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Abstract 

In tree species, genomic prediction offers the potential to forecast mature trait values in early 

growth stages, if robust marker-trait associations can be identified. Here we apply a novel 

multispecies approach using genotypes from a new genotyping array, based on 20,795 SNPs 

from three closely related pine species (Pinus sylvestris, Pinus uncinata and Pinus mugo), to 

test for associations with growth and phenology data from a common garden study. Predictive 

models constructed using significantly associated SNPs were then tested and applied to an 

independent multisite field trial of P. sylvestris and the capability to predict trait values was 

evaluated. One hundred and eighteen SNPs showed significant associations with the traits in 

the pine species. Common SNPs (MAF > 0.05) associated with bud set were only found in 

genes putatively involved in growth and development, whereas those associated with growth 

and budburst were also located in genes putatively involved in response to environment and, 
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to a lesser extent, reproduction. At one of the two independent sites, the model we developed 

produced highly significant correlations between predicted values and observed height data 

(YA, height 2020: r = 0.376, p < 0.001). Predicted values estimated with our budburst model 

were weakly but positively correlated with duration of budburst at one of the sites (GS, 2015: 

r = 0.204, p = 0.034; 2018: r = 0.205, p = 0.034-0.037) and negatively associated with 

budburst timing at the other (YA: r = -0.202, p = 0.046). Genomic prediction resulted in the 

selection of sets of trees whose mean height was taller than the average for each site. Our 

results provide tentative support for the capability of prediction models to forecast trait values 

in trees, while highlighting the need for caution in applying them to trees grown in different 

environments.  
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1. Introduction 

A primary goal of association genetics in long-lived organisms such as trees is to develop 

capacity to predict, at early life stages, the trait values of mature trees. However, the main 

traits of interest – such as height, volume, disease tolerance – are typically controlled by many 

genes, show quantitative variation, and may vary in expression and heritability depending on 

the environment in which they are assessed (Goddard and Hayes, 2009, Schlichting, 1986). 

Therefore, a high number of genetic markers screened in a large number of samples, which 

have also been accurately phenotyped, ideally in multiple environments, are required to 

develop robust predictive models for these traits. However, the power of genetic association 

studies is growing rapidly with improvements in the scale, accuracy and cost of high-
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throughput sequencing and genotyping. In particular, the accessibility of cost-effective high-

throughput genotyping has benefited the study of non-model organisms, especially those for 

which genome assembly is challenging due to genome size and/or complexity (Prunier et al., 

2016, Zimin et al., 2017). Allied to parallel efforts in building phenotype datasets, these 

technical and analytical advances mean association genetics in a range of tree species is now 

tractable. 

In tree breeding, genome-wide single nucleotide polymorphism (SNP) markers can be used to 

predict breeding values and significantly increase the rate of gain in subsequent generations in 

a process known as genomic selection or genomic prediction (Meuwissen et al., 2001). The 

use of association analyses to identify SNPs significantly associated with traits of interest can 

further reduce and refine the number of SNPs used in predictive models. In this context, 

genomic prediction aims to increase the efficiency of breeding programmes to improve timber 

yield and quality and reduce losses due to pests and diseases in commercial forestry. 

Increasingly, it is also being used to screen natural populations for their adaptive potential to 

future threats such as climate change and disease (Isabel et al., 2020, Capblancq et al., 2020). 

To develop predictive models, multiple, ideally independent, trials are necessary to identify, 

test and validate the SNPs associated with each trait. In trying to apply genomic prediction 

approaches to populations outside breeding programmes, there are the additional challenges 

of comparative genetic complexity (Herbert et al., 1999), a lack of pedigree information, and 

an entirely different selection regime.  

In the association analysis and prediction model development phase, groups of closely related 

species that are differently adapted but have similar genetic backgrounds can be useful 

experimental systems in which to search for parallel signatures of selection at the genomic 
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level (Wachowiak et al., 2015). For such groups, a multispecies genomic approach can 

improve the power to detect genes involved in adaptation and show whether orthologous loci 

contribute to adaptive variation in different species (Neale and Ingvarsson, 2008). 

Multispecies approaches are reported to improve our understanding of both transcriptomes 

and genomes (for example, Ahrazem et al., 2019, Cornell et al., 2007, Leebens-Mack et al., 

2019, Pellegrini et al., 1999, Polturak et al., 2018): the use of comparative species analyses 

provides a wide phenotypic base and shared evolutionary history for the identification of 

inter- and intra-specific genetic variation (van Kleunen et al., 2014). Making use of this 

multispecies approach to select SNPs for genomic prediction may also help to locate them in 

influential loci and potentially improve the generality of models based upon them. 

Globally, pines are among the most important commercial tree species (Kanninen, 2010) and 

are ecosystem-defining in vast areas of forest across the northern hemisphere. Understanding 

the genetic architecture of key adaptive traits in pines, such as growth, form, disease 

resistance and phenology is of interest to a wide range of stakeholders, including the forestry 

industry and conservationists. Due to their large size and complexity, the assembly of pine 

genomes is particularly challenging, and has only been satisfactorily achieved for loblolly 

pine (Pinus taeda; Zimin et al., 2014) and sugar pine (Pinus lambertiana; Stevens et al., 

2016), which are among the largest genomes ever sequenced and assembled. However, 

thousands of polymorphic regions potentially suitable for use in genotyping in pine species 

have already been discovered using high-throughput sequencing methods such as whole 

transcriptome studies (Blanca et al., 2012, Chancerel et al., 2011, Durán et al., 2019, Geraldes 

et al., 2011, Liu et al., 2014, Parchman et al., 2010, Trick et al., 2009, Wachowiak et al., 

2015).  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2020.12.22.423987doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423987
http://creativecommons.org/licenses/by/4.0/


So far, most prediction models have been developed and tested for wood or fruit quality 

(Kumar et al., 2012, Minamikawa et al., 2017, Muranty et al., 2015, Beaulieu et al., 2014, Isik 

et al., 2016, Resende et al., 2012a, Resende et al., 2012b, Thistlethwaite et al., 2017), 

although a few have targeted disease resistance (Westbrook et al., 2020, Stocks et al., 2019). 

In pines, association studies and tests of genomic prediction have been performed for serotiny 

(Pinus pinaster, Budde et al., 2014; Pinus contorta, Parchman et al. 2012), circumference, 

height, stem straightness (Pinus pinaster, Bartholomé et al., 2016), oleoresin flow (Pinus 

taeda, Westbrook et al., 2013) and growth and wood quality traits (Pinus sylvestris, Calleja-

Rodriguez et al., 2020).  

Here we study three closely related pine species (P. sylvestris, Pinus mugo and Pinus 

uncinata) which have contrasting growth habits and are adapted to different environments. 

The species are members of the same monophyletic group within Pinaceae (Grotkopp et al., 

2004), having diverged within the last 5 million years (Wachowiak et al., 2011) and have the 

same number of chromosomes (2n = 24). The three species have weak reproductive barriers 

between them and share many ancestral polymorphisms (Lewandowski et al., 2000; 

Wachowiak et al., 2013). We used trait data from a common garden glasshouse experiment 

(Wachowiak et al., 2018a) along with genotyping data from a large new multispecies Pinus 

SNP array (Perry et al., 2020) to identify SNPs associated with growth and phenology in the 

three species and to determine their putative function. A range of genomic prediction models 

were developed, and then tested using a subset of the P. sylvestris. Finally, we evaluated the 

potential of the models for genomic prediction, by testing the best performing set to estimate 

trait values in an independent multisite P. sylvestris field trial. We discuss the potential and 

limitations of the models for genomic prediction. 
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2. Methods 

Experimental design and analyses performed in the study are summarised in Figure 1.   

Figure 1. Plant material, datasets and analyses used in the study. MU: P. mugo; SY: P. 
sylvestris; UN: P. uncinata 

2.1. Plant material and phenotype assessments 

Collection of plant material, experimental design and phenotype assessments for the common 

garden glasshouse trial (referred to hereafter as the association trial) are described by 

Wachowiak et al., (2018a). Briefly, open-pollinated seeds of the three pine species were 

collected from three to five trees per population from twenty-eight natural populations in 

Europe covering the geographic range of each species (Figure 2). The collection consisted of 

thirteen populations of P. sylvestris (SY), nine P. mugo (MU), and six P. uncinata (UN). 

Seeds from each maternal tree were sown on trays of compost in spring 2010. After 

germination, a provenance–progeny trial was established in an unheated glasshouse at the UK 

Centre for Ecology and Hydrology, Edinburgh, UK (latitude 55.861261, longitude -

3.207819). Seedlings were grown under natural light with automatic watering applied during 
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the growing season. The trial was divided into 25 randomized blocks with up to five families 

per population, of which the first 18 blocks were analysed by Wachowiak et al. (2018a). A 

summary of the counts of populations, families and total numbers of individuals are provided 

in Table S1. Phenology (traits assessed: BS, timing of bud set, BB, timing of budburst) and 

growth (traits assessed: H, total height; I, annual increment - the increase in height from one 

year to the next) were recorded for every seedling to evaluate within- and between-species 

variation (species means for trees sampled in this study recorded in Table S2).  

 

Figure 2. Geographic location of sampled pine populations across Europe (map on left: 
association trial) and Scotland (black circles in map on right: independent trial). Multi-site 
field trial locations (GS, Glensaugh; YA, Yair) are indicated with white squares on right hand 
map; glasshouses used to grow the association and independent trials (JHI, James Hutton 
Institute; UKCEH, UK Centre for Ecology and Hydrology) are indicated with asterisks on 
right hand map. 
 

Bud set was defined as the time when a visible apical bud with clearly developed scales was 

formed at the tip of a stem in each seedling and was recorded as the number of days since the 
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date on which the first plant to set a terminal bud in the trial was observed (in the first year of 

growth: BS2010). Budburst was scored when new needles emerged around the tip of the 

apical bud in the main stem and was measured as the number of days since the date on which 

the first plant to burst bud was observed (in the second and third years, BB2011, BB2012). 

Phenology observations were conducted twice a week. The height of all pines was measured 

annually from the second to fourth year of the pine growth (H2011, H2012, H2013). The 

annual increment was estimated for growth between 2011-12 (I2012) and 2012-13 (I2013). 

On the rare occasions that height was lower than in the previous year (due to, for example, 

human error or the loss of the leader) measurements were adjusted to ‘NA’. To assess the 

proportion of variation that is under genetic control, the narrow sense heritability (h2) and 

associated standard error for each trait was estimated using the GRM [genetic relationship 

matrix]-based restricted maximum likelihood (GREML) procedure implemented in GCTA 

(Yang et al 2011).  

An independent multi-site, field-based provenance-progeny trial of P. sylvestris (referred to 

hereafter as the independent trial) was also phenotyped and genotyped using the same 

genotyping array and was used to test the predictive power of models developed using plants 

in the association trial described above. This trial was selected as there was commonality in 

the traits measured and geographic range of Scots pine populations used with the glasshouse 

trial, however the number of genotyped samples were considered to be too low to perform 

association analyses and it was therefore used instead to test the predictive power of the 

models in two distinct environments instead. Seeds from eight families from each of 21 native 

Scottish P. sylvestris populations (Figure 2) were collected in March 2007 and germinated at 

the James Hutton Institute, Aberdeen (latitude 57.133214, longitude -2.158764) in June 2007. 

A subset of trees from two of these sites were genotyped as part of this study: a site in the 
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Borders of Scotland (Yair, YA: latitude 55.603625, longitude -2.893025) was planted in 

October 2012; a site in Aberdeenshire (Glensaugh, GS: latitude 56.893567, longitude -

2.535736) was planted in spring 2012. Trees transplanted to YA were initially grown in an 

unheated glasshouse whereas trees transplanted to GS were started in pots outside. The two 

transplantation sites also generally experience different climates, with the YA site typically 

warmer and drier than the GS site (Table S3) and with a longer growing season. 

