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Abstract

Systems consolidation refers to the reorganization of memory over time across brain regions. Despite recent advancements in
unravelling engrams and circuits essential for this process, the exact mechanisms behind engram cell dynamics and the role of
associated pathways remain poorly understood. Here, we propose a computational model to address this knowledge gap that
consists of a multi-region spiking recurrent neural network subject to biologically-plausible synaptic plasticity mechanisms. By
coordinating the timescales of synaptic plasticity throughout the network and incorporating a hippocampus-thalamus-cortex
circuit, our model is able to couple engram reactivations across these brain regions and thereby reproduce key dynamics
of cortical and hippocampal engram cells along with their interdependencies. Decoupling hippocampal-thalamic-cortical
activity disrupts engram dynamics and systems consolidation. Our modeling work also yields several testable predictions:
engram cells in mediodorsal thalamus are activated in response to partial cues in recent and remote recall and are crucial
for systems consolidation; hippocampal and thalamic engram cells are essential for coupling engram reactivations between
subcortical and cortical regions; inhibitory engram cells have region-specific dynamics with coupled reactivations; inhibitory
input to mediodorsal thalamus is critical for systems consolidation; and thalamocortical synaptic coupling is predictive of
cortical engram dynamics and the retrograde amnesia pattern induced by hippocampal damage. Overall, our results suggest
that systems consolidation emerges from concerted interactions among engram cells in distributed brain regions enabled by
coordinated synaptic plasticity timescales in multisynaptic subcortical-cortical circuits.
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Introduction 1

Pioneering hippocampal lesion studies [1–3] have motivated an ever-growing body of lesion experiments [4, 5] with a common 2

goal of understanding the role of hippocampus and neocortex in systems consolidation of memory. In turn, this spawned 3

many theories of this process but with widely different views concerning its underlying mechanisms and properties. These 4

discrepancies can be mainly attributed to seemingly conflicting reports in the retrograde amnesia literature [4, 5]. Specifically, 5

retrograde amnesia induced by hippocampal damage has been reported as temporally-graded (i.e., recent memories are lost 6

but remote memories are spared following hippocampal lesion), flat (i.e., recent and remote memories are disrupted by 7

hippocampal lesion), or absent (i.e., recent and remote memories are preserved post hippocampal lesion). In light of these 8

experimental findings, some systems consolidation theories posited that hippocampus is essential for recent but not for remote 9

memory recall [6–16] while others have proposed that hippocampus is either always necessary for recall [4, 17–19] or required 10

for recall depending on the circumstances of encoding and retrieval [20–29]. Despite their differences, these theories share 11

the view that systems consolidation relies on interactions between hippocampus and neocortex. Surprisingly, it has been 12

recently demonstrated that thalamic spindles have a causal role in systems consolidation by coupling hippocampal, thalamic, 13

and cortical oscillations [30]. Therefore, current theories of systems consolidation fail to provide a unifying framework that 14

reconciles the available experimental data. 15

16

Recent advances in experimental technologies have the potential to clarify the nature and dynamics of systems consolidation 17

by enabling the identification and manipulation of engrams – more specifically of engram cells [31]. These cells are defined 18

as a set of neurons that become active in response to learning, undergo enduring changes as a result of learning, and are 19

able to be reactivated when presented part of the original stimuli resulting in memory recall [32]. Adopting this definition, a 20

landmark contextual fear conditioning (CFC) study found that engram cells in medial prefrontal cortex (CTX) are initially 21

generated in a silent state (i.e., cannot be reactivated from a partial cue) but over time gradually become active (i.e., can 22

be reactivated from a partial cue) [33]. In contrast, engram cells in hippocampus (HPC) are active following learning but 23

eventually turn silent. The silent-to-active transition in CTX engram cells was named maturation and the active-to-silent 24

switch in HPC engrams was termed de-maturation. Both engram dynamics are associated with systems consolidation of 25

memory. Moreover, the output of HPC engram cells after learning was found to be crucial for the subsequent maturation 26

of CTX engrams. It has been proposed that the observed dynamics of engrams in CTX and HPC [33] are “mirrored” 27

in different types of episodic memory [5]. Nevertheless, the exact neural mechanisms underlying these engram dynamics 28

and the role of associated circuits remain unknown and, consequently, the ability of recent engram findings to advance 29

our knowledge towards a consistent view of systems consolidation is hindered. This is at least in part due to existing 30

theoretical and computational models lagging behind the groundbreaking advancements in engram cell research enabled by 31

new technologies developed in the past decade [31,32,34,35]. In particular, previous computational studies have employed 32

abstract neuronal models that are intended to capture high-level properties of systems consolidation (e.g., recent memory 33

recall relies on hippocampus) but are unable to reproduce engram cell-level data produced by recent experiments [9,11,25,36–40]. 34

35

Here, our goal is to provide insights into engram cell dynamics and associated pathways using computational modeling. 36

To that end, we simulate systems consolidation in an episodic memory task using a multi-region spiking recurrent neural 37

network model subject to biologically-plausible plasticity mechanisms acting on different timescales in distinct brain regions. 38

Contrary to current theories [4, 6–29], our results show that direct, monosynaptic HPC→CTX projections cannot reproduce 39

the known interdependencies between engrams in these regions [33]. However, a network with hippocampal-thalamic-cortical 40

communication is able to overcome this limitation. Specifically, after verifying that our model with three-region communication 41

displays engram cell maturation in CTX and de-maturation in HPC, we then show that HPC engram cells as well as coupled 42

engram reactivations across brain regions are essential for proper engram dynamics in line with previous experiments [30, 33]. 43

Our modeling results also yield the following experimentally-testable predictions: engram cells in mediodorsal thalamus (THL) 44

are active in recent and remote recall and are crucial for the maturation of engram cells in CTX; engram cells in HPC and 45

THL are crucial for coupling engram reactivations across HPC, THL, and CTX in consolidation periods; inhibitory engram 46

cells have distinct region-specific dynamics with coupled reactivations; inhibitory input to THL is critical for CTX engram 47

maturation; and THL→CTX synaptic coupling is predictive of CTX engram dynamics and the retrograde amnesia pattern 48

induced by HPC damage — thus providing a unifying mechanistic account for reconciliation of HPC lesion studies. Altogether, 49

our results suggest that coordinated hippocampal-thalamic-cortical communication underlies engram dynamics subserving 50

systems consolidation. 51

52
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Results 53

Synaptic plasticity timescales drive engram cell dynamics. 54

To understand the mechanisms underlying engram cell dynamics, we start by examining the effects of synaptic plasticity 55

timescales on the initial state and subsequent evolution of engram cells. We use spiking neural network models that consist of a 56

stimulus population (STIM) that projects to both HPC and CTX (Fig. 1A). Feedforward and recurrent synapses are initialized 57

at random with excitatory synapses onto excitatory neurons displaying long-term plasticity and inhibitory synapses onto 58

excitatory neurons exhibiting inhibitory plasticity. Long-term excitatory plasticity is composed of a combination of Hebbian and 59

non-Hebbian forms of plasticity [41]. The Hebbian term takes the form of triplet spike-timing-dependent plasticity (STDP) [42] 60

while the non-Hebbian terms include heterosynaptic plasticity [43] and transmitter-induced plasticity [44]. Importantly, the 61

heterosynaptic plasticity term incorporates synaptic consolidation dynamics [41]. Inhibitory synaptic plasticity consists of a 62

network activity-based STDP term [41] whose primary goal is to regulate firing rate levels [45] (for a detailed description of 63

the model, see Methods). One of four non-overlapping random stimuli is presented to the network at a time either for training 64

or testing (Fig. 1A), and the network is subject to an episodic memory task to investigate engram dynamics. Following a brief 65

burn-in period to stabilize network activity, the network simulation consists of three consecutive phases: training, consolidation, 66

and testing (Fig. 1B). In the training phase, the complete stimuli (i.e., full patterns) are randomly presented to the network. 67

Next, no stimulus is presented to the network during the consolidation phase and, consequently, the network is allowed 68

to evolve spontaneously. At different points throughout the consolidation phase, the network proceeds to the final testing 69

phase where partial cues of the original stimuli are presented and the ability of HPC and CTX to recall the memory is evaluated. 70

71

Engram cells are formed in both HPC and CTX at the end of training (Fig. 1C). These cells are identified via the average 72

stimulus-evoked firing rate of neurons (see Methods). The block diagonal structure (i.e., strong diagonal and weak off-diagonal 73

mean weights) of the recurrent excitatory synapses in HPC and CTX shows that engram cells in these regions have encoded 74

the four stimuli by the end of the training phase. After 12 hours of consolidation, the diagonal structure is preserved in both 75

regions. However, feedforward synapses projecting to HPC and CTX evolve in opposite ways in the consolidation phase. 76

Specifically, while the cumulative distribution function (c.d.f.) of the total feedforward synaptic weights to each engram cell 77

in HPC shows that there is a decrease in STIM→HPC weights, the reverse was observed in CTX. These changes in STIM 78

feedforward weights are consistent with experimental findings which showed that changes in the dendritic spine density of 79

engram cells over time are region-specific with cells in HPC experiencing a decrease but neurons in CTX undergoing an 80

increase in spine density [33]. Furthermore, although engrams are spontaneously reactivated during the consolidation period 81

in the two regions of the model, engram reactivations are not coupled. This was expected given that there are no connections 82

between HPC and CTX (Fig. 1A) and, hence, they behave independently in this network configuration. Critically, the 83

differences in engram dynamics in HPC and CTX are a direct result of their diverging synaptic plasticity timescales: learning 84

rate (η) and synaptic consolidation time constant (τ cons) are higher in HPC relative to CTX. 85

86

We next evaluate the ability of the network to retrieve memories from partial cues by plotting memory recall curves. These 87

curves show that the model exhibits de-maturation and maturation of engram cells in HPC and CTX, respectively (Fig 88

1D-F), in line with reported experiments [33]. At the end of training (i.e., 0 hours of consolidation), recall true positive rate 89

