111 gene loci (one unigene, comp48223_c0_seq1, contained three 423 

SNPs). One locus was originally identified in Pinus radiata 424 

(Doth_comp54682_c0_seq1_159), the remaining were identified following transcriptome 425 

sequencing in P. sylvestris and the taxa of the P. mugo complex (Perry et al., 2020: Table 426 

S10). The genetic sequences of the loci associated with each trait were found to be highly 427 

similar to proteins with a range of putative functions (Tables S12a-c). The majority of SNPs 428 

associated with bud set (all identified in SY) were found in genes that code for proteins 429 

putatively involved in growth and development (61.11 %) with a few (exclusively rare) SNPs 430 

found in proteins putatively involved in response to environment (22.22 %, Figure 3). In 431 

contrast, budburst had high numbers of associated SNPs (both rare and common) in genes that 432 

code for proteins putatively involved in response to environment and growth and development 433 

(mean % contribution of putative function groups to the total number of proteins containing 434 

SNPs significantly associated with budburst across species’ datasets: 39.01 % and 39.09 % 435 

for growth and development and response to environment, respectively). Whereas the 436 

majority of SNPs associated with height were found in proteins putatively associated with 437 

growth and development, SNPs associated with increment were found in proteins putatively 438 
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associated with both growth and development and response to environment. There are some 439 

differences among species in the putative function of proteins containing significantly 440 

associated SNPs: the majority of SNPs in SY are found in proteins putatively associated with 441 

growth and development for all traits (Figure 3) whereas MU-SY-UN and MU-UN have 442 

higher proportions of SNPs in proteins putatively associated with response to environment as 443 

well as growth and development.  444 

Figure 3. Contribution of putative function groups (G&D: growth and development; R: 445 
reproduction; RtE: response to environment) to the total number of proteins containing SNPs 446 
significantly associated with each trait (bud set, budburst, height and increment) as a 447 
percentage of the total number of proteins identified for each trait for each species’ dataset 448 
(MU: P. mugo; SY: P. sylvestris; UN: P. uncinata). Proteins which were uncharacterised, for 449 
which no known function in plants was found or for which only cellular processes could be 450 
identified are categorised “NA”. Total for each trait may be higher than 100 % as there may 451 

be more than one putative function assigned to a single protein. MAF: minor allele frequency 452 
(MAF > 0.05: common; MAF < 0.05: rare) 453 

 454 
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3.6. Predictive models for budburst and growth: internal testing in P. sylvestris 455 

There was a large dropout in the number of SNPs which were suitable to include in 456 

subsequent predictive models: of the 38 SNPs identified as potentially associated with growth 457 

(H2013 and I2013) in the P. sylvestris and all species’ datasets (SY and MU-SY-UN 458 

respectively), 24 were monomorphic in either (or both) the SY and the independent P. 459 

sylvestris datasets (YA-SY and GS-SY). Therefore, 14 SNPs were included in the model, of 460 

which seven were rare (MAF < 0.05) in the SY dataset (although only three of these were rare 461 

in the MU-SY-UN datasets in which they had been identified as associated with the traits). Of 462 

the 14 SNPs, five were identified in the SY dataset, four were identified in the MU-SY-UN 463 

dataset, three were identified in both the MU-UN and MU-SY-UN datasets and two were 464 

identified in both the SY and MU-SY-UN datasets. For the budburst predictive model, a total 465 

of twelve SNPs were used, of which five were rare in the SY dataset. The remaining 23 SNPs 466 

were monomorphic in at least one of the SY, YA-SY and GS-SY datasets. Of the 12 SNPs 467 

used in the model, one (which was rare) was identified in the MU-SY-UN dataset with the 468 

remaining eleven identified in the SY dataset.  469 

The SNPs used to construct growth and budburst predictive models were found to have lower 470 

differentiation among populations (FST, Table S13) than the full set of polymorphic SNPs for 471 

SY (0.03 and 0.06, respectively). The inbreeding coefficient (FIS) was 0.6 – 0.7 for the 472 

majority of SNP sets (Table S13) with slightly higher values observed in the SNP sets for the 473 

random budburst model with a MAF filter (FIS = 0.8) and the growth model using SNPs 474 

identified in the SY dataset (FIS = 0.9). Observed heterozygosity and gene diversity (HO and 475 