At each trial site, trees were planted in four randomised blocks at 3 m x 3 m spacing. A guard 

row of Scots pine was planted around the periphery of the blocks. Each block comprised one 

individual from each of eight families per 21 populations (168 trees). A summary of the 

counts of populations, families and total numbers of individuals are provided in Table S1. 

Budburst and height were assessed annually from 2015. Height was measured in the winter 

before the growing season began from 2015 to 2020. Height was also measured before the 

start of the second growing season in March 2008. The annual increment was estimated as the 

increase in height from one year to the next. Each tree was assessed for budburst stage 

annually from 2015 until 2019 at weekly intervals from early spring until budburst was 

complete. Seven distinct stages of budburst were defined (Table S4). The number of days for 

each tree to reach each stage of budburst, starting from the day the first tree was observed at 

each stage at each site, was recorded. When trees progressed through budburst stages rapidly, 

skipping a stage between assessments, a mean value was taken between the two assessment 

dates. The duration of the core stages of budburst (time taken to progress from stage 4 to stage 

6) was also estimated. Although the method used to record budburst was not identical among 

the association trial and independent trial, the trait as described by Wachowiak et al., (2018a) 

is equivalent to stages 5 and 6 in the independent trial.  
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To better understand the relationship between different traits and for individual traits across 

different years, Pearson’s correlation coefficient and significance values were estimated for 

trees in the association trial for each species separately and for trees in the multi-site 

independent trial for each site separately using a package ‘Hmisc’ (Harrell Jr, 2020) in R (R 

Core Team, 2020). Data on individual traits measured over multiple years enabled their 

consistency among years to be assessed, as inter-annual variation may occur due to seasonal 

environmental variation, developmental variation and/or maternal effects (Vivas et al., 2020). 

Pearson’s correlation coefficient and associated significance values between budburst timing 

and duration among years and stages in the independent trial were also examined.  

Nested ANOVA was performed for growth and phenology in the independent trial to assess 

within-site spatial heterogeneity for each site. Data for all trees in the trial was used (i.e. not 

just the subset of genotyped trees), with population as a fixed effect, and families nested 

within population and block as random effects.  

2.2. Genotyping array 

The design of the array, genotyping and SNP calling are as described by Perry et al., (2020). 

Briefly, an array comprising 49,829 single nucleotide polymorphisms (SNPs) was used to 

genotype 1,920 DNA samples (from needles of four pine species: the species included here 

plus Pinus uliginosa) according to the Affymetrix Axiom Assay protocol on a GeneTitan and 

following genotyping, genotype calls were performed using Axiom Analysis Suite as 

recommended by the manufacturer. A subset of trees from the association trial described in 

the previous section were genotyped and consisted of twelve populations of SY (N = 461) and 

five populations each of MU (N = 145) and UN (N = 201). Up to 10 trees were genotyped per 

family (except for population SY33 which was genotyped up to a maximum of 14 trees per 
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family). Five families were genotyped per population with the exception of the following; 

SY44 (N families = 4), SY30 (N families = 3) and MU5 (N families = 3). Samples were 

filtered to remove all those with a call rate < 80 % (N removed: MU = 30; SY = 5; UN = 10). 

A summary of the counts of genotyped populations, families and total numbers of individuals 

are provided in Table S1. 

The independent trial of P. sylvestris was also partially genotyped at each site: 100 trees from 

YA (15 % of the trees at the site) and 108 trees from GS (16 % of the trees at the site), each 

comprising the same five populations (Beinn Eighe, BE; Glen Affric, GA; Glen Loy, GL; 

Glen Tanar, GT; Rhidorroch, RD) with 19-22 individuals per population for each site. There 

were 7-8 families genotyped for each population with 1-3 half-siblings in each family at each 

site. These datasets are henceforth referred to as YA-SY and GS-SY. A summary of the 

counts of genotyped populations, families and total numbers of individuals are provided in 

Table S1. 

2.3.Population genetic structure, kinship and statistical power 

On the basis of the SNP genotyping results in the association trial, population genetic 

structure was assessed visually by constructing a neighbour joining tree in the R package 

‘ape’ (Paradis and Schliep, 2019) based on a distance matrix generated in TASSEL version 

5.2.39 (Bradbury et al., 2007). SNPs with call rate < 80 % (N = 48) were excluded. Pairwise 

kinship (centred identity by state) was estimated for each species independently using all 

polymorphic markers in TASSEL. The degree of skewness in the distribution within each 

species’ matrix was calculated using the D’Agostino skewness test in the R package ‘fBasics’ 

(Wuertz et al., 2020). The statistical power of each species’ dataset (MU; SY; UN), the P. 

mugo complex (MU-UN), and the full dataset including all species (MU-SY-UN) to detect 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2020.12.22.423987doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423987
http://creativecommons.org/licenses/by/4.0/


true associations between SNPs and adaptive traits was estimated using the method reported 

by Wang and Xu (2019) under the following assumptions: nominal type 1 error (false 

positive) = 0.05; QTL size = 0.05. Statistical power was estimated at different levels of 

polygenic effect (λ): from 0.1 (where polygenic variance is 10 % of phenotypic variance) to 

10 (where polygenic variance is 10 x phenotypic variance). Genotype frequencies of all SNPs 

subsequently found to be significantly associated with the adaptive traits in the MU-UN 

dataset were checked in each species separately (MU and UN) to assess the contribution of 

each species to associated genetic variation. 

2.4. Genetic associations and putative functions 

Using results from the association trial, identification of SNPs potentially associated with 

phenology (traits: budburst and bud set) and growth (traits: height and increment) was 

conducted for each trait in each year. For all analyses, raw phenotypic data were used. 

Association with SNPs was tested in each species separately (MU; SY; UN) as well as in all 

species combined (MU-SY-UN) and in the P. mugo complex (MU-UN). A mixed linear 

model (MLM) with a covariance (kinship: centred identity by state) matrices and matrices 

derived from principal component (PC) scores (separate matrices were constructed for each 

species/species set analysed), to allow for population stratification, among individuals was 

fitted to each locus independently in TASSEL (version 5.2.39). The proportion of true null 

hypotheses was estimated using a false discovery rate (FDR) approach, retaining SNPs 

associated with traits with adjusted p values < 0.05. Two association analyses were carried 

out, firstly including all polymorphic SNPs irrespective of minor allele frequency (MAF) 

value and secondly, by applying a MAF filter (excluding SNPs with MAF < 0.05). 
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A multi-locus mixed model (MLMM) approach, with 10 steps, was used to identify loci 

which have large effects (Segura et al., 2012). Highly significant SNPs (based on estimations 

of genetic variance, p < 0.001) were included in a forward-backward stepwise approach, one 

by one, as cofactors in the model. The kinship matrix used in the MLM approach was also 

included, but PC scores were not used. Rather than using PC scores to estimate population 

structure the MLMM approach uses a kinship matrix to describe the covariance structure, 

which is thought to perform better when population structure is complex (Segura et al., 2012). 

The multiple Bonferroni criterion, defined as the largest model whose cofactors all have a p-

factor below a Bonferroni-corrected threshold of 0.05 (Dunn, 1961), was used to indicate the 

best model.  

SNPs were divided into two classes on the basis of their minor allele frequency: MAF > 0.05: 

common; MAF < 0.05: rare. As the majority of traits are controlled by many genes of very 

small effect it is likely to be important to consider every SNP identified. Each SNP found to 

be significantly associated with a trait (when no MAF filter was applied, in order to compare 

the putative function of genes containing rare and common variants) was also examined to 

compare the putative function of the genes on which they are located with the trait in 

question. To do this, the full unigene sequence in which each SNP is located was BLASTed 

against the uniprotkb_viridiplantae database, the result with the highest score (minimum e-

value 1E-50) for each unigene was retained, and the putative function determined by a 

literature survey using the search term ‘protein name function plant’. Where the protein was 

uncharacterised, the protein domain and/or family was recorded and the most likely function 

inferred. Where putative functions could be determined the genes were grouped according to 

their role in the following phenotypic responses: ‘Response to environment’ (including 

abiotic and biotic stress response), ‘Growth and development’ (including cell division, 
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differentiation and senescence); ‘Reproduction’ (including flowering time and seed yield). 

Although many cellular processes (e.g. metabolism, signalling pathways, DNA binding, 

transcription, translation) were also identified as putative functions, these were assumed to be 

underlying control and expression of phenotypic functions and were not assigned a function. 

2.5 Prediction models: construction and internal assessment 

Phenotypic prediction multiple linear regression models were constructed in R using data 

generated from the association trial. A number of different models were constructed and 

compared using different sets of SNPs and different traits to train the model (the different 

models assessed are listed in Table 3). Predictive models were constructed using SNPs 

identified as potentially associated with variation in phenology (trait: budburst: BB2011) and 

growth (traits: height and increment: H2013 and I2013). To assess the relative contribution of 

SNPs identified using the multispecies compared to a single species approach, predictive 

models for both growth and phenology were constructed using SNPs identified from either a) 

all species’ datasets (i.e. MU-SY-UN, MU-UN and SY); b) just datasets containing SY (i.e. 

MU-SY-UN and SY); c) just SY. Predictive models were also constructed using the same 

number of randomly selected SNPs from all polymorphic loci with the same proportion of 

rare and common SNPs as the other prediction models. Ten sets of randomly selected SNPs 

were tested for each trait and 95 % confidence intervals were reported. Additionally, 

predictive models were constructed using all available polymorphic SNPs for SY. All models 

for both phenology and growth (SNPs associated with trait from MU-UN-SY, MU-UN and 

SY; SNPs associated with trait from MU-SY-UN and SY; SNPs associated with trait from 

SY; random SNPs; all polymorphic SNPs) were run both with and without a MAF filter 

(retaining only SNPs which were common in the datasets from which the significant 
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associations were originally identified). As recommended when the number of loci is greater 

than the number of samples, we elected to construct the prediction model based on all 

polymorphic SNPs using ridge regression with the R package ‘rrBLUP’ (Endelman, 2011), 

rather than the multiple linear regression method. For all models, where necessary, family 

means were used to replace missing genotype data. The predictive models were initially run 

using an internal training set comprising 60 % of SY trees from the association trial, which 

had been used to identify associated SNPs, and predictive accuracy assessed using the 

remaining 40 % of SY trees (the internal testing set) in the association trial. Models were run 

using SY trees and not UN or MU as our intention was to carry out subsequent testing of the 

models in this species alone. We used budburst and growth but not bud set data as subsequent 

model testing was applied to data from an independent trial for which only these traits were 

available. Pearson’s correlation coefficient and significance for correlations between 

predicted values generated by the predictive models and observed values for both phenology 

and growth (both H2013 and I2013 were tested to see which performed best for the growth 

model) were estimated using the R package ‘Hmisc’ (Harrell Jr, 2020).  

SNPs used in each prediction model were assessed for their variation among SY populations 

using the R package ‘hierfstat’ (Goudet and Jombart, 2020). Basic statistics including overall 

observed heterozygosity (HO), mean gene diversities within populations (HS), inbreeding 

coefficient (FIS) and population differentiation (FST) were estimated for each set of SNPs 

described above. 

2.6 Prediction models: independent assessment 

SNPs identified as potentially associated with budburst and growth were tested for their 

predictive power using genotype and phenotype data from an independent trial of P. 
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sylvestris, established at contrasting sites (YA and GS) in 2012. Genotyped trees from YA 

and GS were assigned predicted values for both phenology and growth using multiple linear 

regression models constructed using either all available SNPs or only those found to be 

significantly associated with the trait (final predictive models, chosen based on their 

performance in the initial internal test). As models tend to work best in material that is closely 

related to those used in model development (Beaulieu et al 2011), the model using all 

available SNPs was also trained using only SY trees from Scotland grown in the association 

trial (N = 227). Observed values for growth (height and increment) and budburst (timing and 

duration) at multiple years (2015-2020 for increment, 2015-2019 for budburst) were 

compared with values generated by the predictive models. Multiple years were used to ensure 

that annual variation caused by seasonal differences could also be considered. Height is a 

cumulative measure, and therefore, only the most recent (2020) and the measurements made 

after the first year of growth (2008) were compared with the predicted values. Furthermore, 

the use of height measurements at both young and more mature ages allowed the impact of 

maternal effects to be examined and tested. In order to identify SNPs which are good 

predictors of final height, the use of trees whose traits are not confounded by maternal effects 

is important. To assess the performance of the predictive models, the Pearson’s correlation 

coefficient and significance values between predicted and observed values for phenology and 

growth were estimated for each site (GS and YA) separately using the R package ‘Hmisc’ 

(Harrell Jr, 2020). The use of two sites in independent testing also allowed comparison of the 

performance of the predictive models in different environments.  