(t.p.r.) is nearly 100% and false positive rate (f.p.r.) is virtually 0% in HPC, leading to a corresponding recall accuracy of 90

almost 100%. In CTX, however, t.p.r. is approximately 40% and f.p.r. is around 20% with a resulting accuracy of ∼ 40% 91

at the end of encoding. Over the course of the consolidation phase, though, the recall metrics reverse: t.p.r. and accuracy 92

decrease in HPC but they increase in CTX. Importantly, the changes in recall accuracy are driven by changes in t.p.r. in 93

both regions. This means that engram cells in HPC are initially reactivated in response to partial cues but over time become 94

unable to do so while those in CTX cannot be reactivated by cues immediately after training but acquire this ability over the 95

course of consolidation. Consequently, memory recall switches from HPC to CTX with systems consolidation. These engram 96

dynamics are a direct result of region-specific changes in STIM feedforward weights: depression of STIM→HPC synapses and 97

potentiation of STIM→CTX projections (Fig 1C). Note that I) HPC engram cells are able to retain their recurrent excitatory 98

structure despite turning silent because of engram reactivations during consolidation (Fig 1C) and II) CTX engram cells 99

already have structured recurrent excitatory connectivity at the end of encoding when they are still silent and this enables 100

engram reactivations throughout consolidation (Fig 1C). Given the block diagonal structure of the recurrent excitatory weights 101

of silent engram cells in both HPC and CTX, our model suggests that optogenetically stimulating silent engrams in either 102

region triggers memory recall. Interestingly, previous experiments have demonstrated that this is the case [33]. Thus, our 103
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modeling results suggest that variability in synaptic plasticity timescales may underlie the observed divergence in engram 104

dynamics across distinct regions of the brain. 105

106

Monosynaptic input from HPC to CTX presents a dilemma. 107

Despite replicating major engram cell dynamics in HPC and CTX, the network model in Fig. 1A cannot capture any 108

interdependence between these regions. Given that it has been shown that the output of engram cells in HPC after training is 109

crucial for the maturation of CTX engram cells [33], we now include in our model monosynaptic projections from HPC to 110

CTX with the goal of reproducing this experimental finding. We start by making HPC→CTX synapses plastic with a learning 111

rate ηexchpc→ctx = ηexcctx and a synaptic consolidation time constant τ conshpc→ctx = τ consctx (Fig. 2A). This network is also subject to a 112

simulation protocol consisting of training, consolidation, and testing (Fig. 2B, compare to Fig. 1B). Following training under 113

this configuration, engram cells in HPC and CTX become coupled via the HPC→CTX synaptic weights with a clear diagonal 114

structure (Fig 2C). This results in high memory recall accuracy immediately after training in both HPC and CTX (Fig. 2D). 115

While engram cells in HPC later undergo de-maturation (similarly to Fig. 1D), engram cells in CTX do not display proper 116

maturation. Instead, CTX recall accuracy decreases at the beginning of the consolidation phase and then slowly recovers 117

reaching a level close to the one at the end of training. In order to probe the role of HPC engram cells in the dynamics of 118

CTX engrams, we block the output of HPC engrams during the consolidation period (Fig. 2E). In this simulation, the recall 119

accuracy in CTX remains relatively constant with only temporary minor oscillations (Fig. 2F). Comparing the simulations 120

with intact and blocked HPC engram cells during consolidation (Fig. 2D to Fig. 2F), it is clear that, in this configuration 121

with plastic HPC→CTX synapses (Fig. 2A), engram cells in HPC do not support CTX engram maturation and are effectively 122

detrimental to remote recall in CTX. This is due to input from HPC acting as noise after its engram cells have de-matured. 123

Thus, this network configuration (Fig. 2A) neither captures engram cell maturation in CTX nor the crucial role that engram 124

cells in HPC play in this process. 125

126

Alternatively, we consider a network where the synapses from HPC to CTX are static (Fig. 2G). Similarly to the protocol 127

applied to the configuration with plastic HPC→CTX synapses (Fig. 2B), this network undergoes training, consolidation, and 128

testing (Fig. 2H). In this configuration, the mean weight matrix of HPC→CTX synapses at the end of training shows that 129

differences in the mean weight strength between engrams in these two regions are random and virtually nonexistent and, 130

hence, there is no functional synaptic coupling between them (Fig. 2I). This network exhibits proper engram dynamics (i.e., 131

de-maturation in HPC and maturation in CTX) as shown by its recall accuracy curves with intact HPC→CTX synapses 132

(Fig. 2J). However, blocking the output of engram cells in HPC during consolidation (Fig. 2K) reveals that they are not 133

necessary for the maturation of CTX engrams in this network: CTX recall accuracy with blocking (Fig. 2L) has the same 134

trend of silent to active engram cells as without blocking (Fig. 2J). This result was predictable since the lack of synaptic 135

plasticity between HPC and CTX and the consequent absence of functional synaptic coupling between engrams in these two 136

regions make the input from HPC to CTX act as a source of noise that does not bear any active role in the dynamics of 137

CTX engram cells. Therefore, static HPC→CTX synapses cannot reproduce the interdependence between these two regions 138

despite accurately capturing their specific engram cell state transitions. The network configurations with static HPC→CTX 139

synapses (Fig. 2G) and without HPC→CTX projections (Fig. 1A) have essentially the same behavior (compare Fig. 2J to 140

Fig. 1D). Importantly, we explored a wide range of alternative synaptic plasticity timescales (e.g., Fig. S1A-C) and network 141

configurations including STIM, HPC, and CTX (e.g., Fig. S1D-J) and found that they consistently yield networks with 142

HPC→CTX synaptic coupling that varies between the two extremes discussed previously: strong coupling (Fig. 2C) and 143

absent coupling (Fig. 2I). These intermediate levels of HPC→CTX synaptic coupling result in HPC engram cells having 144

an impact on CTX engram dynamics that oscillates between strongly detrimental (Fig. 2D/F) and negligible (Fig. 2J/L). 145

Taken together, these results leave us with a dilemma: neither plastic nor static monosynaptic projections from HPC to CTX 146

can capture both the engram cell dynamics and interdependencies seen in experiments [33]. 147

148

Subcortical engram cells are essential for CTX engram cell maturation. 149

To find a solution to the dilemma previously presented (Fig. 2), we re-examined the brain regions that provide monosynaptic 150

input to engram cells in CTX. Specifically, it has been reported that in CFC the ventral hippocampus (vHPC) is the only 151

hippocampal area that has direct projections to CTX engram cells, but this amounts to only ∼5% of their total monosynaptic 152
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input [33]. This led us to hypothesize that HPC engram cells use a multisynaptic pathway to CTX to support the maturation of 153

its engrams. In order to test this hypothesis, we include THL in our model since it simultaneously I) receives input from HPC 154

(via the medial temporal lobes: entorhinal and perirhinal cortices [46,47]), II) has a large share of the monosynaptic projections 155

to CTX engram cells (∼20%) [33], III) is essential for remote memory recall in CFC [48], and IV) has increased activity 156

around hippocampal ripples coupled to spindles [49] – noting that the latter have a causal role in the systems consolidation 157

of an episodic memory [30]. As a result, we expand the network with THL and set plastic and static circular receptive 158

fields in STIM→HPC and STIM→THL, respectively (Fig. 3A). We then use a different set of stimuli for training (i.e., four 159

non-overlapping horizontal bars) and testing (i.e., the central 50% of each bar) (Fig. 3A). In this network configuration, HPC 160

and CTX are readout populations but not THL. This means that memory recall from a partial cue is only considered successful 161

if it can be retrieved in either HPC or CTX. We then set the learning rates (ηexchpc→thl = ηexcthl = ηexchpc and ηexcthl→ctx = ηexcctx with 162

ηexchpc > ηexcctx ), reflecting that subcortical synapses tend to change at a faster rate than their cortical counterparts. In line with 163

our previous results (Fig. 1), STIM→HPC synapses have a longer synaptic consolidation time constant τ consstim→hpc relative to 164

the other excitatory projections in the network (for further details, see Methods). Altogether, this network configuration 165

allows us to evaluate whether the HPC→THL→CTX multisynaptic circuit can provide a pathway for HPC engram cells to 166

support the maturation of CTX engrams. 167

168

We then subject the three-region network (Fig. 3A) to training, consolidation, and testing (Fig. 3B) and verify that it also 169

exhibits de-maturation and maturation of engram cells in HPC and CTX, respectively (Fig. 3C). Hence, memory recall 170

switches from HPC to CTX with consolidation (Fig. S2 and S3) due to changes in engram cell state that are driven by changes 171

in t.p.r. This is consistent with previous findings [33] and reflects region-specific plastic changes in feedforward afferent 172

synapses: depression of STIM→HPC projections and potentiation of THL→CTX synapses (Fig. S4) in a manner analogous 173

to the two-region network (Fig. 1C). Engram cells in THL are initially active and remain so throughout the consolidation 174

period in our simulations. Importantly, excitatory and inhibitory plasticity are required for proper engram dynamics (Fig. 175

S5). Furthermore, the engram dynamics observed in HPC, THL, and CTX are accompanied by coupled engram reactivations 176

across these three regions (Fig. 3C). Precise coupling of oscillations in HPC, THL, and CTX in consolidation periods has 177

been previously shown to be linked to systems consolidation [30,50–54]. Therefore, our model exhibits engram dynamics and 178

oscillation patterns consistent with previous experiments. 179

180

We next probe the role of HPC engram cells in the maturation of CTX engrams. To that end, we block the output of engram 181

cells in HPC during consolidation and subsequently test memory recall (Fig. 3D). Although recall accuracy in CTX initially 182

shows a modest increase, it goes on to suffer a sharp decline and eventually settles at nearly zero. This is driven by the CTX 183

t.p.r. curve which displays the same pattern. Hence, engram cells in HPC are crucial for the maturation of CTX engram cells 184

in the three-region network and reflect previous findings [33]. Plotting the population activity in the network reveals that the 185

blockage of HPC engram cells disrupts the coupling of engram reactivations in the consolidation phase (Fig. 3D). Recent 186

experiments that tampered with the coupling of oscillations in HPC, THL, and CTX have demonstrated that this has an 187

adverse effect on the systems consolidation of episodic memory [30,50]. Thus, our model suggests that engram cells in HPC 188

are essential for the maturation of CTX engrams because they support coupling engram reactivations across brain regions 189

throughout consolidation periods. 190

191

We then evaluate whether THL engram cells are also critical for CTX engram maturation. In a manner analogous to our 192

previous probe of HPC engram cells, we block the output of engram cells in THL in the consolidation phase. The resulting 193

memory recall curves show that THL engram cells are also crucial for the maturation of engram cells in CTX (Fig. 3E). The 194