HS, respectively) were both lower in the sets of SNPs which were filtered to include only 476 

those which were common (MAF > 0.05) in the original dataset. 477 
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The performance of each predictive model (i.e. the strength and significance of the correlation 478 

of predicted values with the observed values for each trait) are summarised in Table 3. 479 

Models constructed using random SNPs were not successful in predicting values that were 480 

correlated with observed values for each trait. In all cases, the models constructed without a 481 

MAF filter (MAF >  0.05) always performed better than the equivalent models constructed 482 

using only common SNPs, although there was little difference in performance for those 483 

models constructed using all polymorphic SNPs. The predictive model for budburst 484 

constructed using SNPs identified in the SY dataset alone (r = 0.40, p < 0.001) performed 485 

better than the equivalent model using SNPs identified in both the SY and MU-SY-UN 486 

datasets (r = 0.37, p < 0.001) although there was only a single rare (MAF < 0.05) SNP which 487 

was present in the latter and not the former. For this reason, this predictive model for budburst 488 

(using SNPs identified in SY and with no MAF filter: final budburst model) was chosen to be 489 

tested independently.  490 

  491 
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Table 3. Pearson’s correlation coefficient (r) and associated significance values for 492 
comparison of predicted and actual values for each trait both with and without a MAF filter 493 

when using prediction models constructed with SNPs significantly associated with each trait 494 
(Budburst; Growth), a random set of SNPs or all polymorphic SNPs. 495 

Training trait SNP set MAF: No MAF: Yes 
Predictive models: Budburst 

BB2011 Budburst 0.37*** 0.12 
 Budburst (SY only) 0.40*** 0.12 
 Random -0.04  -0.02 

 All SNPs 0.57*** 0.57*** 
Predictive models: Growth 

H2013 Growth 0.26*** 0.25** 
 Growth (SY only) 0.20** 0.19* 
 Random 0.14 0.11 
 All SNPs 0.49*** 0.48*** 

I2013 Growth 0.19* 0.14 
 Growth (SY only) 0.19* 0.09 
 Random 0.02 -0.01 
 All SNPs 0.35*** 0.35*** 

MAF: No = no Minor Allele Frequency filter applied; Yes = only common (MAF > 0.05) SNPs 496 
included. MAF was calculated using the datasets from which the SNPs were originally identified as 497 
being associated with each trait. Significance values: *, p 0.01-0.05; **, p 0.001-0.01; ***, p < 0.001 498 
 499 

Using H2013 as a training trait, the predictive model for growth performed more poorly using 500 

SNPs identified in the SY dataset than using SNPs identified in both the SY and MU-SY-UN 501 

datasets. However, with I2013 as a training trait in the same model, there was no difference in 502 

performance when the different SNP sets were used. There were highly significant positive 503 

correlations between observed and predicted values for H2013 when using the prediction 504 

models for growth whereas using I2013 as the training trait for the predictive model resulted 505 

in far lower levels of correlation between predicted and observed values. Therefore, the 506 

predictive model for growth using SNPs identified in both the SY and MU-SY-UN datasets 507 

with no MAF filter and using H2013 as a training trait (referred to as the final growth model) 508 

was chosen to be tested independently.  509 

The effect of the trait used to train the model was also seen in comparisons of the 510 

performance of the models constructed using all polymorphic SNPs: for each trait, predicted 511 
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values were more closely correlated with the observed values in models using budburst than 512 

in those using growth traits (H2013, I2013). 513 

3.7. Testing the prediction models in an independent P. sylvestris trial  514 

Prior to testing the final growth and budburst prediction models using data from the P. 515 

sylvestris field trials, the relationship between duration and timing of budburst was examined 516 

more closely. Timing (time taken to reach stages 4, 5 and 6) showed a significant negative 517 

correlation with duration (time taken to progress from stage 4 to 6) of budburst at each year 518 

assessed for stage 4, but the relationship was positively correlated for stage 6 (Table S14). In 519 

contrast, the time to reach stage 6 showed a significant positive correlation with the duration 520 

of budburst. Time to reach stage 5 was both positively (at GS) and negatively (YA) correlated 521 

with the duration of budburst.  522 

Predicted values were estimated using the final predictive models for budburst and growth as 523 

well as models constructed using all available SNPs and compared with values observed in 524 

the field. The field sites had shared populations and families but contrasting climates, 525 

allowing the models to be independently tested on traits measured in different environments. 526 