The effectiveness of using the predictive model as a genomic selection tool was also tested 

and compared with other selection methods. For each method, 10 trees were selected from 

each trial site: for genomic selection, the 10 trees at each site with the highest values 
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generated by the predictive model were chosen; for phenotype selection, the 10 tallest trees at 

each site prior to the start of the second growing season (measured in March 2008) were 

chosen. The average height at 13 years (2020) of the 10 trees selected using each method was 

compared. The trees selected using each method were also compared to the 10 tallest trees at 

each site at age 13. 

3. Results 

3.1. Intra- and inter-specific trait variation 

Bud set was, on average, earliest for MU and latest for SY with a mean difference of nearly 

19 days between the two species (Table S2, Table S5). Bud set for UN occurred, on average, 

8.28 days after MU and 10.63 days before SY. Budburst was similarly earliest for MU but 

was latest for UN in both years assessed although the mean difference between species was 

greater in 2012 (15.17 days) than in 2011 (5.42 days). For all years, on average, MU were the 

shortest trees and SY were the tallest with increment similarly greater in SY than in UN or 

MU. By 2013, SY trees were on average over double the height of the average MU tree, with 

UN trees on average just over two-thirds the height of the average SY tree. Narrow sense 

heritability estimates were highest for bud set (mean h2 = 0.78; Table S6) and height (mean h2 

= 0.70) and lowest for increment (mean h2 = 0.44). Narrow sense heritability estimates were 

highest for SY (mean h2 = 0.71) and lowest for all species combined (mean h2 = 0.55).  

Phenotypes for the independent trial are provided in Table S7. The relationships between 

duration and timing of each stage of budburst in the independent trial were examined. Due to 

missing data, only budburst stages 4 to 6 were analysed. Timing (time taken to reach each 

stage) showed a significant negative correlation with duration (time taken to progress from 

stage 4 to 6) of budburst at each year assessed for stage 4, but the relationship was positively 
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correlated for stage 6 (Table S8). In contrast, the time to reach stage 6 showed a significant 

positive correlation with the duration of budburst. Time to reach stage 5 was both positively 

(GS) and negatively (YA) correlated with the duration of budburst. Budburst stages were 

highly positively correlated with one another in all years at both sites (Table S8). Therefore, 

stage 6 is used to represent timing of budburst for all further analyses.  

The relationships among the traits measured over multiple years (including both correlations 

of individual traits over multiple years and correlations of different traits with one another) 

were examined in both the association trial (Table S9) and independent trial (Table S10). For 

MU and UN in the association trial, height and increment were highly significantly correlated 

over each year, as was budburst in each year. Although highly significant in all cases, the 

correlation coefficient associated with height in the first year of growth (H2011) reduced in 

each subsequent year for all three species (H2011 and H2012: MU, 0.74; SY, 0.81; UN, 0.71. 

H2011 and H2013: MU, 0.67; SY, 0.73; UN, 0.66). Bud set in 2010 was significantly 

negatively correlated with budburst in 2011 in both MU and UN but was significantly 

positively correlated with budburst in both 2011 and 2012 in SY. Furthermore, bud set in SY 

was also highly significantly correlated with height in all years and increment in 2012 and 

increment in 2013 was not significantly correlated with height in 2011 or 2012. In the 

independent trial, height in 2020 was highly significantly correlated with increment for all 

years in both GS and YA, whereas height in 2008 was not significantly correlated with height 

in 2020, as would be expected if maternal effects were expressed in the first year of growth, 

or increment in any year except 2017 in GS. There was little correlation among growth and 

phenology traits in either independent trial site except budburst timing in 2016 which was 

negatively correlated with height and increment after 2015 in YA and positively correlated 

with height in 2020 and increment in 2015 and 2016 in GS.  
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The block effect was low at the GS site of the independent trial (Table S11) and was only 

significant for budburst timing and duration in 2017 and for increment in 2020. In contrast, 

blocks were significantly different for all traits for the majority of years at YA. Budburst 

timing was not significantly different among populations at either GS or YA in any year and 

was only significant for budburst duration in 2018 (both sites) and 2016 (GS). There were 

significant differences among populations for height and increment for all years in GS but not 

for increment in 2016 or 2017 at YA. There were significant differences among families for 

all traits at both GS and YA but this was not the case in all years.   

3.2. Summary of genotyping array 

High quality genotypes (call rate > 80 %) were obtained for over 94 % of trees genotyped 

within the association trial (N = 762: MU, N = 115; SY, N = 456; UN, N = 191, Table S5). 

There were 9,583 high quality (call rate > 80 %) polymorphic SNPs which were shared 

among the three species (Table 1), with a further 1,352 SNPs which were polymorphic in at 

least two species and monomorphic in a third. SNP genotypes obtained for trees from YA and 

GS were all high quality (Table S7).  
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Table 1. Counts for each type of SNP in individual species and shared among species. 
Species: SY, P. sylvestris; MU, P. mugo; UN, P. uncinata. SNP type: CR<80, call rate < 80 
%; Mono, monomorphic; Poly, polymorphic.   
 
 SNP type 
Species set CR<80 Mono Poly 
Individual species 
SY 9 5,767 15,019 
MU 4,884 4,639 11,272 
UN 288 5,297 15,210 
Shared among species 
SY and MU 6 3,700 9,910 
SY and UN 0 4,161 13,654 
MU and UN 242 4,170 10,430 
SY and MU and UN 0 3,446 9,583 
 

3.3.  Population genetic structure, kinship and statistical power 

The neighbour joining tree generated from the distance matrix indicated the majority of the 

structure is among species and families with weak population structure, as reported in 

previous studies (Wachowiak et al., 2013, Wachowiak et al., 2018b). The pairwise kinship 

distribution was strongly skewed toward positive kinship values for each species 

(D’Agostino’s skewness test, MU: z = 101.389, p < 2.2 x 10-16; SY: z = 446.904, p < 2.2 x 10-

16; UN: z = 153.664, p < 2.2 x 10-16), as expected given the presence of half siblings in the 

association trial. These results support the use of mixed model approaches and the correction 

for population stratification prior to testing for genetic association.  

The statistical power to detect true associations between SNPs and adaptive traits was found 

to be extremely low for both MU and UN even when the polygenic effect was assumed to be 

10 x that of the phenotypic variance (Table S12). This is likely to be due to the low sample 

numbers, a conclusion supported by the result that the statistical power of SY was similarly 

low if the sample numbers were reduced to those of MU and UN: the statistical power 

remained low even when the polygenic effect was increased. The model based on the SY 
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dataset was found to have relatively high statistical power, and the model based on the joint 

MU-UN dataset had lower power, but significantly more than for each species individually. 

The statistical power of a model based on the dataset that included all three pine species was 

found to be very high regardless of the polygenic effect. For these reasons, the following 

datasets were analysed for associations with traits: the P. mugo complex (MU-UN), SY, and 

all three pine species (MU-SY-UN). 

3.4. Identification of loci associated with traits 

One hundred and eighteen SNPs were identified as associated with phenology and growth in 

the three pine species (Table 2; Table S13) and included SNPs which were identified in more 

than one species’ datasets. There was very little overlap of individual SNPs associated among 

multiple traits or years: four SNPs were associated with more than one trait, of which only 

one (comp51128_c0_seq1_1529) was associated with both phenology (trait: BB2011) and 

growth (trait: I2013). The vast majority of SNPs were identified using the MLM approach (N 

SNPs = 113) rather than the MLMM approach (N SNPs = 14). There were nine SNPs 

identified as significantly associated with traits in both MLM and MLMM. Almost twice as 

many SNPs were significantly associated with phenology traits (N = 77) than growth traits (N 

= 42). Significantly associated SNPs were identified for all traits in all years except BB2012. 

The traits with the highest number of associated SNPs were BB2011 (N = 58), I2013 (N = 34) 

and BS2010 (N = 19), whereas other years/traits all had low numbers of associated SNPs 

(H2011, N = 3; H2012, N = 1; I2012, N = 1).  

Table 2. Total number of SNPs associated with phenology and growth traits in the three pine 
species identified from a mixed linear model (MLM) in TASSEL and a multi-locus mixed 
model (MLMM) in R. SNPs identified in analyses with a minor allele frequency (MAF) filter 
(excluding MAF < 0.05) are in parentheses: common SNPs identified both with and without a 
MAF filter are to the left of the forward slash; SNPs identified only with a MAF filter are to 
the right of the forward slash) 
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MLM  MLMM 
Trait Species Common Rare  Common Rare 
Phenology 
BB2011 MU-UN 9 (3 /1) 25  4 

SY 7 (6/2) 11  3 
MU-SY-UN 4 (2/1) 19  3 

BS2010 SY 4 14    
MU-SY-UN (0/1)  

Growth 
H2011 SY 1  

MU-SY-UN 1 1  
H2012 MU-SY-UN 1 (1/0)  
H2013 SY 2  

MU-SY-UN 4  1 
I2012 MU-SY-UN 1  
I2013 MU-UN 6 (5/0) 1  1 

SY 2 (1/0) 20  4 
MU-SY-UN 6 (3/0) 4  1 1 

Species codes: MU, P. mugo; SY, P. sylvestris; UN, P. uncinata;. Trait codes: budburst (BB); bud set (BS); 
height (H); increment (I). Common: SNPs with MAF > 0.05; Rare: SNPs with MAF < 0.05 
 

A higher number of SNPs associated with traits were identified in SY (N = 64) than in MU-

UN (N = 44). Only one SNP (comp51128_c0_seq1_1529) was identified as significant in 

both datasets although it was associated with phenology (BB2011 for MU-UN) and growth 

(I2013 for SY): it was common in MU-UN but rare in SY (Table S13). A further 44 SNPs 

were found to be associated with traits when all species were combined within a single 

analysis, although 11 of these were also identified in SY and 23 were identified in MU-UN. 

Applying a multispecies approach led to the identification of 54 SNPs which would not have 

been identified if only the SY dataset had been used. When no MAF filter was applied prior to 

screening SNPs for association with the traits of interest, 37 SNPs were found to be common 

in at least one dataset. Applying a MAF filter identified a further five SNPs, all in phenology 

traits (Table 2), but also failed to identify 26 of the common SNPs identified when no MAF 

filter was applied.  
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Genotype frequencies for SNPs identified as significantly associated with adaptive traits in 

MU-UN were compared for UN and MU separately (Table S14). Diversity was much lower 

in UN than MU for the majority of SNPs: 23 of the 36 SNPs identified as associated with 

BB2011 were monomorphic in UN. In contrast, diversity in UN was much higher for SNPs 

identified as significantly associated with I2013 (Table S14). Similarly, the standard error for 

MU was more than twice that of UN for BB2011 (MU: 0.73; UN: 0.33) whereas the standard 

error for both species was similar for I2013 (MU: 0.47; UN: 0.32; Table S2).  