CTX recall accuracy curve in this case has a different shape though: at first accuracy increases substantially and reaches a 195

level similar to the control network (Fig. 3C) before gradually declining and finally reaching a low point after more than 20 196

hours of consolidation (compare this to Fig. 3D). This trend in recall accuracy is driven by CTX t.p.r. and suggests that THL 197

engram cells are essential for stabilizing active engram cells in CTX. Despite the differences in recall profile between blocking 198

HPC and THL engram cells, both lead to uncoupled engram reactivations between CTX and the remaining subcortical 199

regions in the network (Fig. 3D-E). As expected, blocking the output of THL engram cells does not affect the coupling of 200

reactivations in HPC and THL. Nevertheless, this has a downstream effect on the THL-CTX coupling leading to decoupled 201

reactivations in these regions. Taken together, our modeling results predict that THL engram cells are essential for CTX 202

engram cell maturation as they also support the coupling of subcortical-cortical oscillations in a manner similar to HPC 203

engram cells. 204
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205

We can gain a deeper understanding of the mechanisms underlying the active role of HPC and THL engram cells in the 206

maturation of CTX engrams by examining changes in synaptic weights in the network. At the end of training, engrams in 207

HPC, THL, and CTX are coupled via the feedforward synapses in the HPC→THL→CTX circuit (Fig. 4A). THL and CTX 208

recurrent excitatory weights form a block diagonal structure that reflects stimulus encoding. After 24 hours of consolidation, 209

HPC→THL coupling is degraded but a clear separation between on- and off-diagonal weights still persists while THL→CTX 210

connectivity is not only preserved but reinforced (Fig. 4B). The recurrent weight structures of THL and CTX are also 211

largely maintained. Despite de-maturation, HPC engram cells also retain a learning-induced block diagonal structure after 212

consolidation (Figure S6) similarly to the two-region network (Fig. 1C). In contrast, blocking HPC engram cells during 213

consolidation greatly damages the diagonal pattern in both feedforward and recurrent weights (compare Fig. 4C and B). 214

HPC→THL coupling and THL recurrent weights are the most affected with nearly no distinction between on- and off- diagonal 215

elements but the impact on THL→CTX coupling is also significant. This results in decoupled oscillations in HPC, THL, 216

and CTX (Fig. 3D). This effect is compounded by the degradation of the recurrent excitatory weight structure in CTX 217

(Fig. 4C) and the subsequent deterioration of engram reactivations in this region (Fig. 3D). Although blocking THL engram 218

cells has no impact on the evolution of HPC→THL and recurrent THL weights as expected (compare Fig. 4D and B), it 219

compromises THL→CTX coupling in a similar way as did blocking HPC engram cells (compare Fig. 4D and C). Accordingly, 220

this also leads to decoupled reactivations between THL and CTX (Fig. 3E). A deteriorating effect on CTX recurrent weights 221

is also visible (Fig. 4D) but in this case it does not prevent reactivations in CTX altogether (compare Fig. 3E and D). Thus, 222

engram cells in HPC and THL are crucial for maintaining strong synaptic coupling in the HPC→THL→CTX pathway and, 223

consequently, coordinating engram reactivations across these regions to support CTX engram maturation. 224

225

Inhibitory engram cells have distinct dynamics. 226

Engram cell experiments have focused on excitatory neurons given that expression of immediate early genes (IEGs) used 227

for activity-dependent labelling occurs predominantly in these cells [35, 55, 56]. However, growing evidence suggests that 228

inhibitory engrams co-exist with excitatory engram cells [57, 58]. We therefore also investigate the behavior of inhibitory 229

neurons in our model. We start by comparing the recall profile of inhibitory and excitatory engram cells (Fig. 5A and 230

Fig. 3C, respectively). The CTX recall accuracy of both sets of engram cells increases over the consolidation period but 231

this rise is driven by a decrease in f.p.r. in the case of inhibitory neurons while it is caused by an increase in t.p.r. for 232

excitatory cells. Effectively, inhibitory engram cells have a high t.p.r. post-training with only minor subsequent oscillations 233

but excitatory engrams have a flat near-zero f.p.r. throughout consolidation. Therefore, inhibitory engram cells in CTX 234

become stimulus-specific with consolidation whereas excitatory engrams become active. The sharpening of the response of 235

CTX inhibitory engrams can be attributed to potentiation of their inhibitory synapses onto excitatory engram cells in the 236

consolidation period (Fig. 5B). In addition, the recall accuracy of THL inhibitory engram cells immediately after training 237

is at 100% and then quickly decays to zero due to a sharp uptake in f.p.r. while t.p.r. remains at 100%. This means that 238

THL inhibitory engram cells are continuously active after encoding but become progressively more unspecific to stimuli as 239

a result of depression of their inhibitory synapses projecting to excitatory engrams in the consolidation phase (Fig. 5B). 240

This is in stark contrast to THL excitatory engrams which remain active and stimulus-specific after training. Furthermore, 241

excitatory and inhibitory engram cells in HPC undergo de-maturation in a cascading manner: excitatory engram cells 242

coding a given stimulus become silent in the consolidation period and, consequently, the corresponding inhibitory engrams 243

are no longer activated by partial cues either. Note that de-maturation of HPC inhibitory engrams is accompanied by 244

potentiation of their inhibitory synapses onto excitatory engram cells (Fig. 5B). Lastly, excitatory and inhibitory engram cells 245

have different composition profiles (Fig. S7). Overall, the dynamics of inhibitory engram cells in our model vary by brain region. 246

247

Inhibitory engram cells in HPC, THL, and CTX also have coupled reactivations in the consolidation phase (Fig. 5C, S8). 248

Note that the activity of inhibitory engrams in the three regions remains coupled despite the fact that the amplitude of HPC 249

inhibitory oscillations becomes progressively smaller as consolidation progresses. Comparing the activity of inhibitory and 250

excitatory engram cells (Fig. 5C and Fig. 3C, respectively), we can see that reactivations are coordinated across neuron types 251

in each region throughout consolidation (Fig. S8). The oscillatory activity of inhibitory engram cells combined with inhibitory 252

synaptic plasticity (Fig. 5B) is able to tame the activity of excitatory neurons in each individual area (Fig. 5D, S9) while still 253

allowing coupled reactivations of excitatory engram cells. Taken together, our results predict that inhibitory engram cells have 254

region-specific dynamics and that reactivations of inhibitory and excitatory engrams are coupled in consolidation periods. 255
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256

Inhibitory input to HPC, CTX, and THL is crucial for CTX engram dynamics. 257

We probe the role of region-specific inhibitory input in engram dynamics throughout the network by blocking the output of 258

inhibitory neurons during consolidation. Specifically, we first block the output of HPC inhibitory neurons in the consolidation 259

phase and this disrupts CTX engram maturation and the coupling of engram reactivations in the HPC→THL→CTX circuit 260

(Fig. 6A). Blocking inhibitory neurons in CTX also tampers with CTX engram dynamics and the subcortical-cortical 261

coupling of engram reactivations (Fig. 6B). These results are aligned with previous findings that showed that blocking 262

parvalbumin-positive interneurons either in HPC or CTX decoupled oscillations in these regions in consolidation periods and 263

disrupted systems consolidation [50]. We then block inhibitory neurons in THL and this also prevents engram cell maturation 264

in CTX and the coupling of engram reactivations in the network (Fig. 6C). In each of the previous simulations, blocking 265

inhibitory input to one region significantly alters the dynamics of engrams in that region and in any downstream areas 266

(Fig. 6A-C) as inhibitory drive is essential for the consolidation of subcortical-cortical synaptic coupling (Fig. S10). Our 267

model then predicts that inhibitory input to HPC, CTX, and THL is essential for CTX engram maturation by coupling 268

engram reactivations in consolidation periods. Given that blocking excitatory engram cells in HPC and THL (Fig. 3D-E) 269

and blocking inhibitory input to HPC, CTX, and THL (Fig. 6A-C) both decouple engram reactivations across these regions 270

and disrupt CTX engram maturation, our results suggest that coordinated HPC-THL-CTX communication underlies engram 271

dynamics that mediate systems consolidation. 272

273

Thalamocortical coupling underlies retrograde amnesia profiles. 274

We then investigate to what extent memory recall relies on HPC over time by examining retrograde amnesia patterns induced 275

by HPC ablation. Ablation of HPC in the testing phase (Fig. 7A) leads to significant impairment in recent recall (Fig. 7B) 276

since it originally relied on HPC (Fig. 3C). However, remote recall is virtually not affected by HPC ablation (Fig. 7B). There- 277

fore, memory recall reliance on HPC is time-dependent and the model exhibits a temporally-graded retrograde amnesia curve [4]. 278

279

We next probe the role of THL→CTX coupling on HPC reliance by varying the plasticity rate of these synapses. Specifically, 280

we explored how heterosynaptic plasticity strength βTHL→CTX can increase or decrease coupling between THL and CTX at 281

the end of encoding and the resulting effect on memory recall. We increase βTHL→CTX substantially (Fig. 7C-F), which, 282

consequently, severely impairs the ability of THL→CTX synapses to potentiate (see Methods). As a result, THL and CTX 283

are uncoupled at the end of the training phase (Fig. 7C, compare to Fig. 4A) and remain so despite subsequent consolidation 284

(Fig. 7D). Accordingly, remote recall with the intact control network (Fig. 3A) is lost since the decoupling of THL→CTX 285

synapses prevents CTX engram maturation and HPC engram cells still become silent (Fig. 7E). Naturally, HPC ablation 286

does not improve remote recall and it also prevents recent memory retrieval (Fig. 7F). Thus, the network with uncoupled 287

THL→CTX synapses relies exclusively on HPC for memory recall and displays a flat retrograde amnesia pattern [4]. 288

289

Subsequently, we reduce βTHL→CTX to effectively enable faster synaptic potentiation (see Methods) and, consequently, 290

increase THL→CTX synaptic coupling at the end of encoding (Fig. 7G, compare to Fig. 4A). Coupling between these regions 291

is reinforced with consolidation (Fig. 7H) and CTX recall accuracy is therefore extremely high both immediately following 292

training and throughout consolidation (Fig. 7I). Ablating HPC has a negligible effect on CTX recall and, hence, memories 293

can be recalled independently of HPC (Fig. 7J). This network configuration then exhibits an absent retrograde amnesia 294

curve [4]. Altogether, our model predicts that the degree of THL→CTX synaptic coupling at the end of encoding is a major 295

driver of the ensuing CTX engram cell dynamics and associated retrograde amnesia profiles induced by HPC ablation. 296