The predicted values for each trait were not significantly correlated with the observed values 527 

when using models constructed with all available SNPs (Table 4). In contrast, a number of 528 

significant correlations were observed when using models constructed with SNPs associated 529 

with the traits in question. The predicted values for budburst were found to be significantly 530 

positively correlated with the duration of budburst but only in GS in 2015 and 2018 (Table 4) 531 

indicating a possible effect of annual environmental variation on the predictive power of the 532 

model. They were also negatively associated with the time taken to reach stage 6 of budburst, 533 
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but only in YA in 2017 (although the values were also close to significance, p = 0.06, in 534 

2018).  535 

Table 4. Pearson’s correlation coefficient (r) and associated significance values for 536 
comparison of predicted and observed values for each trait. Predicted values estimated by 537 
final predictive models for growth and budburst assessed for their performance in an internal 538 

test (Associated SNP models: budburst - SNPs identified only in SY, no MAF filter applied, 539 
N SNPs = 11; growth - SNPs identified in both SY and MU-SY-UN, no MAF filter applied, 540 

N SNPs = 14). Predictive models constructed using all available SNPs (no MAF filter applied, 541 
N SNPs = 15,019). Duration: time taken for each tree to progress from stage 4 to stage 6. 542 
Stage 6: time taken to reach stage 6 of budburst. Description of each budburst stage is given 543 
in Table 1. 544 
 545 
  Associated SNPs  All SNPs 
Observed trait Year GS   YA   GS   YA  
Predictive model: Budburst (training trait: BB2011) 

Duration 2015 0.207 *  0.063   -0.005   0.088  
 2016 0.105   0.136   -0.112   0.016  
 2017 0.162   0.019   -0.131   -0.030  
 2018 0.242 *  -0.087   -0.150   -0.105  
 2019 0.152   0.075   0.099   0.188  

Stage 6 2015 0.150   0.007   -0.167   0.167  
 2016 0.094   -0.019   -0.101   0.004  
 2017 0.120   -0.216 *  -0.093   -0.047  
 2018 0.153   -0.187   -0.177   0.029  
 2019 0.128   -0.058   0.111   0.134  

Predictive model: Growth (training trait: H2013) 
Height 2008 -0.020   0.023   0.093   0.002  

 2020 0.104   0.376 ***  0.034   0.144  
Increment 2015 0.022   NA   0.060   NA  

 2016 0.173   0.299 **  0.149   0.158  
 2017 0.121   0.312 **  -0.012   0.175  
 2018 0.012   0.329 ***  0.030   0.138  
 2019 0.123   0.205 *  0.065   0.111  
 2020 -0.001   0.262 **  -0.058   0.110  

Significance values: *, p 0.01-0.05; **, p 0.001-0.01; ***, p < 0.001 546 
 547 

The predicted values for growth were found to be significantly associated with observed 548 

increment measurements at YA in every year, but not in GS (Figure 4). The correlation 549 

between predicted values and observed height in 2008 (at age one) was not significant at 550 

either YA or GS, despite the strong correlation observed between predicted values and 551 
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observed height at age 13 at YA indicating that the cumulative effect of the trees growing in 552 

the environment at YA contributed to the strength of the association. 553 

Figure 4. Correlations of observed height measured in 2020 at age 13 against predicted values 554 
using the final predictive model for growth at GS (correlation not significant) and YA. 555 

 556 

The effectiveness of the final predictive model for growth as a genomic selection tool was 557 

tested by comparing different selection methods (Figure 5) in trees at both field trial sites (GS 558 

and YA). The selected trees were from all five genotyped populations and included trees from 559 