3.5. Putative function of genes containing SNPs associated with traits 

One hundred and eighteen SNPs associated with phenology and growth in the three pine 

species were located at 114 gene loci (two unigenes, comp48223_c0_seq1 and 

comp47733_c0_seq1, contained three SNPs each). One locus was originally identified in 

Pinus radiata (Doth_comp54682_c0_seq1_159), the remaining were identified following 

transcriptome sequencing in P. sylvestris and the taxa of the P. mugo complex (Perry et al., 

2020: Table S13). The genetic sequences containing loci associated with each trait were found 

to be highly similar to proteins with a range of putative functions (Tables S17a-c). Of the 

SNPs identified when no MAF filter was applied, the majority of SNPs associated with bud 

set (all identified in SY) were found in genes that code for proteins putatively involved in 

growth and development (61.11 %) with a few (exclusively rare) SNPs found in proteins 

putatively involved in response to environment (22.22 %, Figure 3). In contrast, budburst had 

high numbers of associated SNPs (both rare and common) in genes that code for proteins 

putatively involved in response to environment and growth and development (mean 

contribution of putative function groups coded by genes containing SNPs significantly 

associated with budburst across species’ datasets as a percentage of the total number of 
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proteins: 39.01 % and 39.09 % for growth and development and response to environment, 

respectively). Whereas the majority of SNPs associated with height were found in proteins 

putatively associated with growth and development, SNPs associated with increment were 

found in proteins putatively associated with both growth and development and response to 

environment. There are some differences among species in the putative function of proteins 

containing significantly associated SNPs: the majority of SNPs in SY are found in genes 

coding for proteins putatively associated with growth and development for all traits (Figure 3) 

whereas MU-SY-UN and MU-UN have higher proportions of SNPs in genes coding for 

proteins putatively associated with response to environment as well as growth and 

development. Of the five SNPs that were only identified as associated with a gene when a 

MAF filter was applied, one was putatively associated with response to environment, one 

with growth and development, one with all three functions and two with none of these 

functions (Table S15a-c). 

Figure 3. Contribution of putative function groups (G&D: growth and development; R: 
reproduction; RtE: response to environment) coded for by genes containing SNPs 
significantly associated with each trait (bud set, budburst, height and increment) identified 
when no MAF filter was applied and as a percentage of the total number of proteins identified 
for each trait for each species’ dataset (MU: P. mugo; SY: P. sylvestris; UN: P. uncinata). 
Proteins which were uncharacterised, for which no known function in plants was found or for 
which only cellular processes could be identified are categorised “NA”. Total for each trait 
may be higher than 100 % as there may be more than one putative function assigned to a 
single protein. MAF: minor allele frequency (MAF > 0.05: common; MAF < 0.05: rare) 
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3.6. Prediction models: construction and internal assessment 

There was a large dropout in the number of SNPs which were suitable for inclusion in 

subsequent predictive models: of the 38 SNPs identified as potentially associated with growth 

(H2013 and I2013) in SY, MU-UN and MU-SY-UN datasets, 24 were monomorphic in either 

(or both) the SY and the independent P. sylvestris datasets (YA-SY and GS-SY). Therefore, 

14 SNPs (nine associated with I2013, four with H2013 and one with both I2013 and H2013) 

were included in the model, of which eight were rare in the SY dataset (although only three 

were rare in the MU-SY-UN datasets in which they had been identified as associated with the 

traits). Of these 14 SNPs, five were identified in the SY dataset, four in the MU-SY-UN 
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dataset, three in both the MU-UN and MU-SY-UN datasets and two in both the SY and MU-

SY-UN datasets. For the predictive models for budburst, all SNPs significantly associated 

with BB2011 in the SY, MU-UN and MU-SY-UN datasets (N = 58) were considered for 

inclusion. Thirty three SNPs significantly associated in at least one of the association trial 

datasets were monomorphic in at least one of the SY, YA-SY and GS-SY datasets. The 

remaining 25 SNPs (13 were identified in SY or in both SY and MU-SY-UN; 11 were 

identified in MU-UN or in both MU-UN and MU-SY-UN; one was only identified in MU-

SY-UN) were used to construct the predictive models for budburst. Eight of the SNPs were 

rare in the dataset in which they were identified. The SNPs used to construct predictive 

models for growth were found to have lower differentiation among populations (FST = 0.03 to 

0.04, Table S16) than the full set of polymorphic SNPs for SY (FST = 0.06). The inbreeding 

coefficient (FIS) was -0.6 to -0.7 for the majority of SNP sets (Table S16) with a slightly 

higher value observed in the SNP set for the growth model using trait associated SNPs 

identified in the SY dataset (FIS = 0.9). Observed heterozygosity and gene diversity (HO and 

HS, respectively) were both higher in the sets of SNPs which were filtered to include only 

those which were common in the original dataset. 

The performances of each predictive model when tested internally using the association trial 

material (i.e. the strength and significance of the correlation of predicted values with the 

observed values for each trait) are summarised in Table 3. Models constructed using random 

SNPs were not successful in predicting values that were correlated with observed values for 

each trait, although the mean strength of the correlation was much higher for the random 

models trained using H2013 than for either I2013 or BB2011. For all models, except those 

constructed using random SNPs, those without a MAF filter always performed better than the 

equivalent models constructed using only common SNPs, although there was little difference 
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in performance for models constructed using all polymorphic SNPs (Table 3). The predictive 

model for budburst constructed using SNPs which were identified in both SY and MU-SY-

UN resulted in a slightly improved predictive ability (r = 0.41, p < 0.001; Table 3) compared 

to the models which included only SNPs identified in SY (r = 0.38, p < 0.001) or those 

identified in all species’ datasets (r = 0.40, p < 0.001). For these reasons, the final predictive 

model for budburst was constructed using SNPs identified in both MU-SY-UN and SY, with 

no MAF filter applied to the SNPs. The predictive model for growth also performed best 

when using SNPs identified in multispecies’ datasets (MU-SY-UN and SY: r = 0.26, p < 

0.001; SY only: r = 0.20, p = 0.008). There were no SNPs associated with growth and 

identified exclusively in MU-UN which were also polymorphic in SY, YA-SY and GS-SY. 

Using H2013 as a training trait, the predictive model for growth performed more poorly using 

SNPs identified in the SY dataset than using SNPs identified in both the SY and MU-SY-UN 

datasets. However, with I2013 as a training trait in the same model, there was no difference in 

performance when the different SNP sets were used. There were highly significant positive 

correlations between observed H2013 and predicted values when using the predictive models 

for growth whereas using I2013 as the training trait for the predictive model resulted in far 

lower levels of correlation between predicted and observed values. Therefore, the final 

predictive model for growth, constructed using SNPs identified in both the SY and MU-SY-

UN datasets with no MAF filter and using H2013 as a training trait, was chosen to be tested 

independently.  
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Table 3. Pearson’s correlation coefficient I and associated significance values for comparison 
of predicted and actual values for each trait both with and without a MAF filter when using 
prediction models constructed with SNPs significantly associated with each trait (Budburst; 
Growth), random sets of SNPs (10 sets of randomly selected SNPs for each model with 95 % 
confidence intervals reported) or all polymorphic SNPs. Species datasets, SNPs identified as 
significantly associated with the trait in: a) all species’ datasets (i.e. MU-SY-UN, MU-UN 
and SY); b) just datasets containing SY (i.e. MU-SY-UN and SY); c) just SY. All models 
trained using a subset of the SY dataset and validated using the remaining SY trees.  
Training 

trait 
SNP set Species 

datasets 
N SNPs (MAF: 
No / MAF: Yes) 

MAF: No MAF: Yes 

Predictive models: Budburst 
BB2011 Budburst a 25/17 0.40*** 0.23** 

 Budburst b 15/11 0.41*** 0.30*** 
 Budburst c 13/9 0.38*** 0.13 
 Random NA 15/11 0.08 ± 0.05 0.07 ± 0.05 
 All SNPs NA 15,019/7,712 0.57*** 0.57*** 

Predictive models: Growth 
H2013 Growth b 14/11 0.26*** 0.25** 

 Growth c 7/4 0.20** 0.19* 
 Random NA 14/7 0.15 ± 0.06 0.17 ± 0.05 
 All SNPs NA 15,019/7,712 0.49*** 0.48*** 

I2013 Growth b 14/11 0.19* 0.14 
 Growth c 7/4 0.19* 0.09 
 Random NA 14/7 0.09 ± 0.06 0.09 ± 0.06 
 All SNPs NA 15,019/7,712 0.35*** 0.35*** 

MAF: No = no Minor Allele Frequency filter applied; Yes = only common (MAF > 0.05) SNPs 
included. MAF was calculated using the datasets from which the SNPs were originally identified as 
being associated with each trait. Significance values: *, p 0.01-0.05; **, p 0.001-0.01; ***, p < 0.001 
 

The effect of the trait used to train the model was also seen in comparisons of the 

performance of the models constructed using all polymorphic SNPs: for each trait, predicted 

values were more closely correlated with the observed values in models using budburst than 

in those using growth traits (H2013, I2013). Of the traits used to identify associated SNPs and 

construct the predictive models, the one with the lowest h2 (I2013) also had the lowest 

predictive ability in the SY dataset, whereas the trait with the highest h2 (BB2011) had the 

highest predictive ability. 

3.7. Prediction models: independent assessment 
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Predicted values were estimated using the final predictive models for budburst and growth as 

well as models constructed using all available SNPs and compared with values observed in 

the independent trial. The independent field sites share populations and families but 

experience contrasting climates, allowing the models to be independently tested on traits 

measured in different environments. The predicted values for each trait were not significantly 

correlated with the observed values when using models constructed with all available SNPs 

when trained using the full SY dataset and only for increment in 2016 at GS when only SY 

from Scotland is used to train the model (Table 4). In contrast, a number of significant 

correlations were observed in the independent trial when using final predictive models for 

growth and budburst. The predicted values for budburst were found to be significantly 

positively correlated with the duration of budburst at GS in 2015 and 2018 (Table 4) 

indicating a possible effect of annual environmental variation on the predictive power of the 

model. They were also negatively associated with budburst timing at YA in 2017.  

Table 4. Pearson’s correlation coefficient (r) and associated significance values for 
comparison of predicted and observed values for each trait. Predicted values estimated by 
final predictive models for growth and budburst constructed using SNPs significantly 
associated with the traits and assessed for their performance in an internal test. Predictive 
models constructed using all available SNPs (no MAF filter applied, N SNPs = 15,019) 
trained using the full SY dataset and also trained with only SY trees from Scotland. Duration: 
time taken for each tree to progress from stage 4 to stage 6. Timing: time taken to reach stage 
6 of budburst. Description of each budburst stage is given in Table S4. 

 

 
Final predictive 

models 

 
Predictive model 

using all SNPs 

 Predictive model using 
all SNPs trained with SY 
from Scotland 

Observed 
trait 

Year 
GS YA 

 
GS YA 

 GS YA 

Predictive model: Budburst (training trait: BB2011) 
Duration 2015 0.204* 0.080  -0.005 0.088  -0.031 -0.051 

 2016 0.083 0.149  -0.112 0.016  -0.157 -0.021 
 2017 0.070 -0.005  -0.131 -0.030  -0.038 -0.055 
 2018 0.205* -0.080  -0.150 -0.105  0.087 0.072 
 2019 0.152 0.125  0.099 0.188  0.053 0.016 

Timing 2015 0.130 0.034  -0.167 0.167  -0.151 0.089 
 2016 0.071 -0.004  -0.101 0.004  -0.110 -0.069 
 2017 0.069 -0.202*  -0.093 -0.047  -0.068 -0.012 
 2018 0.112 -0.168  -0.177 0.029  -0.048 0.062 
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 2019 0.125 -0.037  0.111 0.134  0.046 0.038 
Predictive model: Growth (training trait: H2013) 

Height 2008 -0.020 0.023  0.093 0.002  -0.056 0.011 
 2020 0.104 0.376***  0.034 0.144  0.039 0.118 

Increment 2015 0.022 NA  0.060 NA  0.124 NA 
 2016 0.173 0.299**  0.149 0.158  0.190* 0.142 
 2017 0.121 0.312**  -0.012 0.175  -0.049 0.149 
 2018 0.012 0.329***  0.030 0.138  0.028 0.075 
 2019 0.123 0.205*  0.065 0.111  -0.022 0.107 
 2020 -0.001 0.262**  -0.058 0.110  -0.142 0.078 

Significance values: *, p 0.01-0.05; **, p 0.001-0.01; ***, p < 0.001 
 

The predicted values for growth were found to be significantly associated with observed 

increment measurements at YA in every year, but not at GS (Table 4). The correlation 

between predicted values and observed height in 2008 (at age one) was not significant at 

either YA or GS, despite the strong correlation observed between predicted values and 

observed height at age 13 at YA (Figure 4) indicating that the cumulative effect of the trees 

growing in the environment at YA contributed to the strength of the association. 