Discussion 297

Our model is able to reproduce key experimental findings associated with systems consolidation. Specifically, it captures 298

engram cell maturation and de-maturation in CTX and HPC, respectively, and the crucial role that HPC engram cells have in 299

the maturation of CTX engrams [33]. The model also reflects the causal role of coupled oscillations across HPC, THL, and 300

CTX in the systems consolidation of episodic memory [30] and connects it to the associated engram dynamics observed in 301
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experiments [33]. We have demonstrated that these experimental findings can be reproduced in a computational model of the 302

HPC→THL→CTX multisynaptic pathway with region-specific synaptic plasticity rates. Our results suggest that the timescale 303

of synaptic plasticity is precisely conducted across brain regions to enable coordinated HPC-THL-CTX communication 304

and that these concerted subcortical-cortical interactions are vital for engram dynamics behind systems consolidation of memory. 305

306

The timescales of the various forms of synaptic plasticity in our model need to be coordinated to reproduce specific engram 307

cell state transitions taking place in parallel. The learning rate of the triplet STDP is higher in subcortical regions (i.e., HPC 308

and THL) relative to CTX consistent with the view that subcortical synapses tend to be more plastic than cortical ones. 309

However, synaptic consolidation is slower in HPC compared to THL and CTX in line with the observation that HPC engram 310

cells are less stable and, hence, more prone to becoming silent. Interestingly, it has been previously suggested that synaptic 311

consolidation has an active role in systems consolidation [59]. Transmitter-induced plasticity rates are scaled linearly to 312

the learning rate of each individual region to prevent long-term depression (LTD) from making the network silent while the 313

timescales of heterosynaptic plasticity are set to avoid excessive network activity while still allowing long-term potentiation 314

(LTP) to take place. This combination of Hebbian (triplet STDP) and non-Hebbian (heterosynaptic and transmitter-induced) 315

plasticity has been shown to enable stable memory formation and recall in a single-region spiking neural network model [41] 316

and here we build on those results to show that coordinated synaptic plasticity timescales across brain regions can extend the 317

mnemonic functions supported by these forms of plasticity. 318

319

There are multiple circuits that can potentially be used by HPC to support the maturation of CTX engram cells but we 320

include the HPC→THL→CTX pathway in our model. As noted earlier, this choice is motivated by the afferent and efferent 321

projections of THL (i.e., HPC and CTX, respectively [46, 47, 60]) and the observation that in CFC this region is both 322

responsible for ∼20% of the monosynaptic input to CTX engram cells [33] and crucial for remote recall [48]. Here, we 323

assume that THL also has an essential role in the remote recall of other types of episodic memories in a similar way as 324

it has been proposed that engram cell dynamics observed in CFC are present in generic episodic memories [5] — a view 325

that is consistent with numerous reports of memory impairments in a wide range of tasks following lesions to THL [46,47]. 326

Furthermore, the increased THL activity around hippocampal ripples coupled to spindles [49] suggests that this region 327

may play a part in the essential role that spindles have in coupling cortical, thalamic, and hippocampal oscillations in 328

systems consolidation [30]. Thus, the HPC→THL→CTX circuit seems to be a prime candidate for having a crucial role 329

in the maturation of CTX engram cells and our modeling results support this view. Nevertheless, we cannot exclude the 330

possibility that alternative circuits may also be used by HPC for the same purpose. In fact, three other brain regions have 331

monosynaptic projections to CTX engram cells to a similar extent as THL in CFC: anterodorsal thalamus (ADT), medial 332

entorhinal cortex layer Va (MEC-Va), and basolateral amygdala (BLA) [33]. Note, however, that I) ADT is only essential 333

for recent but not for remote CFC memory recall [48], II) MEC-Va→CTX is not required for neither recent nor remote 334

recall in CFC [33], and III) BLA→MEC stimulation improved retention of the contextual but not foot shock components 335

of memory in CFC [61]. In addition, a multisynaptic pathway involving the dorsoventral axis of HPC may also be used by 336

HPC engram cells to support engram dynamics in CTX given that the dorsal hippocampus (dHPC) has a critical role in 337

CFC [62, 63]. Hence, dHPC→vHPC→CTX may be recruited by HPC engrams but as noted earlier in CFC only ∼5% of 338

the total monosynaptic input to CTX engram cells originates in vHPC [33]. Further, although another possible circuit may 339

involve dHPC and restrosplenial cortex (RSC) (i.e., dHPC→RSC→CTX), RSC projections only account for less 10% of the 340

monosynaptic input to CTX engram cells in CFC [33]. Altogether, these findings pose HPC→THL→CTX as a plausible 341

minimal circuit for the encoding, consolidation, and recall of episodic memory and our simulation results support this viewpoint. 342

343

The mechanisms through which HPC engram cells support the maturation of CTX engrams remain unknown but our modeling 344

results suggest that HPC engrams are essential for coupling hippocampal, thalamic, and cortical engram reactivations and 345

thereby are crucial for CTX engram cell maturation. The causal role of coupled HPC-THL-CTX oscillations in the systems 346

consolidation of episodic memories has been previously demonstrated [30,50] and our model predicts that HPC engram cells 347

have themselves a causal role in this coupling. Although engram cells have been found in various thalamic nuclei [64], the 348

potential role that thalamic engram cells have in systems consolidation is not known either. Our simulations suggest that 349

engram cells in THL are also crucial for the maturation of CTX engram cells by coupling engram reactivations across HPC, 350

THL, and CTX. Importantly, two lines of evidence support the view that engrams are present in THL: I) a large body of 351

THL lesion studies that showed post-lesion memory deficits in a diverse array of tasks [46, 47, 65]; and II) a recent experiment 352

that found THL to be one of the regions with a high probability of holding an engram in a brain-wide mapping of CFC 353
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memory [64]. Furthermore, our model predicts that THL engram cells are active in both recent and remote recall in a similar 354

way as BLA engram cells in CFC [33]. 355

356

Our model also aims to shed light on the dynamics of inhibitory engram cells. “Inhibitory replicas” of learning-induced 357

excitatory connectivity patterns have been found [58,66], but the behavior of inhibitory engram cells has not been probed yet. 358

Our model predicts that the dynamics of inhibitory engrams are region-specific: CTX inhibitory engram cells are active in 359

recent and remote recall but become more selective to stimuli over time, THL inhibitory engrams also maintain an active 360

status after training but rather become unspecific to stimuli, and HPC inhibitory engram cells undergo de-maturation similarly 361

to their excitatory counterparts. Inhibitory engrams are formed in our model via the potentiation of inhibitory synapses onto 362

excitatory cells that display learning-induced activity increase in line with other computational models [57, 66]. Furthermore, 363

our results also predict reactivations of inhibitory engram cells coupled to oscillations of excitatory engrams in HPC, THL, 364

and CTX. Previously, inhibitory neurons were shown to control the size of excitatory engram cell ensembles [67,68] and to 365

mediate memory discrimination [69]. Here, we suggest interneurons also undergo learning-induced changes akin to excitatory 366

neurons (i.e., inhibitory engrams). Moreover, blocking inhibitory neurons in HPC and CTX disrupts systems consolidation in 367

our simulations by preventing coordinated communication between these regions. This is consistent with the crucial role of 368

inhibitory neurons in coupling CTX spindles and HPC ripples [50]. Our model also predicts that inhibitory input to THL 369

has a similar critical role in coupling engram reactivations across subcortical and cortical regions. Importantly, local THL 370

inhibitory neurons are present in primates but not in lower species such as rodents [47]. However, the thalamic reticular 371

nucleus (TRN) provides robust inhibitory input to THL across species via GABAergic projections [47,70]. For those species 372

that rely exclusively on TRN for inhibitory control of network activity, TRN inhibitory neurons may play an analogous role to 373

that of local THL interneurons in higher species given that I) TRN was shown to have a high probability of holding engram 374

cells in a brain-wide mapping of CFC in rodents [64] and II) TRN has an active role in the generation of thalamocortical 375

oscillatory rhythms [70, 71]. Altogether, our results suggest that inhibitory neurons in distributed brain regions have a crucial 376

role in the coordination of HPC-THL-CTX communication mediated by engram reactivations. 377

378

We also investigate how recent and remote recall rely on HPC by reproducing the different patterns of retrograde amnesia 379

induced by HPC damage: temporally-graded, flat, and absent [4]. Our model predicts that the degree of THL→CTX synaptic 380

coupling at the end of encoding is predictive of the subsequent CTX engram cell dynamics (i.e., silent or active at recent and 381

remote recall) and the corresponding retrograde amnesia profile caused by HPC lesions. Our model then also predicts that 382

silent CTX engram cells are the basis of retrograde amnesia induced by HPC damage. This is consistent with protein synthesis 383

inhibitor-induced retrograde amnesia studies that showed that silent HPC engram cells underlie this form of amnesia and that 384

their afferent synapses from upstream engram cells exhibit reduced potentiation relative to active engram cells in healthy 385

mice [72,73]. Furthermore, the discovery of a rapidly-encoded engram in human posterior parietal cortex [74] suggests the 386

existence of cortical engram cells that are active in recent and remote recall as predicted by our model. Taken together, our 387

modeling results predict that distinct engram cell dynamics underlie specific patterns of retrograde amnesia induced by HPC 388

damage and, thus, provide a mechanistic account to reconcile seemingly conflicting reports in the HPC lesion literature [4, 5]. 389

390

Our model makes several testable predictions. First, our results predict that engram cells in THL are active in recent and 391

remote recall and are crucial for the maturation of engram cells in CTX. This could be tested by labelling THL engram 392

cells during encoding and subsequently blocking their output in a manner analogous to previous protocols [33]. Second, our 393

model predicts that engram cells in HPC and THL are essential for coupling engram reactivations in HPC, THL, and CTX in 394

consolidation periods. Blocking separately HPC and THL engram cells after training [33] and measuring the degree of coupling 395

of oscillations in HPC-THL-CTX during sleep [30] could test this prediction. Third, our results suggest that inhibitory engram 396

cells with region-specific dynamics and coupled reactivations co-exist with excitatory engrams in subcortical and cortical 397

regions. Although engram cell studies have focused on excitatory neurons due to their increased IEG expression [35, 55, 56] as 398

discussed previously, inhibitory neurons can also up-regulate IEGs (e.g., c-fos and Arc) under strong stimulation [35,75,76]. 399