28 of the 40 families. The majority of families were only represented by a single tree, 560 

although there were exceptions: two individuals were selected from single families in each of 561 

the sites using the phenotype method; two individuals were selected from each of two families 562 

in GS and from each of three families in YA using the genomic method; two individuals were 563 

selected from each of three families in YA using the random method. Genomic selection was 564 

the most successful method of selecting tall trees growing at YA: trees were on average 227 565 

mm and 437 mm taller than trees selected using the phenotype and random methods, 566 

respectively. The differences between selection methods were much smaller at GS: the mean 567 
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height of the 10 tallest trees selected using each of the selection methods was within a range 568 

of 203 mm. The coefficient of variation (CV) for trees chosen using the phenotype selection 569 

method was over 60 % greater than for those chosen using the genomic selection method at 570 

GS (23.68 and 14.63, respectively), indicating that trees chosen using the phenotype method 571 

were more variable for this trait at the site. Trees selected using the genomic and phenotype 572 

selection methods at YA had very similar CVs (10.84 and 10.31, respectively). Using the 573 

phenotype selection method, there were three trees at GS and none at YA that were among the 574 

ten tallest trees at each site. The genomic selection method identified two trees at YA and one 575 

at GS which were among the ten tallest trees at each site and the random selection method 576 

identified one tree at each of YA and GS which were among the ten tallest trees at each site.  577 

Figure 5. Height at 13 years (measured before the growing season started in 2020) of 10 trees 578 
at Yair (YA) and Glensaugh (GS) selected using different methods: Genomic: genomic 579 

selection using values from the final predictive model for growth (SNPs identified in both SY 580 
and MU-SY-UN, no MAF filter applied, N SNPs = 14); Phenotype: phenotype selection 581 

where trees were selected based on their height at one year (before the start of the second 582 
growing season, 2008); Random: trees were randomly selected from each site. Crossbars 583 
indicate means and standard deviations. 584 

 585 

  586 
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Discussion 587 

This study is among the first to use a high throughput array to identify SNPs associated with 588 

growth and phenology traits in conifers. Although the traits examined here are likely to be 589 

important in an ecological context, P. sylvestris is of significant economic value and the 590 

approach has potential for selection of traits of interest to industry. The use of a high-591 

throughput SNP array allowed nearly 50,000 SNPs to be simultaneously genotyped in a large 592 

number of trees, the vast majority (94 %) of which were of sufficiently high quality to be used 593 

in subsequent analyses. To increase the sample size of the datasets and the statistical power of 594 

our analyses, data from P. mugo and P. uncinata, which are both part of the P. mugo 595 

complex, were combined. The dropout rate for P. mugo was much higher, and the call rate 596 

much lower than for P. sylvestris and P. uncinata. It is likely that this is a consequence of the 597 

dominance of P. sylvestris in the sample set used to set allele calling thresholds, coupled with 598 

the genetic distance between the two species (Perry et al., 2020). Despite this, nearly a third of 599 

SNPs on the array were high quality in all three species and nearly half of all successfully 600 

converted SNPs were polymorphic in all three species – twice the number reported by Perry 601 

et al., (2020).  602 

Our study applied the genotyped SNP dataset to test for associations with previously 603 

published, well-characterised phenotypes for three pine species (Wachowiak et al., 2018a), 604 

identifying 113 SNPs significantly associated with variation in growth and phenology over 605 

multiple years. The large amount of interspecific variation for each trait, summarised in this 606 

study using the subsampled genotyped trees, supports the use of three species to identify 607 

SNPs as the greater range of phenotypes provides greater scope to identify genetic differences 608 

underlying the variation, as well as the opportunity to compare SNPs identified in each 609 
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species. As shown in our previous study, the between-population variation in both phenology 610 

and height was far less in P. mugo and P. uncinata than in P. sylvestris, reflecting the fact that 611 

the latter was sampled from a much broader geographical distribution and across much wider 612 

environmental gradients in photoperiod and temperature (Wachowiak et al., 2018a). Despite 613 

the smaller environmental gradient represented by our P. mugo sampling, the number of SNPs 614 

identified as significantly associated with phenology was similar to the number identified in 615 

P. sylvestris. However, the number of SNPs identified as significantly associated with growth 616 

traits was much lower.  617 

Overall, the majority of SNPs identified in this study were rare. Of those that were common, 618 

the numbers of SNPs identified as significantly associated with traits were similar among P. 619 

sylvestris and the P. mugo complex for both phenology (11 and nine for P. sylvestris and the 620 