Figure 4. Correlations of observed height measured in 2020 at age 13 against predicted values 
using the final predictive model for growth for trees in an independent trial at Glensaugh (GS, 
correlation not significant) and Yair (YA). 
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The effectiveness of the final predictive model for growth as a genomic selection tool was 

tested by comparing different selection methods (Figure 5) in trees at both independent trial 

sites (GS and YA). Genomic selection was the most successful method of selecting tall trees 

growing at YA: trees were on average 6.80 % taller (227 mm) than trees selected using the 

phenotype method and 5.41 % (181 mm) taller than the mean height of trees at this site. In 

contrast, the phenotype method was more successful than the genomic method at GS (5.07 % 

and 7.70 % increase in the mean height of trees selecting using the phenotype method 

compared to the genomic method and site mean, respectively), despite the lack of significant 

correlation between height at 2008 and height at 2020 (Table S10). The coefficient of 

variation (CV) for trees chosen using the phenotype selection method was over 60 % greater 

than for those chosen using the genomic selection method at GS (23.68 and 14.63, 

respectively), indicating that trees chosen using the phenotype method were more variable for 

this trait at the site. Trees selected using the genomic and phenotype selection methods at YA 

had very similar CVs (10.84 and 10.31, respectively). Using the phenotype selection method, 

there were three trees at GS and none at YA that were among the ten tallest trees at each site. 

The genomic selection method identified one tree at GS and two trees at YA which were 

among the ten tallest trees at each site. The selected trees were from all five of the genotyped 

populations and included trees from 28 of the 40 available families. The majority of families 

were only represented by a single tree, although there were exceptions: two individuals were 

selected from single families in each of the sites using the phenotype method; two individuals 

were selected from each of two families in GS and from each of three families in YA using 

the genomic method.  

Figure 5. Height at 13 years (measured before the growing season started in 2020) of 10 trees 
at Yair (YA) and Glensaugh (GS) selected using different methods: Genomic: genomic 
selection to identify the predicted 10 tallest trees using values from the final predictive model 
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for growth (SNPs identified in both SY and MU-SY-UN, no MAF filter applied, N SNPs = 
14); Phenotype: phenotype selection where the 10 tallest trees at one year were selected 
(before the start of the second growing season, 2008). The dotted line represents the mean 
height of trees at each site.   
  

 
  
Discussion 

This study is among the first to use a high throughput genotyping array to identify SNPs 

associated with growth and phenology traits in conifers and is unique in applying a 

multispecies approach. Association genetics of adaptive traits is of great interest to forestry 

and is being studied in many species such as Pinus contorta (Mahony et al 2019), Populus 

trichocarpa (Evans et al., 2014), Picea sitchensis (Holliday et al., 2010) and Pinus taeda (Lu 

et al., 2017) and the use of multiple species has the potential to improve the generality of 

models based upon them. Although other multispecies genotyping arrays have been 

developed (e.g. for Eucalyptus, Silva-Junior et al 2015), association analyses are 

conventionally restricted to a single species. 
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The high-throughput SNP array allowed nearly 50,000 SNPs (of which 20,795 were 

successfully converted) to be simultaneously genotyped in a large number of trees. To 

increase the sample size of the datasets and the statistical power of our analyses, data from P. 

mugo and P. uncinata, which are both part of the P. mugo complex, were combined. The 

dropout rate for P. mugo was much higher, and the call rate much lower than for P. sylvestris 

and P. uncinata. It is likely that this is a consequence of the dominance of P. sylvestris in the 

sample set used to set allele calling thresholds, coupled with the genetic distance between the 

two species (Perry et al., 2020). Despite this, nearly a third of SNPs on the array were high 

quality in all three species and nearly half of all successfully converted SNPs were 

polymorphic in all three species – twice the number reported by Perry et al., (2020) although 

sample sizes were much larger in this study.  

We used the SNP datasets to test for associations with previously published phenotypes for 

the three pine species (Wachowiak et al., 2018a), identifying 118 SNPs significantly 

associated with variation in growth and phenology over multiple years, of which nearly half 

would not have been identified without a multispecies approach. As shown previously, the 

between-population variation in both phenology and height was far less in P. mugo and P. 

uncinata than in P. sylvestris, reflecting the fact that the latter was sampled from across its 

much broader geographical distribution and across much wider environmental gradients in 

photoperiod and temperature (Wachowiak et al., 2018a). Despite the smaller environmental 

gradient represented by our P. mugo and P. uncinata sampling, the number of SNPs identified 

as significantly associated with phenology was similar to the number of SNPs identified in P. 

sylvestris, although the number of SNPs identified as significantly associated with growth 

traits was much higher in P. sylvestris. The majority of studies on genetic control of adaptive 

traits in conifers have also identified multiple QTLs or SNPs associated with variation in 
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timing of bud set, budburst and growth (Bartholomé et al., 2016, Eckert et al., 2009, Holliday 

et al., 2010, Hurme et al., 2000, Jermstad et al., 2001, Jermstad et al., 2003, Plomion et al., 

1996, Prunier et al., 2013) as expected of complex traits (Mackay, 2001). For example, Eckert 

et al., (2015) tested 475 SNPs and found six significant associations with height and budburst 

in sugar pine (Pinus lambertiana) and Budde et al., (2014) identified 17 SNPs significantly 

associated with serotiny in maritime pine (Pinus pinaster) using an array with 251 SNPs from 

candidate genes. However, there have also been a limited number of specific genes implicated 

in the control of adaptive traits in conifers: loci related to budburst/set were identified in 

Picea abies and Pinus sylvestris (PaFTL2, (Avia et al., 2014) and PsFTL2, (Gyllenstrand et 

al., 2007), respectively).  

Overall, the majority of SNPs identified in this study were rare. Of those that were common, 

counts were similar among P. sylvestris and the P. mugo complex for both phenology (13 and 

10 for P. sylvestris and the P. mugo complex, respectively) and growth (four and six for P. 

sylvestris and the P. mugo complex, respectively). Although one SNP was found to be 

associated with both phenology and growth (the former in the P. mugo complex and the latter 

in P. sylvestris) it was extremely rare in P. sylvestris. Most likely, this is a confounding effect 

due to a small number of individuals (in this case, two) with a rare allele at the locus, that are 

at the tail-end of a trait distribution (the two individuals were ranked 366 and 412 out of 413 

for increment in 2013). Although these findings seem to support the use of MAF filtering, 

applying a filter prior to association analyses was found to significantly reduce the number of 

common SNPs identified, probably as a result of changes to the PC scores and kinship matrix 

(describing population structure and relatedness) caused by the removal of rare variants. A 

further benefit of retaining all SNPs at all stages of analyses was to enable the evaluation of 

the relative contribution of rare and common SNPs to each trait and to assess the predictive 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2020.12.22.423987doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423987
http://creativecommons.org/licenses/by/4.0/


power of models constructed using SNPs with and without MAF filtering. There were very 

few instances of the same SNP being associated among traits, among species or among years, 

a finding also reported by Westbrook et al., (2013), possibly indicating the involvement of 

different genes at different stages of development or in response to varying environmental 

conditions, as well as the very small effect sizes of most SNPs in polygenic traits (Korte and 

Farlow, 2013). Our earlier comparative genetic studies of a large set of SNPs located in 

nuclear genes similarly found almost no shared polymorphisms under selection between 

different taxa of the P. mugo complex (Wachowiak et al., 2018b).  

Phenological variation in Pinus spp. in common garden studies has been shown to be 

significantly associated with the environment at the site of origin (Howe et al., 2003, Hurme 

et al., 1997, Repo et al., 2000, Salmela et al., 2011, Wachowiak et al., 2018a) with trees from 

northern European populations setting bud and flushing earlier than trees from more southerly 

populations. Whereas environmental cues are expected to play an important role in initiating 

phenological processes (Dougherty et al., 1994) including budburst (Laube et al., 2014), bud 

set is thought to be endogenous in Pinus spp, with photoperiod and temperature having 

relatively minor effects (Cooke et al., 2012). In this study, we found a high proportion of 

common SNPs in genes putatively involved in environmental responses (including response 

to abiotic and biotic stress and environmental cues) for both budburst and growth, but not for 

bud set. Common SNPs associated with bud set were exclusively located in genes related to 

growth and development. At this stage, assigning unigenes in conifers is largely presumptive 

and relies on similarity to domains or families of proteins with a large and/or speculative 

range of functions, many of which are, as yet, unexplored or undefined. However, the 

divergence of assignment among SNPs associated with budburst and bud set, and its 

concurrence with physiological understanding of these functions, suggests the assignment is 
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plausible. Furthermore, as it has previously been demonstrated that intragenic linkage 

disequilibrium (LD) decays rapidly in our species (Wachowiak et al., 2009, Wachowiak et al., 

2013), there is a higher likelihood that SNPs identified are directly involved in variation of 

phenology and growth. At present, our ability to better characterise the SNPs, for example 

determining whether they are synonymous or nonsynonymous, is limited by the paucity of 

highly similar, well characterised and published protein and gene sequences for these species.  

Although predictive models constructed using all available polymorphic SNPs were the most 

successful at predicting values in the internal validation set they had no predictive ability 

when tested in an independent set of trees, possibly reflecting the divergent geographic ranges 

and associated environments of populations used in the trials (although training the models 

using trees from Scotland to reflect the geographic range of populations in the independent 

trial resulted in almost no improvement to the models’ predictive ability). In contrast, 

predictive models constructed using SNPs identified as significantly associated with budburst 

and growth in the association trial were found to be successful at estimating values in both the 

internal assessment and the independent assessment, although in the latter the predictive 

ability of the models varied spatially (among the sites) and temporally (among years). The 

final predictive models, chosen for their performance in the internal assessment, comprised 

SNPs from all species’ datasets indicating that the multispecies approach to identify SNPs 

was justified. When testing these models in an independent trial, observed values for height at 

age 13 and increment, over multiple years, were highly significantly correlated with predicted 

values generated by the final predictive model for growth, although only at YA. In contrast, 

the predictive ability of the growth model for trees at GS was poor. Phenotypic variation is a 

product of both heritable genetic and environmental variation. Furthermore, variation in 

phenotypic plasticity may cause families and populations to respond to environmental 
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variation in different ways (Cooper et al., 2018; Gratani, 2014). Consequently, the predictive 

ability of models will depend on the interplay between the underlying genetic control of the 

traits, a host of external cues and stresses that directly and indirectly determine trait 

expression, and differences among the environments of trees used for association analyses 

and those used for external testing of predictive models. Trees growing at the YA site are 

much larger than at GS, indicating that there may be environmental limitations for growth at 

GS which are not present at YA. The trees grown in the glasshouse which were used to 

identify SNPs associated with growth are similarly unlikely to have experienced many 

environmental limitations. The lack of environmental limitations for trees growing in both the 

glasshouse (association trial) and at the YA site may explain why the predictive model works 

well in this set of trees, but doesn’t have any predictive ability when tested in trees grown 

under a more limiting environment at GS. Ideally, therefore, a predictive model should be 

used in populations from very similar environments as the population used to perform 

association analyses (Resende et al., 2012b). For instance, a predictive model for serotiny 

constructed by Budde et al., (2014) also had variable success when applied to different 

populations of Pinus pinaster. It is also possible that optimisation of the prediction models 

using variable selection approaches such as LASSO, would improve results, particularly 

where genotype x environment (G x E) interactions are likely to impact the association 

analyses and/or predictions (Crossa et al 2017).  