Therefore, our predictions regarding inhibitory engram cells could also be tested by modifying parameters of existing engram 400

cells experiments [33] to induce reliable IEG expression in inhibitory neurons and, hence, enable labelling of inhibitory engram 401

cells. Fourth, our model predicts that inhibitory input to THL is critical for CTX engram maturation by coupling engram 402

reactivations in subcortical-cortical circuits. This prediction could be tested by extending current engram cell protocols [33] 403

with chemogenetic techniques already used to block interneurons in HPC and CTX [50] but applying them to inhibitory 404

neurons projecting to THL. Fifth, our model suggests that synaptic coupling in THL→CTX at the end of encoding is predictive 405
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of CTX engram dynamics and the resulting pattern of retrograde amnesia induced by HPC damage. These predictions could 406

also be tested by incorporating activity-dependent cell labelling – combined with strategies for circuit-specific manipulations 407

and in vivo calcium imaging – to existing HPC lesion protocols. THL→CTX synaptic coupling could potentially be either 408

decreased by applying protein synthesis inhibitors to CTX [72, 73] or increased by extending total training time and/or 409

stimulus exposure. 410

411

Despite capturing engram cell dynamics in HPC and CTX and the coupling of oscillations in the HPC→THL→CTX circuit, 412

our model has several limitations. First, systems consolidation takes place over days, months, or even years after memory 413

acquisition [5] but our simulations extend for only 24 hours after training. Although the synaptic plasticity rates in our model 414

could conceivably be reduced to match more realistic timescales of systems consolidation, this would immensely increase the 415

computational cost of simulations and, consequently, it would be impractical to simulate multi-region large-scale networks like 416

ours for long periods. Second, we do not explicitly model hippocampal sharp-wave ripples, thalamic spindles, and cortical slow 417

oscillations. Instead, our model captures the fact that oscillations in HPC, THL, and CTX need to be coupled for effective 418

systems consolidation [30] by displaying coupled engram cell reactivations. Third, we do not attempt to model a gradual shift 419

in memory from episodic (i.e., specific, detail-rich) to semantic (i.e., abstract, gist-like) over systems consolidation. The extent 420

of such change is still an open question [5] and is beyond the scope of the present study. 421

422

In the long history of the field, many computational models of systems consolidation have been proposed [9, 11, 36–40]. 423

While early computational studies relied on networks with highly abstract, simplified neuron models [9, 11, 36, 37], recent 424

computational models have become increasingly more complex to incorporate a wider range of experimental findings: a 425

three-stage Bayesian Confidence Propagation Neural Network was used to bridge the gap between working and long-term 426

memory [38], a spiking network was developed to explore the role of anatomical properties of the cortex-hippocampus 427

loop in systems consolidation [39], and a rate-coded multi-layer network with a form of Hebbian learning was employed to 428

investigate the effect of preexisting knowledge on memory consolidation [40]. Nevertheless, previous models have not addressed 429

recent findings regarding engram cells and their role in systems consolidation. Our work, however, reproduces engram cell 430

dynamics in HPC and CTX in a novel computational model – specifically, a multi-region spiking recurrent neural network 431

with biologically-plausible synaptic plasticity. In addition, our model also reflects the role of coupled oscillations across HPC, 432

THL, and CTX in systems consolidation and connects it to engram cell reactivations. 433

434

In conclusion, our model of systems consolidation exhibits known region-specific engram cell dynamics and captures the 435

active role of both HPC engram cells and coupled HPC-THL-CTX oscillations in this process. We also make several testable 436

predictions regarding HPC and THL engram cells, inhibitory engram cells, inhibitory input to THL, and the relationship 437

between THL→CTX synaptic coupling and retrograde amnesia induced by HPC lesions. Overall, our results suggest that 438

coordinated communication across subcortical-cortical circuits — enabled by coupled engram reactivations — is essential for 439

engram dynamics that ultimately culminate in systems consolidation. Engram cell dynamics in other brain regions, engram 440

interactions in multi-task settings, and the link between engram cells and neurodegenerative diseases will each warrant future 441

experimental and computational studies. 442

443

Methods 444

Neuron model. 445

Our model makes use of leaky integrate-and-fire neurons with spike frequency adaption. The membrane voltage Ui of neuron 446

i evolves according to [41]: 447

τm
dUi
dt

= (Urest − Ui) + gexci (t)(Uexc − Ui) +
(
ggabai (t) + gai (t)

)
(U inh − Ui) (1)

where τm is the membrane time constant, Urest is the membrane resting potential, Uexc is the excitatory reversal potential, 448

and U inh is the inhibitory reversal potential. The evolution of the synaptic conductance terms gexci (t), ggabai (t), and gai (t) is 449

discussed in the next section. 450

451

10/40

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.424000doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.424000
http://creativecommons.org/licenses/by-nc/4.0/


A neuron i fires a spike when its membrane voltage exceeds a threshold ϑi. At this point, its membrane voltage is set to Uresti 452

and its firing threshold is temporarily increased to ϑspike. Without further spikes, the firing threshold decays to its resting 453

value ϑrest with time constant τthr following: 454

τthr
dϑi
dt

= ϑrest − ϑi (2)

Synapse model. 455

We adopted a conductance-based synaptic input model. The dynamics of inhibitory synaptic input ggabai and spike-triggered 456

adaption gai follow [41]: 457

dggabai

dt
= −g

gaba
i

τgaba
+
∑
j∈inh

wijSj(t) (3)

dgai
dt

= −g
a
i

τa
+ ∆aSi(t) (4)

where Sj(t) =
∑
k δ(t− tkj ) is the presynaptic spike train and Si(t) =

∑
k δ(t− tki ) is the postsynaptic spike train. In both 458

cases, δ denotes the Dirac delta function and tkx(k = 1, 2, ...) are the firing times of neuron x. wij is the weight from neuron 459

j to neuron i. ∆a is a fixed adaptation strength. τgaba is the GABA decay time constant and τa is the adaptation time constant. 460

461

Excitatory synaptic input is determined by a combination of a fast AMPA-like conductance gampai (t) and a slow NMDA-like 462

conductance gnmdai (t): 463

gexci (t) = αgampai (t) + (1− α)gnmdai (t) (5)

dgampai

dt
= −g

ampa
i

τampa
+
∑
j∈exc

wij uj(t)xj(t)︸ ︷︷ ︸
Short-Term Plasticity

Sj(t) (6)

τnmda
dgnmdai

dt
= −gnmdai + gampai (7)

where α is a constant that determines the relative contribution of gampai (t) and gnmdai (t) while τampa and τnmda are their 464

respective time constants. uj(t) and xj(t) are variables that determine the state of short-term plasticity as described in the 465

following section. 466

Synaptic plasticity model. 467

Our synaptic plasticity model was designed after previous work that showed that a combination of Hebbian (i.e., triplet 468

STDP) and non-Hebbian (i.e., heterosynaptic and transmitted-induced) forms of plasticity can yield stable memory formation 469

and recall in a single-region spiking recurrent neural network [41]. 470

471

Short-term plasticity. The state variables uj(t) and xj(t) associated with short-term plasticity evolve according to [41]: 472

d

dt
xj(t) =

1− xj(t)
τd

− uj(t)xj(t)Sj(t) (8)

d

dt
uj(t) =

U − uj(t)
τf

+ U
(
1− uj(t)

)
Sj(t) (9)

where τd and τf are the depression and facilitation time constants, respectively. The parameter U is the initial release 473

probability. 474
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Long-term excitatory synaptic plasticity. Long-term excitatory synaptic plasticity takes the form of combined triplet 475

STDP [42], heterosynaptic plasticity [43], and transmitter-induced plasticity [44] with a synaptic weight wij from neuron j to 476

neuron i following [41]: 477

d

dt
wij(t) = ηexc

(
Az+j (t)zslowi (t− ε)Si(t)−Bi(t)z−i (t)Sj(t)

)
triplet (10a)

− β
(
wij − w̃ij(t)

)(
z−i (t− ε)

)3
Si(t) heterosynaptic (10b)

+ δSj(t) transmitter-induced (10c)

where ηexc (excitatory learning rate), A (LTP rate), β (heterosynaptic plasticity strength), and δ (transmitter-induced 478

plasticity strength) are fixed parameters. ε is an infinitesimal offset used to ensure that the current action potential is not 479

considered in the trace. State variables zxj/i denote either pre- or postsynaptic traces and each has an independent temporal 480

evolution with time constant τx given by: 481

dzxj/i

dt
= −

zxj/i

τx
+ Sj/i(t) (11)

The reference weights w̃ij(t) also have their own independent synaptic consolidation dynamics [41]: 482

τcons
d

dt
w̃ij(t) = wij(t)− w̃ij(t)− Pw̃ij(t)

(
wP

2
− w̃ij(t)

)(
wP − w̃ij(t)

)
(12)

where P and wP are fixed parameters and τcons is a time constant. Importantly, the LTD rate Bi(t) is subject to homeostatic 483

regulation and evolves according to: 484

Bi(t) =

{
ACi(t) for Ci(t) ≤ 1.

A otherwise
(13)

d

dt
Ci(t) = −Ci(t)

τhom
+
(
zhti (t)

)2
(14)

where τhom is a time constant and zhti (t) is a synaptic trace that follows Equation 11 with its own time constant τht. Lastly, 485

plastic excitatory weights are constrained to lower and upper bounds wminexc and wmaxexc , respectively. However, excitatory 486

weights never reach their upper bound with the exception of some simulations with blockage of neurons. 487

Inhibitory synaptic plasticity. Inhibitory synaptic plasticity follows a network activity-based STDP rule [41]: 488

d

dt
wij(t) = ηinhG(t)

[(
zi(t) + 1

)
Sj(t) + zj(t)Si(t)

]
(15)

G(t) = H(t)− γ (16)

d

dt
H(t) = −H(t)

τH
+
∑
i∈exc

Si(t) (17)

where ηinh is a constant inhibitory learning rate and zj/i denotes either pre- or postsynpatic traces that follow Equation 11 489

with a common time constant τiSTDP . G(t) is a linear function of the difference between a hypothetical global secreted factor 490

H(t) and the target local network activity level γ. H(t) is itself a low-pass-filtered version of the spikes fired by all excitatory 491

neurons in the local network (i.e., either HPC, THL, or CTX) with time constant τH . Note that inhibitory synaptic plasticity 492

primarily aims to control network activity. Finally, inhibitory weights are constrained to the interval between wmininh and wmaxinh 493

but they never reach their upper limit except in some simulations with blockage of neurons. 494

12/40

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.424000doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.424000
http://creativecommons.org/licenses/by-nc/4.0/