P. mugo complex, respectively) and growth (four and six for P. sylvestris and the P. mugo 621 

complex, respectively). Although one SNP was found to be associated with both phenology 622 

and growth (the former in the P. mugo complex and the latter in P. sylvestris) it was 623 

extremely rare in P. sylvestris. Most likely, this reflects the confounding effect observed when 624 

a small number of individuals (in this case, two) have both a rare allele at this locus and are at 625 

the tail-end of a trait distribution (the two individuals were ranked 366 and 412 out of 413 for 626 

increment in 2013). This finding supports the use of MAF filtering, which is frequently 627 

performed either before or during analysis, although here we report all SNPs to evaluate the 628 

relative contribution of rare and common SNPs to each trait and to assess the predictive 629 

power of models constructed using SNPs with and without MAF filtering. There were very 630 

few instances of the same SNP being associated among traits, among species or among years, 631 

which may indicate the involvement of different genes at different stages of development or 632 

in response to varying environmental conditions, as well as the very small effect sizes of most 633 
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SNPs in polygenic traits (Korte and Farlow, 2013). Our earlier comparative genetic studies of 634 

a large set of SNPs located in nuclear genes similarly found almost no shared polymorphisms 635 

under selection between different taxa of the P. mugo complex (Wachowiak et al., 2018b). 636 

The majority of SNPs associated with height, which showed high levels of narrow sense 637 

heritability among species, were common, whereas the majority of SNPs associated with 638 

budburst (of which there were far more than for height), which showed low levels of narrow 639 

sense heritability among species, were rare. The positive relationship between narrow sense 640 

heritability, excepting those with very high heritability values, and the proportion of SNPs 641 

identified which were common suggest that fewer SNPs of larger effect are associated with 642 

traits with high narrow sense heritability, while a larger number of SNPs with smaller effects 643 

are associated with traits with low narrow sense heritability. Calleja-Rodriguez et al. (2020) 644 

found that predictive ability (estimated as the correlation between the genomic estimated 645 

breeding values and phenotypes) was significantly positively associated with narrow sense 646 

heritability in P. sylvestris and there are numerous studies in humans discussing the 647 

contribution of SNPs with different MAF to the heritability of traits (e.g. Park et al., 2011; 648 

Yang et al., 2010). However, these are concerned with the relative contribution of variants 649 

with different MAFs to overall heritability, rather than comparing traits with different 650 

heritability values and comparing the MAF of SNPs associated with each. The lack of a 651 

similar relationship for the two individuals with very high values for narrow sense heritability, 652 

which in fact exceed the maximum value (1) for this measure, could be a result of the use of 653 

kinship and distance matrices to account for population stratification which may also, 654 

inadvertently, prevent the identification of SNPs which have an extremely close relationship 655 

with family structure.  656 
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The quantitative nature of adaptive traits assumes they are polygenically controlled (Mackay, 657 

2001). The majority of studies on genetic control of adaptive traits in conifers have each 658 

identified multiple QTLs or SNPs associated with variation in timing of bud set, budburst and 659 

growth (Bartholomé et al., 2016, Eckert et al., 2009, Holliday et al., 2010, Hurme et al., 2000, 660 

Jermstad et al., 2001, Jermstad et al., 2003, Plomion et al., 1996, Prunier et al., 2013), 661 

although there have also been a limited number of specific genes implicated in the control of 662 

adaptive traits in conifers. For example (Eckert et al., 2015) tested 475 SNPs and found six 663 

significant associations with height and budburst in sugar pine (Pinus lambertiana) and 664 

(Budde et al., 2014) identified 17 SNPs significantly associated with serotiny in maritime pine 665 

(Pinus pinaster) using an array with 251 SNPs from candidate genes. A study by (Bai et al., 666 

2019) used specific-locus amplified fragment sequencing (SLAF-seq) to screen over 450,000 667 

SNPs to identify around 30 SNPs associated with resin-yielding capacity and volume of wood 668 

in Masson’s pine (Pinus massoniana). A high-throughput array was also used by (Westbrook 669 

et al., 2013) to identify 231 SNPs significantly associated with oleoresin flow in clonally 670 

replicated sites over multiple years, of which the vast majority were specific to individual 671 

sites. Loci related to budburst/set were identified in Picea abies and Pinus sylvestris (PaFTL2, 672 