Furthermore, the age of the trees used to identify SNPs associated with traits should also be 

considered, with respect to maternal effects which may be more significant at younger ages 

(Vivas et al., 2020) resulting in phenotypes which are less a product of their genotype (and 

environment) than in later life stages. Many more SNPs were identified as significantly 

associated with height and increment in 2013 than in 2011 or 2012 and an incremental 
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reduction in the strength of the relationship between growth in the first year and in the two 

subsequent years was also observed: both these findings suggest that maternal effects were 

present in at least the first year of growth but that the effect was much less by the third year of 

growth. The lack of predictive ability in the final predictive model for growth in the 

independent trial at YA for trees in their first year of growth suggests that maternal effects 

may be significant in these trees, but that the effect has diminished by age 13 when the 

predictive ability is very good. As Lee (1999) found that height at 13 years in another 

commercial conifer species was a good predictor of height at final harvest the fact that our 

model has high predictive ability in trees at age 13 indicates that it has the potential to be a 

useful tool for early selection for height at final harvest in Scots pine.  

The relationship between bud burst timing and duration was found to vary as budburst 

progressed: trees which were observed to reach the first few stages of budburst (where scales 

were open but needles not yet visible) early in the season did not complete the whole budburst 

process sooner as might be expected. Instead, these trees took longer overall to complete 

budburst and it is clear that this relationship is not consistent among sites, which emphasises 

the need for caution in applying genotype-trait relationships across environments. Similarly, 

the prediction model for budburst had variable accuracy among the two independent field 

sites: the predicted values were significantly (albeit only weakly) positively correlated with 

the duration of budburst for two years at GS, but not at YA, while the predicted values for 

budburst were significantly correlated with timing of budburst but only at YA in one year. 

This was a negative relationship, such that trees that were predicted to complete budburst 

early in the season actually completed budburst late. Although this initially seems surprising, 

it does have a plausible biological explanation. The predictive model was constructed using 

SNPs which were identified as significantly associated with the timing of budburst in a set of 
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trees from a common garden glasshouse experiment, whilst the independent trial data were 

collected from trees planted outdoors in a field trial. The environmental difference between 

the glasshouse and the field was clearly substantial, with possibly the most important 

deviation between the two being that temperatures in the glasshouse did not drop below 

freezing throughout the winter. The relationship between the chilling requirement (the 

accumulation of time spent below a certain temperature) and the initiation of budburst is 

complex: tree species and populations differ in their chilling requirement as well as in their 

forcing requirement (the accumulation of time spent above a certain temperature) after the 

chilling requirement is met (Körner, 2006). An increase in chill days (mean temperature < 5 

°C) can significantly advance budburst timing in P. sylvestris (Laube et al., 2014). Heritable 

genetic variation in the timing of budburst is therefore likely to be strongly influenced by 

environmental cues including chilling and subsequent forcing. The contrast between the two 

environments means that trees requiring a greater number of chill days before the initiation of 

budburst will experience a delay in the glasshouse but burst bud earlier in the field, resulting 

in a negative relationship among trait values in the two environments. Moreover, variation in 

the climate ensures that chilling and forcing conditions vary among sites as well as annually. 

Although the mean number of annual chill days is higher in GS than YA, GS also has fewer 

growing degree days which may delay the onset of budburst in some families or populations.  

We found, as has been previously reported (Calleja-Rodriguez et al. 2020), that predictive 

ability in P. sylvestris (estimated as the correlation between the genomic estimated breeding 

values and phenotypes) was positively associated with narrow sense heritability of the trait. In 

contrast, the predictive ability of the models in an independent multi-site trial was not 

correlated with the predictive ability in the association dataset, possibly because of the 

different environments involved. However, the heritability estimates are extremely high for 
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some traits (particularly bud set in P. sylvestris) which could be due to the distribution of SNP 

effect sizes (Young et al., 2018) or the average linkage disequilibrium between SNPs and 

causal variants being different than it is among SNPs (Evans et al., 2018). As previously 

noted, LD decays rapidly in these species and this may indicate that there is a higher rate of 

LD between SNPs and causal variants than among SNPs. Our finding that phenological traits 

(budburst and bud set) had higher narrow sense heritability than growth traits (height and 

annual increment) has also been reported in Quercus robur (Scotti-Saintagne et al., 2004). 

Similarly, high narrow sense heritability for budburst has been estimated in other conifers 

(Picea abies, h2 = 0.8: Aitken and Hannerz, 2001) as has moderate narrow sense heritability 

for height (Pinus pinaster, h2 = 0.37: Vazquez-Gonzalez et al., 2021). Variation in narrow 

sense heritability across years, as was observed in this study, was also reported for Quercus 

robur (h2 = 0.48 - 0.80; Bogdan et al., 2004) and Pinus taeda (h2 = 0 - 0.75; Balocchi et al., 

1993), so we might expect the accuracy of genomic prediction to vary considerably by species 

and by trait. 

Predictive models potentially provide a tool with which to determine the phenotype of trees at 

early life stages, saving both time and money. The gain of nearly 7 % in height observed 

using genomic selection as opposed to phenotype selection is slightly lower than the gain 

predicted for material derived from existing seed orchards (8-12 %: Lee, 1999) but without 

the extensive and expensive trial set up and maintenance. Furthermore, the height at harvest 

of Scots pine (with the average yield class for this species of 10) could be expected to 

increase by 1.08 to 1.24 m when using predictive modelling based on an average harvest 

height of 20 to 23 m (McLean, 2019). Predictive models have several potential applications 

including selecting for key traits in commercial breeding programmes and assessing forests 

for their response to abiotic and biotic stress. However, our results show the extent to which 
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values generated by predictive models can vary in the strength of their correlation with the 

observed values depending on the environment in which they are tested. This may limit the 

deployment of genomic prediction across environments, but also where environment changes 

over time: something that will be a widespread issue in the near future (Franklin et al., 2016). 

Using a multispecies approach also highlights the improvements in both numbers of SNPs 

identified as significantly associated with SNPs and the accuracy of prediction models 

constructed when using SNPs from multiple species’ datasets. However, the small-scale 

comparisons between selection methods demonstrated the potential for predictive growth 

models to successfully select taller trees at one of our sites. As we had only small sample 

sizes and a relatively small pool of trees from which to select, the approach will require 

further testing using a larger set of trees in future trials.  

Conclusions 

Despite its ecological and economic importance, this study is among the first to explore the 

association between SNPs and key adaptive traits in P. sylvestris, demonstrating the utility of 

the Pinus spp. high throughput array (Perry et al., 2020) for identifying genes and SNPs 

associated with phenology and growth traits. Development of a predictive model and 

validation in an independent trial furthermore demonstrates the potential of the approach for 

accelerated tree breeding. However, the study also highlights the limitations imposed by 

genotype by environment interactions. This may affect the application of predictive models in 

populations experiencing different environments from those in which the models were 

trained. Applying both a conventional single species and a novel multispecies approach to 

association analyses and predictive modelling exposes the constraints of the former and 

benefits of the latter. These results offer promise for this approach, highlighting the potential 
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for improvement of economic traits in Scots pine and justifying future genomic studies in this 

species. 

References 
AHRAZEM, O., ARGANDONA, J., FIORE, A., RUJAS, A., RUBIO-MORAGA, A., 

CASTILLO, R. & GOMEZ-GOMEZ, L. 2019. Multi-species transcriptome analysis 
for the regulation of crocins biosynthesis in Crocus. BMC genomics, 20, 1-15 

AITKEN, SN. & HANNERZ, M. 2001. Genecology and gene resource management 
strategies for conifer cold hardiness. In: Bigras FJ, Colombo SJ (eds) Conifer cold 
hardiness. Series: tree physiology, vol 1. Kluwer, Dordrecht, 23–53 

AVIA, K., KÄRKKÄINEN, K., LAGERCRANTZ, U. & SAVOLAINEN, O. 2014. 
Association of FLOWERING LOCUS T/TERMINAL FLOWER 1�like gene FTL 2 
expression with growth rhythm in Scots pine (Pinus sylvestris). New Phytologist, 204, 
159-170. 

BALOCCHI, C. E., BRIDGEWATER, F. E., ZOBEL, B. J. & JAHROMI, S. 1993. Age 
trends in genetic parameters for tree height in a nonselected population of loblolly 
pine. Forest Science, 39(2), 231-251 

BARTHOLOMÉ, J., VAN HEERWAARDEN, J., ISIK, F., BOURY, C., VIDAL, M., 
PLOMION, C. & BOUFFIER, L. 2016. Performance of genomic prediction within 
and across generations in maritime pine. BMC genomics, 17, 1-14. 

BEAULIEU, J., DOERKSEN, T., BOYLE, B., CLÉMENT, S., DESLAURIERS, M., 
BEAUSEIGLE, S., BLAIS, S., POULIN, P. L., LENZ, P., CARON, S. & RIGAULT, 
P. 2011. Association genetics of wood physical traits in the conifer white spruce and 
relationships with gene expression. Genetics, 188, 197-214 

BEAULIEU, J., DOERKSEN, T., CLÉMENT, S., MACKAY, J. & BOUSQUET, J. 2014. 
Accuracy of genomic selection models in a large population of open-pollinated 
families in white spruce. Heredity, 113, 343-352. 

BLANCA, J., ESTERAS, C., ZIARSOLO, P., PÉREZ, D., COLLADO, C., DE PABLOS, R. 
R., BALLESTER, A., ROIG, C., CAÑIZARES, J. & PICÓ, B. 2012. Transcriptome 
sequencing for SNP discovery across Cucumis melo. BMC genomics, 13, 280. 

BOGDAN, S., KATICIC-TRUPCEVIC, I. & KAJBA, D. 2004. Genetic variation in growth 
traits in a Quercus robur L. open-pollinated progeny test of the Slavonian provenance. 
Silvae Genetica, 53, 198-201 

BRADBURY, P. J., ZHANG, Z., KROON, D. E., CASSTEVENS, T. M., RAMDOSS, Y. & 
BUCKLER, E. S. 2007. TASSEL: software for association mapping of complex traits 
in diverse samples. Bioinformatics, 23, 2633-2635. 

BUDDE, K. B., HEUERTZ, M., HERNÁNDEZ�SERRANO, A., PAUSAS, J. G., 
VENDRAMIN, G. G., VERDÚ, M. & GONZÁLEZ�MARTÍNEZ, S. C. 2014. In situ 
genetic association for serotiny, a fire�related trait, in Mediterranean maritime pine 
(Pinus pinaster). New Phytologist, 201, 230-241. 

CALLEJA-RODRIGUEZ, A., PAN, J., FUNDA, T., CHEN, Z., BAISON, J., ISIK, F., 
ABRAHAMSSON, S., WU, H.2020. Evaluation of the efficient of genomic versus 
pedigree predictions for growth and wood quality traits in Scots pine. BMC Genomics. 
21, 1-17 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2020.12.22.423987doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423987
http://creativecommons.org/licenses/by/4.0/


CAPBLANCQ, T., FITZPATRICK, M. C., BAY, R. A., EXPOSITO-ALONSO, M. & 
KELLER, S. R. 2020. Genomic prediction of (mal) adaptation across current and 
future climatic landscapes. Annual Review of Ecology, Evolution, and Systematics, 51. 

CHANCEREL, E., LEPOITTEVIN, C., LE PROVOST, G., LIN, Y.-C., JARAMILLO-
CORREA, J. P., ECKERT, A. J., WEGRZYN, J. L., ZELENIKA, D., BOLAND, A. 
& FRIGERIO, J.-M. 2011. Development and implementation of a highly-multiplexed 
SNP array for genetic mapping in maritime pine and comparative mapping with 
loblolly pine. BMC genomics, 12, 1-14. 