Network model. 495

In each network configuration considered (i.e., Fig. 1A, Fig. 2A/G, and Fig. 3A), the model consists of a stimulus population 496

of Nstim = 4, 096 Poisson neurons (STIM) and two or three subnetworks each corresponding to a different brain region (i.e., 497

HPC, CTX, or THL). Each region subnetwork is composed of Nexc = 4, 096 excitatory neurons and Ninh = 1, 024 inhibitory 498

neurons that are recurrently connected. Recurrent excitatory synapses onto excitatory neurons display short- and long-term 499

excitatory synaptic plasticity while excitatory synapses projecting onto inhibitory neurons exhibit only short-term plasticity. 500

Feedforward inter-region synapses may display both short- and long-term plasticity or only short-term plasticity depending on 501

the network configuration and they project exclusively from excitatory neurons in one region to excitatory cells in another area. 502

In the two-region networks (Fig. 1A, Fig. 2A/G), all recurrent and feedforward synapses are initialized at random following a 503

uniform distribution. In the three-region network (Fig. 3A), STIM→HPC and STIM→THL synapses have randomly-centered 504

circular receptive fields (i.e., each excitatory neuron in HPC and THL receives projections from a small circular area in STIM of 505

radius Rhpc and Rthl, respectively, whose random center location follows a uniform distribution) but the remaining feedforward 506

as well as all recurrent synapses are initially random following a uniform distribution. In addition, inhibitory synapses onto 507

inhibitory neurons are static while inhibitory synapses projecting onto excitatory neurons display inhibitory synaptic plasticity. 508

Plasticity is constantly active for the entirety of all simulations. Recurrent synapses are connected with probability εrec and are 509

initialized with specific weights (i.e., wEE , wEI , wII , and wIE). Feedforward synapses have specific connection probabilities and 510

initial weights (e.g., εhpc→ctx and whpc→ctx, respectively, for Fig. 2A/G). For a complete list of network parameters, see Table 1. 511

512

Simulation of two-region networks with HPC and CTX. 513

Simulations with two-region networks (i.e., Fig. 1A, Fig. 2A/G) follow a defined sequence: burn-in, training, consolidation, 514

and testing. The initial brief burn-in period of duration Tburn stabilizes activity in each subnetwork under STIM background 515

firing at rate νbg. Subsequently, four random stimuli (depicted in Fig. 1A) are randomly presented to the network in 516

the training phase of duration Ttraining with equal probability and with inter-stimulus interval and stimulus presentation 517

duration drawn from exponential distributions with means T trainingOff and T trainingOn , respectively. This is accomplished by 518

maintaining the STIM background firing at νbg but selectively increasing the firing rate of the STIM neurons that correspond 519

to a given stimulus to νstim for the duration of its presentation. Each stimulus consists of a non-overlapping random subset 520

of 25% of the STIM neurons. Post-training, the network evolves spontaneously in the consolidation phase of duration 521

Tconsolidation in the absence of stimulus presentations with STIM sustaining background firing at νcons. It has been shown 522

that reactivations of past experiences can take place during awake periods in both CTX and HPC [77,78] and, hence, awake 523

states may also be suitable for consolidation. However, our model aims capture recent findings that coupled oscillatory 524

hippocampal-thalamic-cortical activity during sleep is essential for systems consolidation [30] and, hence, we set separate 525

periods for training and consolidation. After consolidation, the network advances to the final testing phase of duration Ttesting. 526

During testing, we present partial cues (depicted in Fig. 1A) to the network by keeping STIM background firing at νbg and 527

increasing the firing rate of the cue neurons to νstim. Cue-off and cue-on periods also follow exponential distributions with 528

means T testingOff and T testingOn , respectively. Each cue consists of a random 50% of the original stimulus. In the two-region 529

networks, feedforward synapses have short- and long-term plasticity with the exception of HPC→CTX synapses in Fig. 2G 530

that only exhibit short-term plasticity. When blocking the output of engram cells in a given region, the inter-region efferent 531

synapses of those cells are blocked but the recurrent counterparts are not to avoid finite-size effects. This procedure effectively 532

allows for probing the effect of engram cells in downstream regions without changing the local engram dynamics. Critically, 533

we set η
exc/inh
hpc > η

exc/inh
ctx and τ conshpc > τ consctx . The higher learning rate in HPC relative to CTX reflects the experimental 534

observation that engram cells in HPC are generated in an active state while those in CTX are initially in a silent state [33]. 535

On the other hand, the longer synaptic consolidation timescale in HPC compared to CTX is intended to render newly-encoded 536

engrams in HPC less stable than those in CTX consistent with reported engram dynamics [33]: engram cells in HPC switch 537

from active to silent while those in CTX change from silent to active. In Fig. 2A, we set ηexchpc→ctx = ηexcctx and τ conshpc→ctx = τ consctx . 538

In Fig. 2G, HPC→CTX synapses are fixed (i.e., only have short-term plasticity). For a complete list of parameters for 539

simulations of the two-region networks, see Table 1. 540

541
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Simulation of three-region network with HPC, THL, and CTX. 542

Simulations with the three-region network (Fig. 3A) follow the same sequence as those with two-region networks (i.e., burn-in, 543

training, consolidation, and testing). However, the three-region network is trained with four horizontal bars (as opposed to 544

random stimuli) and is tested with partial cues consisting of the central 50% of the full bars (full bars and cues depicted in 545

Fig. 3A). Furthermore, STIM does not provide background firing in the consolidation phase to reflect the gating of sensory 546

processing by spindles during sleep [79–81]. Instead, random background input at rate νconsext is provided independently to 547

HPC and CTX during consolidation via two separate external populations of Nhpc
ext = N ctx

ext = 4, 096 Poisson neurons. This 548

reflects previous observations that THL activity is increased around hippocampal ripples coupled to spindles but suppressed 549

otherwise [49] and that oscillations in HPC and CTX can occur independently of each other [50]. Outside consolidation 550

periods, the external populations projecting to HPC and CTX remain silent (i.e., νbgext = 0 Hz). The procedure to block the 551

output of engram cells in the three-region network is the same as in the two-region configuration. When blocking the output 552

of inhibitory neurons, their efferent synapses onto both inhibitory and excitatory neurons are blocked. In simulations with 553

HPC ablation (Fig. 7A), HPC and all its afferents and efferents synapses are removed from the network for the entirety of the 554

testing phase. In the three-region network, feedforward synapses exhibit short- and long-term plasticity with the exception of 555

those from STIM to THL (i.e., STIM→THL synapses only have short-term plasticity) as we assume that THL receptive fields 556

have been learned during development and only change over timescales longer than those captured in our simulations. We 557

set ηexchpc→thl = ηexcthl = ηexchpc and ηexcthl→ctx = ηexcctx with η
exc/inh
hpc > η

exc/inh
ctx . This is based on the view that the rate of change 558

of synaptic weights tends to be higher for subcortical synapses compared to cortical ones. All plastic excitatory synapses 559

share the same τ cons∗ except the ones from STIM to HPC for which τ consstim→hpc > τ cons∗ . This is in line with the results of our 560

simulations of two-region networks (Fig. 1) which showed that having a longer τ consstim→hpc leads to a post-training decrease in 561

feedforward STIM weights to HPC and the resulting de-maturation of its engram cells. For a complete list of parameters for 562

simulations of the three-region network, see Table 1. 563

564

Labelling engram cells and computing recall metrics. 565

Engram cells are labelled in our model by computing the average stimulus-evoked firing rate of each neuron in a given 566

subnetwork (i.e., HPC, CTX, or THL). A neuron is said to be an engram cell encoding a given stimulus if its average 567

stimulus-evoked firing rate is above a threshold ζthr = 10 Hz for the last ∆teng = 300 seconds of the training phase. As a result, 568

a single neuron may become an engram cell encoding multiple stimuli. In addition, an engram cell ensemble encoding a given 569

stimulus is taken as activated upon presentation of a partial cue if its population firing rate is above the threshold ζthr = 10 570

Hz during cue presentation. We then define recall true positive rate as the number of instances when the corresponding 571

engram cell ensemble was activated following cue presentation divided by the total number of cue presentations in the testing 572

phase. Inversely, recall false positive rate is computed by summing over all cue presentations the ratio of the number of 573

incorrectly activated engram cell ensembles in response to a cue and the total number of non-matching engram cell ensembles 574

(i.e., the number of stimuli minus one). Successful recall is said to happen when only the corresponding engram cell ensemble 575

is activated by a partial cue (i.e., all other engram cell ensembles must be inactive). We then define recall accuracy as the 576

number of successful recalls divided by the number of cue presentations in the testing phase. We compute 90% confidence 577

intervals using a non-parametric bootstrap to aid in the visualization of the recall metrics. 578

579

Simulation and data analysis details. 580

We use the forward Euler method to update neuronal state variables with a time step ∆ = 0.1 ms (except in the case of 581

reference weights w̃ for which we use a longer time step ∆long = 1.2 s for efficiency reasons). Population activity is computed 582

with a temporal resolution of 10 ms without smoothing or convolution. 583

Code. 584

Code used to perform all simulations is written in C++ utilizing the Auryn framework for spiking neural network simulation [82]. 585

Code used to analyze simulation results is written in Python. Simulation and data analysis code will be made publicly 586

available upon publication. 587
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Table 1. Summary of network simulation parameters.