(Avia et al., 2014) and PsFTL2, (Gyllenstrand et al., 2007), respectively). Other traits which 673 

have been significantly associated with SNPs in pines include wood properties (González-674 

Martínez et al., 2007), stem quality (Xiong et al., 2016), and disease resistance (Quesada et 675 

al., 2010), all of which were done in Pinus taeda.  676 

Phenological variation in Pinus spp. observed in common garden studies has been repeatedly 677 

shown to be significantly associated with the environment at the site of origin (Howe et al., 678 

2003, Hurme et al., 1997, Repo et al., 2000, Salmela et al., 2011, Wachowiak et al., 2018a) 679 

with trees from northern European populations setting bud and flushing earlier than trees from 680 
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more southerly populations. Whereas environmental cues are expected to play an important 681 

role in initiating phenological processes (Dougherty et al., 1994) including budburst (Laube et 682 

al., 2014), bud set is thought to be endogenous in Pinus spp, with photoperiod and 683 

temperature having relatively minor effects (Cooke et al., 2012). In this study, we found a 684 

high proportion of common SNPs in genes putatively involved in environmental responses 685 

(including response to abiotic and biotic stress and environmental cues) for both budburst and 686 

growth, but not for bud set. Common SNPs associated with bud set were exclusively located 687 

in genes related to growth and development. At this stage, assigning unigenes in conifers is 688 

largely presumptive and relies on similarity to domains or families of proteins with a large 689 

and/or speculative range of functions, many of which are, as yet, unexplored or undefined. 690 

However, the divergence of assignment among SNPs associated with budburst and bud set, 691 

and its concurrence with physiological understanding of these functions, suggests the genes 692 

implicated may have a role in key adaptive traits. Furthermore, as it has previously been 693 

demonstrated that intragenic linkage disequilibrium decays rapidly in the investigated species 694 

(Wachowiak et al., 2009, Wachowiak et al., 2013), there is a higher likelihood that SNPs 695 

identified may be directly involved in variation of phenology and growth. 696 

Although predictive models constructed using all available polymorphic SNPs were the most 697 

successful at predicting values in the internal validation set they had no predictive ability 698 

when tested in an independent set of trees, possibly reflecting the divergent geographic ranges 699 

and associated environments of tree populations used in both trials. In contrast, predictive 700 

models constructed using SNPs identified as significantly associated with budburst and 701 

growth in the training set were found to be successful at estimating values in both the internal 702 

glasshouse grown validation set and the independent field grown sets of trees although the 703 

predictive ability of the models varied spatially (among the sites) and temporally (among 704 
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years). The final predictive model comprised SNPs from all species’ datasets (SY, MU-UN 705 

and MU-SY-UN) indicating that the approach using all three species to identify SNPs was 706 

justified. The final predictive model for growth generated values that were highly 707 

significantly correlated with actual height and increment over multiple years, although only at 708 

YA. In contrast, the predictive ability of the model for trees at GS was poor. Phenotypic 709 

variation is a product of both heritable genetic variation and environmental variation. 710 

Consequently, the extent to which predictions are accurate will depend on the interplay 711 

between the underlying genetic control of the traits and a host of external cues and stresses. 712 

These will affect the control and dynamics of a large number of processes that will, in turn, 713 

affect the expression of the traits both directly and indirectly. Trees growing at the YA site are 714 

much larger than at GS, indicating that there may be environmental limitations for growth at 715 

GS. Trees which were grown in the glasshouse and were used to identify SNPs associated 716 

with growth are unlikely to have many environmental limitations and this could be why the 717 

predictive model works well only for the YA site. 718 

Ideally, a predictive model should be used in populations from very similar environments as 719 

the population used to identify SNPs associated with traits and to construct the predictive 720 

model (Resende et al., 2012b). For instance, a predictive model for serotiny constructed by 721 