COOKE, J. E., ERIKSSON, M. E. & JUNTTILA, O. 2012. The dynamic nature of bud 
dormancy in trees: environmental control and molecular mechanisms. Plant, cell & 
environment, 35, 1707-1728. 

COOPER, H. F., GRADY, K.C., COWAN, J.A., BEST, R.J., ALLAN, G.J. & WHITHAM, 
T.G., 2019. Genotypic variation in phenological plasticity: reciprocal common 
gardens reveal adaptive responses to warmer springs but not to fall frost. Global 
change biology, 25(1), 187-200. 

CORNELL, M. J., ALAM, I., SOANES, D. M., WONG, H. M., HEDELER, C., PATON, N. 
W., RATTRAY, M., HUBBARD, S. J., TALBOT, N. J. & OLIVER, S. G. 2007. 
Comparative genome analysis across a kingdom of eukaryotic organisms: 
specialization and diversification in the fungi. Genome Research, 17(12), 1809-1822 

CROSSA, J., PÉREZ-RODRÍGUEZ, P., CUEVAS, J., MONTESINOS-LÓPEZ, O., 
JARQUÍN, D., DE LOS CAMPOS, G., BURGUEÑO, J., GONZÁLEZ-CAMACHO, 
J.M., PÉREZ-ELIZALDE, S., BEYENE, Y. & DREISIGACKER, S., 2017. Genomic 
selection in plant breeding: methods, models, and perspectives. Trends in plant 
science, 22(11), 961-975. 

DOUGHERTY, P. M., WHITEHEAD, D. & VOSE, J. M. 1994. Environmental influences on 
the phenology of pine. Ecological Bulletins, 64-75. 

DUNN, O.J., 1961. Multiple comparisons among means. Journal of the American statistical 
association, 56(293), 52-64. 

DURÁN, R., RODRIGUEZ, V., CARRASCO, A., NEALE, D., BALOCCHI, C. & 
VALENZUELA, S. 2019. SNP discovery in radiata pine using a de novo 
transcriptome assembly. Trees, 33, 1505-1511. 

ECKERT, A. J., MALONEY, P. E., VOGLER, D. R., JENSEN, C. E., MIX, A. D. & 
NEALE, D. B. 2015. Local adaptation at fine spatial scales: an example from sugar 
pine (Pinus lambertiana, Pinaceae). Tree Genetics & Genomes, 11, 42. 

ECKERT, A. J., WEGRZYN, J. L., PANDE, B., JERMSTAD, K. D., LEE, J. M., LIECHTY, 
J. D., TEARSE, B. R., KRUTOVSKY, K. V. & NEALE, D. B. 2009. Multilocus 
patterns of nucleotide diversity and divergence reveal positive selection at candidate 
genes related to cold hardiness in coastal Douglas fir (Pseudotsuga menziesii var. 
menziesii). Genetics, 183, 289-298. 

ENDELMAN, J. B. 2011. Ridge regression and other kernels for genomic selection with R 
package rrBLUP. Plant Genome, 4, 250-255. 

EVANS, L.M., SLAVOV, G.T., RODGERS-MELNICK, E., MARTIN, J., RANJAN, P., 
MUCHERO, W., BRUNNER, A.M., SCHACKWITZ, W., GUNTER, L., CHEN, J.G. 
& TUSKAN, G.A., 2014. Population genomics of Populus trichocarpa identifies 
signatures of selection and adaptive trait associations. Nature genetics, 46(10), 1089-
1096. 

EVANS, L. M., TAHMASBI, R., VRIEZE, S. I. ABECASIS, G. R., DAS, S., GAZAL, S., 
BJELLANT, D. W., DE CANDIA, T. R., GODDARD, M. E., NEALE, B. M. & 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2020.12.22.423987doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423987
http://creativecommons.org/licenses/by/4.0/


YANG, J. 2018. Comparison of methods that use whole genome data to estimate the 
heritability and genetic architecture of complex traits. Nature Genetics, 50, 737-745. 

FRANKLIN, J., SERRA-DIAZ, J. M., SYPHARD, A. D. & REGAN, H. M. 2016. Global 
change and terrestrial plant community dynamics. Proceedings of the National 
Academy of Sciences, 113, 3725-3734. 

GERALDES, A., PANG, J., THIESSEN, N., CEZARD, T., MOORE, R., ZHAO, Y., TAM, 
A., WANG, S., FRIEDMANN, M. & BIROL, I. 2011. SNP discovery in black 
cottonwood (Populus trichocarpa) by population transcriptome resequencing. 
Molecular Ecology Resources, 11, 81-92. 

GODDARD, M. E. & HAYES, B. J. 2009. Mapping genes for complex traits in domestic 
animals and their use in breeding programmes. Nature Reviews Genetics, 10, 381-391. 

GOUDET, J. & JOMBART, T. 2020. hierfstat: estimation and tests of hierarchical F-
statistics. R package version 0.5-7 ed. 

GRATANI, L., 2014. Plant phenotypic plasticity in response to environmental 
factors. Advances in botany, 2014. 

GROTKOPP, E., REJMÁNEK, M., SANDERSON, M. J. & ROST, T. L. 2004. Evolution of 
genome size in pines (Pinus) and its life�history correlates: supertree analyses. 
Evolution, 58, 1705-1729. 

GYLLENSTRAND, N., CLAPHAM, D., KÄLLMAN, T. & LAGERCRANTZ, U. 2007. A 
Norway spruce FLOWERING LOCUS T homolog is implicated in control of growth 
rhythm in conifers. Plant physiology, 144, 248-257. 

HARRELL JR, F. E. & WITH CONTRIBUTIONS FROM C. DUPONT AND MANY 
OTHERS 2020. Hmisc: Harrell Miscellaneous. 

HERBERT R., SAMUEL, S., PATTERSON, G. 1999. Using local stock for planting native 
trees and shrubs. Forestry Commission, Edinburgh. 10pp 

HOLLIDAY, J. A., RITLAND, K. & AITKEN, S. N. 2010. Widespread, ecologically 
relevant genetic markers developed from association mapping of climate�related 
traits in Sitka spruce (Picea sitchensis). New Phytologist, 188, 501-514. 

HOWE, G. T., AITKEN, S. N., NEALE, D. B., JERMSTAD, K. D., WHEELER, N. C. & 
CHEN, T. H. 2003. From genotype to phenotype: unraveling the complexities of cold 
adaptation in forest trees. Canadian Journal of Botany, 81, 1247-1266. 

HURME, P., REPO, T., SAVOLAINEN, O. & PÄÄKKÖNEN, T. 1997. Climatic adaptation 
of bud set and frost hardiness in Scots pine (Pinus sylvestris). Canadian Journal of 
Forest Research, 27, 716-723. 

HURME, P., SILLANPÄÄ, M. J., ARJAS, E., REPO, T. & SAVOLAINEN, O. 2000. 
Genetic basis of climatic adaptation in Scots pine by Bayesian quantitative trait locus 
analysis. Genetics, 156, 1309-1322. 

ISABEL, N., HOLLIDAY, J. A. & AITKEN, S. N. 2020. Forest genomics: Advancing 
climate adaptation, forest health, productivity, and conservation. Evolutionary 
Applications, 13, 3-10. 

ISIK, F., BARTHOLOMÉ, J., FARJAT, A., CHANCEREL, E., RAFFIN, A., SANCHEZ, L., 
PLOMION, C. & BOUFFIER, L. 2016. Genomic selection in maritime pine. Plant 
Science, 242, 108-119. 

JERMSTAD, K., BASSONI, D., JECH, K., WHEELER, N. & NEALE, D. 2001. Mapping of 
quantitative trait loci controlling adaptive traits in coastal Douglas-fir. I. Timing of 
vegetative bud flush. Theoretical and Applied Genetics, 102, 1142-1151. 

JERMSTAD, K. D., BASSONI, D. L., JECH, K. S., RITCHIE, G. A., WHEELER, N. C. & 
NEALE, D. B. 2003. Mapping of quantitative trait loci controlling adaptive traits in 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2020.12.22.423987doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423987
http://creativecommons.org/licenses/by/4.0/


coastal Douglas fir. III. Quantitative trait loci-by-environment interactions. Genetics, 
165, 1489-1506. 

KANNINEN, M. 2010. Plantation forests: global perspectives, London, Washington DC., 
Earthscan 

KÖRNER, C. 2006. Significance of temperature in plant life. Plant growth and climate 
change, 48-69. 

KORTE, A. & FARLOW, A. 2013. The advantages and limitations of trait analysis with 
GWAS: a review. Plant methods, 9, 1-9. 

KUMAR, S., CHAGNÉ, D., BINK, M. C., VOLZ, R. K., WHITWORTH, C. & CARLISLE, 
C. 2012. Genomic selection for fruit quality traits in apple (Malus× domestica Borkh.). 
PloS one, 7, e36674. 

LAUBE, J., SPARKS, T. H., ESTRELLA, N., HÖFLER, J., ANKERST, D. P. & MENZEL, 
A. 2014. Chilling outweighs photoperiod in preventing precocious spring 
development. Global change biology, 20, 170-182. 

LEEBENS-MACK, J. H., BARKER, M. S., CARPENTER, E. J., DEYHOLOS, M. K., 
GITZENDANNER, M. A., GRAHAMA, S. W., GROSSE, I., LI, Z., MELKONIAN, 
M., MIRARAB, S. & PORSCH, M. 2019. One thousand plant transcriptomes and the 
phylogenomics of green plants. Nature, 574, 679-685 

LEE, S. 1999. Genetic gain from Scots pine: potential for new commerical seed orchards. 
Information note. Forestry Commission  

LEWANDOWSKI, A., BORATYŃSKI, A. & MEJNARTOWICZ, L. 2000. Allozyme 
investigations on the genetic differentiation between closely related pines - Pinus 
sylvestris, P. mugo, P. uncinata, and P. uliginosa (Pinaceae). Plant Systematics and 
Evolution, 221, 15-24. 

LIU, J.-J., SNIEZKO, R. A., STURROCK, R. N. & CHEN, H. 2014. Western white pine SNP 
discovery and high-throughput genotyping for breeding and conservation applications. 
BMC plant biology, 14, 380. 

LU, M., KRUTOVSKY, K.V., NELSON, C.D., WEST, J.B., REILLY, N.A. & LOOPSTRA, 
C.A., 2017. Association genetics of growth and adaptive traits in loblolly pine (Pinus 
taeda L.) using whole-exome-discovered polymorphisms. Tree Genetics & 
Genomes, 13(3), 57. 

MACKAY, T. F. 2001. The genetic architecture of quantitative traits. Annual review of 
genetics, 35, 303-339. 

MAHONY, C.R., MACLACHLAN, I.R., LIND, B.M., YODER, J.B., WANG, T. & 
AITKEN, S.N., 2020. Evaluating genomic data for management of local adaptation in 
a changing climate: A lodgepole pine case study. Evolutionary Applications, 13(1), 
116-131. 

MEUWISSEN, T., HAYES, B. & GODDARD, M. 2001. Prediction of total genetic value 
using genome-wide dense marker maps. Genetics, 157, 1819-1829. 

MINAMIKAWA, M. F., NONAKA, K., KAMINUMA, E., KAJIYA-KANEGAE, H., 
ONOGI, A., GOTO, S., YOSHIOKA, T., IMAI, A., HAMADA, H. & HAYASHI, T. 
2017. Genome-wide association study and genomic prediction in citrus: potential of 
genomics-assisted breeding for fruit quality traits. Scientific reports, 7, 1-13. 