Neural Populations
Parameter Figure Value Description
Nexc All 4096 Size of population of excitatory neurons in cortex, hippocampus, and thalamus
Ninh All 1024 Size of population of inhibitory neurons in cortex, hippocampus, and thalamus
Nstim All 4096 Size of population of stimulus neurons
N ctx
ext 3,4,5,6,7 4096 Size of population of external background neurons projecting to cortex

Nhpc
ext 3,4,5,6,7 4096 Size of population of external background neurons projecting to hippocampus

Network Connectivity
Parameter Figure Value Description
εrec All 0.05 Probability of connection of recurrent synapses (EE, EI, II, IE)
εstim 1,2 0.1 Probability of connection of STIM→CTX and STIM→HPC synapses
εhpc→ctx 2 0.02 Probability of connection of HPC→CTX synapses
Rhpc 3,4,5,6,7 8 Radius of receptive field of excitatory neurons in hippocampus (STIM→HPC)
Rthl 3,4,5,6,7 4 Radius of receptive field of excitatory neurons in thalamus (STIM→THL)
εhpc→thl 3,4,5,6,7 0.02 Probability of connection of HPC→THL synapses
εthl→ctx 3,4,5,6,7 0.05 Probability of connection of THL→CTX synapses
εext→ctx 3,4,5,6,7 0.1 Probability of connection of CTX external synapses (EXTctx →CTX)
εext→hpc 3,4,5,6,7 0.1 Probability of connection of HPC external synapses (EXThpc →HPC)
wEE All 0.1 Initial weight of recurrent excitatory synapses onto excitatory neurons
wEI All 0.6 Fixed weight of recurrent excitatory synapses onto inhibitory neurons
wII All 0.2 Fixed weight of recurrent inhibitory synapses onto inhibitory neurons
wIE All 0.2 Initial weight of recurrent inhibitory synapses onto excitatory neurons
wstim 1,2 0.1 Initial weight of STIM→CTX and STIM→HPC synapses
whpc→ctx 2 0.1 Initial weight of HPC→CTX synapses
wstim→hpc 3,4,5,6,7 0.5 Initial weight of STIM→HPC synapses
wstim→thl 3,4,5,6,7 2.0 Fixed weight of STIM→THL synapses
whpc→thl 3,4,5,6,7 0.1 Initial weight of HPC→THL synapses
wthl→ctx 3,4,5,6,7 0.15 Initial weight of THL→CTX synapses
wext→ctx 3,4,5,6,7 0.2 Fixed weight of CTX external synapses (EXTctx →CTX)
wext→hpc 3,4,5,6,7 0.2 Fixed weight of HPC external synapses (EXThpc →HPC)

Neuron Model
Parameter Figure Value Description
τm All 20 ms Membrane time constant
Urest All -70 mV Membrane resting potential
Uexc All 0 mV Excitatory reversal potential
U inh All -80 mV Inhibitory reversal potential
τthr All 5 ms Threshold time constant
ϑrest All -50 mV Threshold resting value
ϑspike All 100 mV Threshold value immediately after spike
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Synapse Model
Parameter Figure Value Description
τgaba All 10 ms GABA decay time constant
τa All 100 ms Adaptation time constant
∆a All 0.1 Adaptation strength
αE All 0.2 AMPA/NMDA ratio for excitatory neurons
αI All 0.3 AMPA/NMDA ratio for inhibitory neurons
τampa All 5 ms AMPA decay time constant
τnmda All 100 ms NMDA decay time constant

Short-Term Plasticity Model
Parameter Figure Value Description
τdEE All 150 ms Depression time constant for excitatory synapses onto excitatory neurons
τdEI All 200 ms Depression time constant for excitatory synapses onto inhibitory neurons
τf All 600 ms Facilitation time constant for excitatory synapses
U All 0.2 Initial release probability for excitatory synapses

Long-Term Excitatory Synaptic Plasticity Model
CTX EE

Parameter Figure Value Description
ηexcctx All 1 x 10−3 Learning rate of EE synapses in cortex

λβctx All 50 βctx/ηexcctx ratio for EE synapses in cortex
τconsctx All 20 min Synaptic consolidation time constant for EE synapses in cortex

HPC EE
Parameter Figure Value Description

ηexchpc
1,2 1.25 x 10−3

Learning rate of EE synapses in hippocampus
3,4,5,6,7 1.5 x 10−3

λβhpc
1,2 25

βhpc/η
exc
hpc ratio for EE synapses in hippocampus

3,4,5,6,7 50

τconshpc
1,2 3 h

Synaptic consolidation time constant for EE synapses in hippocampus
3,4,5,6,7 20 min

STIM→CTX
Parameter Figure Value Description
ηexcstim→ctx 1,2 1 x 10−3 Learning rate of STIM→CTX synapses

λβstim→ctx 1,2 85 βstim→ctx/ηexcstim→ctx ratio for STIM→CTX synapses
τconsstim→ctx 1,2 20 min Synaptic consolidation time constant for STIM→CTX synapses

STIM→HPC
Parameter Figure Value Description

ηexcstim→hpc
1,2 1.25 x 10−3

Learning rate of STIM→HPC synapses
3,4,5,6,7 1.5 x 10−3

λβstim→hpc
1,2 35

βstim→hpc/η
exc
stim→hpc ratio for STIM→HPC synapses

3,4,5,6,7 30
τconsstim→hpc All 3 h Synaptic consolidation time constant for STIM→HPC synapses

HPC→CTX
Parameter Figure Value Description
ηexchpc→ctx 2A-F 1 x 10−3 Learning rate of HPC→CTX synapses

λβhpc→ctx 2A-F 85 βhpc→ctx/ηexchpc→ctx ratio for HPC→CTX synapses

τconshpc→ctx 2A-F 20 min Synaptic consolidation time constant for HPC→CTX synapses
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THL EE
Parameter Figure Value Description
ηexcthl 3,4,5,6,7 1.5 x 10−3 Learning rate of EE synapses in thalamus

λβthl 3,4,5,6,7 50 βthl/η
exc
thl ratio for EE synapses in thalamus

τconsthl 3,4,5,6,7 20 min Synaptic consolidation time constant for EE synapses in thalamus
HPC→THL

Parameter Figure Value Description
ηexchpc→thl 3,4,5,6,7 1.5 x 10−3 Learning rate of HPC→THL synapses

λβhpc→thl 3,4,5,6,7 50 βhpc→thl/η
exc
hpc→thl ratio for HPC→THL synapses

τconshpc→thl 3,4,5,6,7 20 min Synaptic consolidation time constant for HPC→THL synapses

THL→CTX
Parameter Figure Value Description
ηexcthl→ctx 3,4,5,6,7 1 x 10−3 Learning rate of THL→CTX synapses

λβthl→ctx

3,4,5,6,7B 105
βthl→ctx/ηexcthl→ctx ratio for THL→CTX synapses7C-F 160

7G-J 50
τconsthl→ctx 3,4,5,6,7 20 min Synaptic consolidation time constant for THL→CTX synapses

All Excitatory Synapses with Long-Term Plasticity
Parameter Figure Value Description
λδ All 0.02 δ/ηexc ratio
A All 1 LTP rate
τ+ All 20 ms Time constant of presynaptic trace for excitatory plasticity
τ− All 20 ms Time constant of postsynaptic trace for excitatory plasticity
τslow All 100 ms Time constant of slow postsynaptic trace for excitatory plasticity
P All 20 Potential strength
wP All 0.5 Upper fixed point of reference weight potential
w̃ All 0.0 Initial reference weight
τhom All 10 min Time constant of homeostatic regulation
τht All 100 ms Time constant of postsynaptic trace for homeostatic regulation
wmaxexc All 5.0 Maximum excitatory synaptic weight
wminexc All 0.0 Minimum excitatory synaptic weight

Inhibitory Synaptic Plasticity Model
Parameter Figure Value Description
λη All 50 ηexc/ηinh ratio
γ All 4 Hz Target activity level for cortex, hippocampus, and thalamus
τiSTDP All 20 ms Time constant of pre- and postsynaptic traces for inhibitory plasticity
τH All 10 s Time constant of global secreted factor
wmaxinh All 5.0 Maximum inhibitory synaptic weight
wmininh All 0.0 Minimum inhibitory synaptic weight
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Stimulus Model
Parameter Figure Value Description
νbg All 5 Hz Background firing rate of stimulus population except in the consolidation phase

νcon
1,2 2 Hz

Background firing rate of stimulus population in the consolidation phase
3,4,5,6,7 0 Hz

νstim All 25 Hz Firing rate of neurons matching given stimulus when that stimulus is presented

T trainingOn All 1 s Mean stimulus-on period in the training phase

T trainingOff All 2 s Mean stimulus-off period in the training phase

T testingOn

1,2 1 s
Mean stimulus-on period in the testing phase

3,4,5,6,7 2 s

T testingOff All 2 s Mean stimulus-off period in the testing phase

External Populations Model
Parameter Figure Value Description

νbgext 3,4,5,6,7 0 Hz Firing rate of external populations except in the consolidation phase
νconext 3,4,5,6,7 1 Hz Firing rate of external populations in the consolidation phase

Network Simulation
Parameter Figure Value Description
Tburn All 120 s Duration of burn-in period prior to training

Ttraining
1,2 45 min

Duration of training phase
3,4,5,6,7 30 min

Tconsolidation
1,2 12 h

Duration of consolidation phase
3,4,5,6,7 24 h

Ttesting All 60 s Duration of testing phase
∆ All 0.1 ms Time step for updating neuronal state variables except for reference weights w̃
∆long All 1.2 s Time step for updating reference weights w̃
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Figures