(Budde et al., 2014) also had variable success when applied to different populations of Pinus 722 

pinaster.  723 

Similarly, the predicted values for budburst were significantly (albeit only weakly) correlated 724 

with the duration of budburst for two years at GS, but not at YA. The relationship between 725 

bud burst timing and duration was found to vary as budburst progressed: trees which were 726 

observed to reach the first few stages of budburst (where scales were open but needles not yet 727 
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visible) early in the season did not complete the whole budburst process sooner as might be 728 

expected. Instead, these trees took longer overall to complete budburst and it is clear that this 729 

relationship is not consistent among sites. However, it further demonstrates the influence of 730 

the environment on phenotypic variation and the caution that must be applied when 731 

interpreting or extrapolating results from differing environments.  732 

There was a significant correlation between the predicted values for budburst and timing of 733 

budburst but only in one year, and at YA only. This was a negative relationship, such that 734 

trees which were predicted to complete budburst early in the season actually completed 735 

budburst late. Although this initially seems surprising, it does have a plausible biological 736 

explanation. The predictive model was constructed using SNPs which were identified as 737 

significantly associated with the timing of budburst in a set of trees from a common garden 738 

glasshouse experiment, whilst the validation data were collected from trees in a field trial. The 739 

environmental difference between the glasshouse and the field was clearly substantial, with 740 

possibly the most important deviation between the two being that temperatures in the 741 

glasshouse did not drop below freezing throughout the winter. The relationship between the 742 

chilling requirement (the accumulation of time spent below a certain temperature) and the 743 

initiation of budburst is complex: tree species and populations differ in their chilling 744 

requirement as well as in their forcing requirement (the accumulation of time spent above a 745 

certain temperature) after the chilling requirement is met (Körner, 2006). An increase in chill 746 

days (mean temperature < 5 °C) can significantly advance budburst timing in P. sylvestris 747 

(Laube et al., 2014). Heritable genetic variation in the timing of budburst is therefore likely to 748 

be strongly influenced by environmental cues including chilling and subsequent forcing. The 749 

contrast between the two environments means that trees requiring a greater number of chill 750 

days before the initiation of budburst will experience a delay in the glasshouse but burst their 751 
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buds earlier in the field, resulting in a negative relationship of the trait among the two 752 

environments. Moreover, variation in the climate ensures that chilling and forcing conditions 753 

vary among sites as well as annually. Although the mean number of annual chill days is 754 

higher in GS than YA it is has fewer growing degree days which may delay the onset of 755 

budburst in some families or populations. Another factor to consider is the different ages of 756 

the trees used to identify SNPs significantly associated with traits, and the age of the trees in 757 

the independent trial used to validate the predictive models. (Resende et al., 2012b) reported 758 

that models generated using young Pinus taeda trees did not perform well at predicting 759 

phenotypes for trees at age 6 years.  760 

Predictive models potentially provide a tool with which to determine the phenotype of trees 761 

without having to either grow them for a significant period or regularly assess them in the 762 

field, saving both time and money. They therefore have several potential applications 763 

including selecting for key traits in commercial breeding programmes and assessing native 764 

forests for their response to abiotic and biotic stress. However, results from this study 765 

demonstrate the extent to which values generated by predictive models can vary in the 766 

strength of their correlation with the observed values depending on the environment in which 767 

they are tested. In particular this is likely to affect predictive models which are trained in one 768 

environment and then used to generate values for a different environment, but also for 769 

environments which change over time: something which is likely to increase in severity and 770 

likelihood in the near future given climate change predictions (Franklin et al., 2016). 771 

However, the small-scale comparisons between different selection methods demonstrate the 772 

potential for the predictive growth model to be used to select trees which are taller on average 773 

than those selected randomly at the field trial sites and which show similar success as the 774 

phenotype selection method at one of the sites (GS) but without the need to wait and 775 
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phenotype each tree individually. As we had only small sample sizes and a relatively small 776 

pool of trees from which to select, the approach will require further testing using a larger set 777 

of trees in a further set of experimental trials.  778 

Conclusions 779 

Despite its ecological and economic importance there have been no previous studies exploring 780 

association between SNPs and key adaptive traits in P. sylvestris. Our study demonstrates the 781 

potential usefulness of the high throughput array developed by (Perry et al., 2020) for 782 

identifying genes and SNPs with significant associations with phenology and growth traits. 783 

Development of a predictive model that has been validated in an independent trial is a 784 

demonstration of the application of the approach to breeding trials in the future. However, the 785 

study shows a strong influence of site environment on development of the traits. This may 786 

affect the ability of predictive models to generate values for populations departing from the 787 

environmental conditions in which the models were trained.  788 
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