MURANTY, H., TROGGIO, M., SADOK, I. B., AL RIFAÏ, M., AUWERKERKEN, A., 
BANCHI, E., VELASCO, R., STEVANATO, P., VAN DE WEG, W. E. & DI 
GUARDO, M. 2015. Accuracy and responses of genomic selection on key traits in 
apple breeding. Horticulture research, 2, 1-12.NEALE, D. B. & INGVARSSON, P. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2020.12.22.423987doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423987
http://creativecommons.org/licenses/by/4.0/


K. 2008. Population, quantitative and comparative genomics of adaptation in forest 
trees. Current Opinion in Plant Biology, 11, 149-155 

PARADIS, E. & SCHLIEP, K. 2019. ape 5.0: an environment for modern phylogenetics and 
evolutionary analyses in R. Bioinformatics, 35, 526-528. 

PARCHMAN, T. L., GEIST, K. S., GRAHNEN, J. A., BENKMAN, C. W. & BUERKLE, C. 
A. 2010. Transcriptome sequencing in an ecologically important tree species: 
assembly, annotation, and marker discovery. BMC genomics, 11, 180. 

PARCHMAN, T. L., GOMPERT, Z., MUDGE, J., SCHILKEY, F. D., BENKMAN, C. W. & 
BUERKLE, C. A. 2012. Genome-wide association genetics of an adaptive trait in 
lodgepole pine. Molecular Ecology, 21(12), 2991-3005   

PELLEGRINI, M., MARCOTTE, E. M., THOMPSON, M. J., EISENBERG, D. & YEATES, 
T. O. 1999. Assigning protein functions by comparative genome analysis: protein 
phylogenetic profiles. Proceedings of the National Academy of Sciences, 96(8), 4285-
4288 

PERRY, A., WACHOWIAK, W., DOWNING, A., TALBOT, R. & CAVERS, S. 2020. 
Development of a single nucleotide polymorphism array for population genomic 
studies in four European pine species. Molecular Ecology Resources. 

PLOMION, C., DUREL, C.-E. & O'MALLEY, D. 1996. Genetic dissection of height in 
maritime pine seedlings raised under accelerated growth conditions. Theoretical and 
Applied Genetics, 93, 849-858. 

POLTURAK, G., HEINIG, U., GROSSMAN, N., BATTAT, M., LESHKOWITZ, D., 
MALITSKY, S., ROGACHEV, I. & AHARONI, A. 2018. Transcriptome and 
metablic profiling provides insights into betalain bio-synthesis and evolution in 
Mirabilis jalapa. Molecular Plant, 11(1), 189-204 

PRUNIER, J., PELGAS, B., GAGNON, F., DESPONTS, M., ISABEL, N., BEAULIEU, J. & 
BOUSQUET, J. 2013. The genomic architecture and association genetics of adaptive 
characters using a candidate SNP approach in boreal black spruce. BMC genomics, 14, 
368. 

PRUNIER, J., VERTA, J. P. & MACKAY, J. J. 2016. Conifer genomics and adaptation: at 
the crossroads of genetic diversity and genome function. New Phytologist, 209, 44-62. 

R CORE TEAM 2020. R: A language and environment for statistical computing. R 
Foundation for Statistical Computing. 

REPO, T., ZHANG, G., RYYPPÖ, A., RIKALA, R. & VUORINEN, M. 2000. The relation 
between growth cessation and frost hardening in Scots pines of different origins. 
Trees, 14, 456-464. 

RESENDE, M. D., RESENDE, M. F., SANSALONI, C. P., PETROLI, C. D., MISSIAGGIA, 
A. A., AGUIAR, A. M., ABAD, J. M., TAKAHASHI, E. K., ROSADO, A. M. & 
FARIA, D. A. 2012a. Genomic selection for growth and wood quality in Eucalyptus: 
capturing the missing heritability and accelerating breeding for complex traits in forest 
trees. New Phytologist, 194, 116-128. 

RESENDE, M. F., MUÑOZ, P., RESENDE, M. D., GARRICK, D. J., FERNANDO, R. L., 
DAVIS, J. M., JOKELA, E. J., MARTIN, T. A., PETER, G. F. & KIRST, M. 2012b. 
Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus 
taeda L.). Genetics, 190, 1503-1510. 

SALMELA, M. J., CAVERS, S., COTTRELL, J. E., IASON, G. R. & ENNOS, R. A. 2011. 
Seasonal patterns of photochemical capacity and spring phenology reveal genetic 
differentiation among native Scots pine (Pinus sylvestris L.) populations in Scotland. 
Forest Ecology and Management, 262, 1020-1029. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2020.12.22.423987doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423987
http://creativecommons.org/licenses/by/4.0/


SCHLICHTING, C. D. 1986. The evolution of phenotypic plasticity in plants. Annual Review 
of Ecology and Systematics, 17, 667-693. 

SCOTTI-SAINTAGNE, C., BODÉNÈS, C., BARRENECHE, T., BERTOCCHI, E., 
PLOMION, C. & KREMER, A., 2004. Detection of quantitative trait loci controlling 
bud burst and height growth in Quercus robur L. Theoretical and Applied 
Genetics, 109(8), 1648-1659. 

SEGURA, V., VILHJÁLMSSON, B. J., PLATT, A., KORTE, A., SEREN, Ü., LONG, Q. & 
NORDBORG, M. 2012. An efficient multi-locus mixed-model approach for genome-
wide association studies in structured populations. Nature genetics, 44, 825. 

SILVA-JUNIOR, O.B., FARIA, D.A. & GRATTAPAGLIA, D., 2015. A flexible 
multi�species genome�wide 60K SNP chip developed from pooled resequencing of 
240 Eucalyptus tree genomes across 12 species. New Phytologist, 206(4), 1527-1540. 

STEVENS, K. A., WEGRZYN, J. L., ZIMIN, A., PUIU, D., CREPEAU, M., CARDENO, C., 
PAUL, R., GONZALEZ-IBEAS, D., KORIABINE, M. & HOLTZ-MORRIS, A. E. 
2016. Sequence of the sugar pine megagenome. Genetics, 204, 1613-1626. 

STOCKS, J. J., METHERINGHAM, C. L., PLUMB, W. J., LEE, S. J., KELLY, L. J., 
NICHOLS, R. A. & BUGGS, R. J. 2019. Genomic basis of European ash tree 
resistance to ash dieback fungus. Nature Ecology & Evolution, 3, 1686-1696. 

THISTLETHWAITE, F. R., RATCLIFFE, B., KLÁPŠTĚ, J., PORTH, I., CHEN, C., 
STOEHR, M. U. & EL-KASSABY, Y. A. 2017. Genomic prediction accuracies in 
space and time for height and wood density of Douglas-fir using exome capture as the 
genotyping platform. BMC genomics, 18, 1-16. 

TRICK, M., LONG, Y., MENG, J. & BANCROFT, I. 2009. Single nucleotide polymorphism 
(SNP) discovery in the polyploid Brassica napus using Solexa transcriptome 
sequencing. Plant biotechnology journal, 7, 334-346. 

VAN KLEUNEN, M., DAWSON, W., BOSSDORF, O. & FISCHER, M. 2014. The more the 
merrier: multi-species experiments in ecology. Basic and applied ecology, 15(1), 1-9 

VÁZQUEZ-GONZÁLEZ, C., LÓPEZ-GOLDAR, X., ALÍA, R., BUSTINGORRI, G., 
LARIO, F.J., LEMA, M., DE LA MATA, R., SAMPEDRO, L., TOUZA, R. & ZAS, 
R., 2021. Genetic variation in resin yield and covariation with tree growth in maritime 
pine. Forest Ecology and Management, 482, 118843. 

VIVAS, M., WINGFIELD, M. J. & SLIPPERS, B. 2020. Maternal effects should be 
considered in the establishment of forestry plantations. Forest Ecology and 
Management, 460, 117909 

WACHOWIAK, W., BALK, P. A. & SAVOLAINEN, O. 2009. Search for nucleotide 
diversity patterns of local adaptation in dehydrins and other cold-related candidate 
genes in Scots pine (Pinus sylvestris L.). Tree Genetics & Genomes, 5, 117. 

WACHOWIAK, W., BORATYŃSKA, K. & CAVERS, S. 2013. Geographical patterns of 
nucleotide diversity and population differentiation in three closely related European 
pine species in the Pinus mugo complex. Botanical Journal of the Linnean Society, 
172, 225-238. 

WACHOWIAK, W., PALME, A. E. & SAVOLAINEN, O. 2011. Speciation history of three 
closely related pines Pinus mugo (T.), P. uliginosa (N.) and P. sylvestris (L.). 
Molecular Ecology, 20, 1729-1743. 

WACHOWIAK, W., PERRY, A., DONNELLY, K. & CAVERS, S. 2018a. Early phenology 
and growth trait variation in closely related European pine species. Ecology and 
evolution, 8, 655-666. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2020.12.22.423987doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423987
http://creativecommons.org/licenses/by/4.0/


WACHOWIAK, W., TRIVEDI, U., PERRY, A. & CAVERS, S. 2015. Comparative 
transcriptomics of a complex of four European pine species. BMC genomics, 16, 234. 

WACHOWIAK, W., ZABOROWSKA, J., ŁABISZAK, B., PERRY, A., ZUCCA, G. M., 
GONZÁLEZ-MARTÍNEZ, S. C. & CAVERS, S. 2018b. Molecular signatures of 
divergence and selection in closely related pine taxa. Tree genetics & genomes, 14, 83. 

WANG, M. & XU, S. 2019. Statistical power in genome-wide association studies and 
quantitative trait locus mapping. Heredity, 123, 287-306. 

WESTBROOK, J. W., RESENDE JR, M. F., MUNOZ, P., WALKER, A. R., WEGRZYN, J. 
L., NELSON, C. D., NEALE, D. B., KIRST, M., HUBER, D. A. & GEZAN, S. A. 
2013. Association genetics of oleoresin flow in loblolly pine: discovering genes and 
predicting phenotype for improved resistance to bark beetles and bioenergy potential. 
New Phytologist, 199, 89-100. 

WESTBROOK, J. W., ZHANG, Q., MANDAL, M. K., JENKINS, E. V., BARTH, L. E., 
JENKINS, J. W., GRIMWOOD, J., SCHMUTZ, J. & HOLLIDAY, J. A. 2020. 
Optimizing genomic selection for blight resistance in American chestnut backcross 
populations: A trade�off with American chestnut ancestry implies resistance is 
polygenic. Evolutionary applications, 13, 31-47. 

WUERTZ, D., SETZ, T. & CHALABI, Y. 2020. fBasics: Rmetrics - markets and basic 
statistics. R package version 3042.89.1 ed. 

YANG, J., LEE, S.H., GODDARD, M.E. & VISSCHER, P.M., 2011. GCTA: a tool for 
genome-wide complex trait analysis. The American Journal of Human 
Genetics, 88(1), 76-82. 

YOUNG, A. I., FRIGGE, M. L., GUDBJARTSSON, D. F., THORLEIFSSON, G., 
BJORNSDOTTIR, G., SULEM, P., MASSON, G., THORSTEINSDOTTIR, U., 
STEFANSSON, K. & KONG, A. 2018. Relatedness disequilibrium regression 
estimates heritability without environmental bias. Nature Genetics, 50, 1304-1310 

ZIMIN, A., STEVENS, K. A., CREPEAU, M. W., HOLTZ-MORRIS, A., KORIABINE, M., 
MARÇAIS, G., PUIU, D., ROBERTS, M., WEGRZYN, J. L. & DE JONG, P. J. 
2014. Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics, 196, 
875-890. 

ZIMIN, A. V., STEVENS, K. A., CREPEAU, M. W., PUIU, D., WEGRZYN, J. L., YORKE, 
J. A., LANGLEY, C. H., NEALE, D. B. & SALZBERG, S. L. 2017. An improved 
assembly of the loblolly pine mega-genome using long-read single-molecule 
sequencing. Gigascience, 6, giw016. 

 
 
Data accessibility 
Phenotypes, sampling locations and SNPs have been uploaded to the EIDC 
(https://eidc.ac.uk/) 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2020.12.22.423987doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423987
http://creativecommons.org/licenses/by/4.0/