Figure 1. Divergent synaptic plasticity timescales lead to opposite engram cell dynamics. A, Schematic of
network model with STIM, HPC, and CTX (top) and stimuli presented in the training phase with their respective partial
cues used in the testing phase (bottom). B, Schematic of simulation protocol. C, From left to right: mean weight strength of
recurrent excitatory synapses onto excitatory neurons at the end of the training phase clustered according to engram cell
preference, mean weight strength of recurrent excitatory synapses onto excitatory neurons after 12 hours of consolidation
clustered according to engram cell preference, cumulative distribution function of the total feedforward synaptic weights
onto individual engram cells, and population activity of engram cells encoding each stimulus (dashed line indicates threshold
ζthr = 10 Hz for engram cell activation). Top: CTX. Bottom: HPC. D-F, Memory recall in the testing phase of protocol B
as a function of consolidation time. D, Recall accuracy. E, Recall true positive rate. F, Recall false positive rate. C-F, Color
as in A. D-F, n = 10 trials with 90% confidence intervals.
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Figure 2. Direct HPC→CTX coupling has contradictory effect. A/G, Schematic of network model where HPC→CTX
synapses are plastic (A) and static (G). B/H, Schematic of simulation protocol with intact (control) HPC→CTX synapses for
networks A and G, respectively. C/I, Mean HPC→CTX weight strength at the end of training clustered according to engram
cell preference for networks A and G, respectively. D/J, Memory recall accuracy in the testing phase of protocols B and H,
respectively. E/K, Schematic of simulation protocol with the output of engram cells in HPC blocked during consolidation for
networks A and G, respectively. F/L, Memory recall accuracy in the testing phase of protocols E and K, respectively. D/F,
Color as in A. J/L, Color as in G. B-C/E/H-I/K, Stimuli as in Fig. 1 A. D/F/J/L, n = 10 trials with 90% confidence
intervals.
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Figure 3. Engram cells in HPC and THL are crucial for the maturation of CTX engram cells. A, Schematic of
network model with HPC, THL, and CTX (top) and stimuli presented in the training phase with their respective partial cues
used in the testing phase (bottom). STIM→THL synapses are static but the remaining feedforward projections are plastic. B,
Schematic of simulation protocol. C-E, Memory recall in the testing phase as a function of consolidation time (left) and
population activity in the consolidation phase (right). Recall curves (top to bottom): accuracy, true positive rate, and false
positive rate. Population activity of engram cells (top to bottom): CTX, THL, and HPC (dashed line indicates threshold
ζthr = 10 Hz for engram cell activation). C, intact (control) network as in B. D, output of engram cells in HPC blocked
during consolidation. E, output of engram cells in THL blocked during consolidation. B-E, Color as in A. C-E, Left: n = 5
trials with 90% confidence intervals.
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Figure 4. Subcortical engram cells are essential for the consolidation of thalamocortical coupling. A-D, Mean
weight strength of excitatory synapses onto excitatory neurons clustered according to engram cell preference for the network in
Fig. 3A. From top to bottom: HPC→THL (feedforward), THL (recurrent), THL→CTX (feedforward), and CTX (recurrent).
A, Mean weight matrices at the end of the training phase (Fig. 3C-E). B, Mean weight matrices after 24 hours of consolidation
for the intact (control) network (Fig. 3C). C, Mean weight matrices after 24 hours of consolidation for the network with
blocked HPC engram cells (Fig. 3D). D, Mean weight matrices after 24 hours of consolidation for the network with blocked
THL engram cells (Fig. 3E).
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Figure 5. Dynamics of inhibitory engram cells are region-specific. A-D, Analysis of engram dynamics in protocol
shown in Fig. 3B. A, Recall of inhibitory engram cells in the testing phase as a function of consolidation time. From top
to bottom: accuracy, true positive rate, and false positive rate. B, Cumulative distribution function of the total inhibitory
synaptic weights onto individual excitatory engram cells at the end of training and after 24 hours of consolidation. C-D,
Population activity in the consolidation phase (dashed line indicates threshold ζthr = 10 Hz for engram cell activation). C,
Population activity of inhibitory engram cells. D, Population activity of excitatory neurons. B-D, From top to bottom: CTX,
THL, and HPC. A/C-D, Color as in Fig. 3A. A, n = 5 trials with 90% confidence intervals.
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Figure 6. Inhibitory input to HPC, CTX, and THL is critical for CTX engram maturation. A-C, Memory
recall as a function of consolidation time (left) and population activity in the consolidation phase (right) when region-specific
inhibitory neurons are blocked in the consolidation phase of the protocol depicted in Fig. 3B. Recall curves (top to bottom):
accuracy, true positive rate, and false positive rate. Population activity of excitatory engram cells (top to bottom): CTX,
THL, and HPC (dashed line indicates threshold ζthr = 10 Hz for engram cell activation). A, output of inhibitory neurons
in HPC blocked during consolidation. B, output of inhibitory neurons in CTX blocked during consolidation. C, output
of inhibitory neurons in THL blocked during consolidation. A-C, Color as in Fig. 3A. A-C, Left: n = 5 trials with 90%
confidence intervals.

29/40

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.424000doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.424000
http://creativecommons.org/licenses/by-nc/4.0/


Figure 7. THL→CTX coupling at the end of encoding underlies retrograde amnesia pattern. A, Schematic of
network model with ablation of HPC at testing time. B, Memory recall accuracy as a function of consolidation time with
HPC ablation in the testing phase (A) of protocol shown in Fig. 3B. C-F, Simulation with uncoupled THL→CTX. G-J,
Simulation with strongly coupled THL→CTX. C-D/G-H, Mean weight strength of THL→CTX synapses clustered according
to engram cell preference. C/G, At the end of training. D/H, After 24 hours of consolidation. E/I, Memory recall accuracy
as a function of consolidation time with intact network in protocol depicted in Fig. 3B. F/J, Memory recall accuracy as a
function of consolidation time with HPC ablation in the testing phase (A) of protocol shown in Fig. 3B. B-J, Color as in Fig.
3A. B/E-F/I-J, n = 5 trials with 90% confidence intervals.
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Supplementary Material

Figure S1. Monosynaptic HPC→CTX projections lead to inconsistent engram dynamics. Analysis of alternative
network configurations with direct HPC→CTX synapses. A-C, Analysis of network in Fig. 2A with λβhpc→ctx = 170. A,
Mean HPC→CTX weight strength at the end of training clustered according to engram cell preference. B-C, Memory
recall accuracy in the testing phase of the protocols in Fig. 2B and E, respectively. D, Schematic of network model with
plastic HPC→CTX and CTX→HPC synapses. Network and simulation parameters are the same as in Fig. 2A except that
λβhpc→ctx = 100 and Ttraining = 35 min. Parameters for CTX→HPC are the same as HPC→CTX except εctx→hpc = 0.01. E,
Schematic of simulation protocol with intact (control) HPC→CTX synapses for network D. F-G, Mean weight strength at
the end of training clustered according to engram cell preference for network D. F, HPC→CTX. G, CTX→HPC. H, Memory
recall accuracy in the testing phase of protocol E. I, Schematic of simulation protocol with the output of engram cells in HPC
blocked during consolidation for network D. J, Memory recall accuracy in the testing phase of protocol I. B-C, Color as in
Fig. 2A. H/J, Color as in D. A/F-G/E/I, Stimuli as in Fig. 1A. B-C/H/J, n = 5 trials with 90% confidence intervals.
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Figure S2. Recent memory recall relies on HPC engram cells. Analysis of recent memory recall in Fig. 3B.
A-C, Left: Population activity of excitatory engram cells in the testing phase immediately following training (i.e., prior to
consolidation) with cue presentation times displayed at the top. Right: histograms of the firing rates of engram cells encoding
each stimulus for the cue presentation interval marked in the activity plot on the left. Dashed line in activity plots and
histograms indicates threshold ζthr = 10 Hz for engram cell activation. A, CTX. B, THL. C, HPC. A-C, Color as in Fig. 3A.
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Figure S3. Remote memory recall relies on CTX engram cells. Analysis of remote memory recall in Fig. 3B. A-C,
Left: Population activity of excitatory engram cells in the testing phase after 24 hours of consolidation with cue presentation
times displayed at the top. Right: histograms of the firing rates of engram cells encoding each stimulus for the cue presentation
interval marked in the activity plot on the left. Dashed line in activity plots and histograms indicates threshold ζthr = 10 Hz
for engram cell activation. A, CTX. B, THL. C, HPC. A-C, Color as in Fig. 3A.
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Figure S4. Feedforward weight changes underlie engram cell state transitions in HPC and CTX. Analysis of
STIM→HPC and THL→CTX feedforward weights in Fig. 3B. A-B, Cumulative distribution function of the total feedforward
synaptic weights onto individual excitatory engram cells at the end of training and after 24 hours of consolidation. A,
Feedforward weights projecting from STIM to HPC excitatory engram cells. B, Feedforward weights projecting from THL to
CTX excitatory engram cells.
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Figure S5. Excitatory and inhibitory synaptic plasticity are essential for memory acquisition. A, Schematic of
network model with excitatory and inhibitory synaptic plasticity blocked in the entire network. B, Schematic of simulation
protocol. Training and testing stimuli as in Fig. 3A. C, Memory recall in the testing phase as a function of training time.
Recall curves (from left to right): accuracy, true positive rate, and false positive rate. Color as in A. C, n = 5 trials with 90%
confidence intervals.
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Figure S6. Silent HPC engram cells preserve recurrent excitatory connectivity. Analysis of HPC recurrent
excitatory connectivity in Fig. 3B. A-B, Mean weight strength of recurrent excitatory synapses onto excitatory neurons in
HPC clustered according to engram cell preference. A, At the end of the training phase. B, After 24 hours of consolidation.
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Figure S7. Composition of excitatory and inhibitory engram cells differ. Analysis of composition of excitatory
and inhibitory engram cells in Fig. 3B. A-B, From left to right: proportion of neurons that encode each of the stimuli (black
denotes no stimulus preference, other colors as in Fig. 3A), and proportion of neurons that encode 0-4 stimuli. From top
to bottom: CTX, THL, and HPC. A, Excitatory engram cells. B, Inhibitory engram cells. Near-zero overlap in excitatory
engram cells is a consequence of the zero overlap among training stimuli (Fig. 3A).
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Figure S8. Coupled reactivations of excitatory and inhibitory engram cells throughout consolidation. Analysis
of population activity of excitatory and inhibitory engram cells in Fig. 3B. A-C, Population activity of excitatory (left)
and inhibitory (right) engram cells in the consolidation phase (dashed line indicates threshold ζthr = 10 Hz for engram cell
activation). Top to bottom: CTX, THL, and HPC. A, 5.5 to 6 hours of consolidation. B, 11.5 to 12 hours of consolidation.
C, 17.5 to 18 hours of consolidation. A-C, Color as in Fig. 3A.
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Figure S9. Inhibitory plasticity controls network activity in CTX, THL, and HPC. Analysis of excitatory network
activity in Fig. 3B. A/C/E, Spike raster of random 256 excitatory neurons (top) and population activity of all excitatory
neurons (bottom) in CTX (A), THL (C), and HPC (E) in a 30-second interval in the consolidation phase. For clarity, only
every fifth spike is plotted in the raster. Dashed line in activity plots indicates target activity level γ = 4 Hz. Sample neurons
with a higher firing rate in raster plots are part of engram reactivated in the time interval shown. B/D/F, Network statistics
for A, C, and E respectively. From top to bottom: histograms of firing rates, interspike intervals, and coefficient of variation
of interspike intervals (CV ISI).
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Figure S10. Inhibitory neurons are crucial for the consolidation of subcortical-cortical coupling. Analysis of
synaptic coupling in Fig. 6. A-C, Mean weight strength of excitatory synapses onto excitatory neurons clustered according to
engram cell preference. From top to bottom: HPC (recurrent), HPC→THL (feedforward), THL (recurrent), THL→CTX
(feedforward), and CTX (recurrent). A, Mean weight matrices after 24 hours of consolidation for the network with blocked
HPC inhibitory neurons (Fig. 6A). B, Mean weight matrices after 24 hours of consolidation for the network with blocked
CTX inhibitory neurons (Fig. 6B). C, Mean weight matrices after 24 hours of consolidation for the network with blocked
THL inhibitory neurons (Fig. 6C). A-C, Stimuli as in Fig. 3A.
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