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Abstract 

Efficient humoral responses rely on DNA damage, mutagenesis and error-prone DNA repair. B cell 

receptor diversification through somatic hypermutation (SHM) and class switch recombination 

(CSR) are initiated by cytidine deamination in DNA mediated by activation induced cytidine 

deaminase (AID)1 and by the subsequent excision of the resulting uracils by Uracil DNA glycosylase 

(UNG) and by mismatch repair (MMR) proteins2-4. Although uracils arising in DNA are faithfully 

repaired2-7, it is not known how these pathways are co-opted to generate mutations and double 

stranded DNA breaks (DSBs) in the context of SHM and CSR2,4,8. Here we have performed a 

genome-wide CRISPR/Cas9 knockout screen for genes involved in CSR. The screen identified 

FAM72A, a protein that interacts with the nuclear isoform of UNG (UNG2)9 and that is 

overexpressed in several cancers9. We show that the FAM72A-UNG2 interaction controls the 

protein levels of UNG2 and that CSR is defective in Fam72a-/- B cells due to the specific 

upregulation of UNG2. Moreover, we show that in Fam72a-/- B cells SHM is reduced by 5-fold and 

that upregulation of UNG2 results in a skewed mutation pattern. Our results are consistent with 

a model in which FAM72A interacts with UNG2 to control its physiological level by triggering its 

degradation. Consequently, deficiency in Fam72a leads to supraphysiological levels of UNG2 and 

enhanced uracil excision, shifting the balance from error-prone to error-free DNA repair. Our 

findings have potential implications for tumorigenesis, as Fam72a overexpression would lead to 

reduced UNG2 levels, shifting the balance toward mutagenic DNA repair and rendering cells more 

prone to acquire mutations. 
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During immune responses, mammalian B cells undergo somatic hypermutation (SHM) and class 

switch recombination (CSR) to diversify the B cell receptor repertoire and mount efficient and 

adapted humoral responses2,3. SHM modifies antibody affinity for the triggering antigen by 

introducing point mutations at the variable region of both heavy (IgH) and light (IgL) chains, thereby 

allowing affinity maturation and the subsequent generation of high-affinity antibodies2,3. CSR 

modulates antibody effector functions by replacing the isotype expressed from IgM/IgD to IgG, IgA 

or IgE10. This is achieved by a deletional recombination event that takes place at the IgH locus 

between a donor (S) and an acceptor switch region (Sx)10 that brings into proximity the V region 

and the exons encoding for a new constant region, thus allowing the expression of an antibody with 

the same specificity but with a different isotype10. Mechanistically, both SHM and CSR are triggered 

by activation induced cytidine deaminase (AID), an enzyme which deaminates cytosines into uracils 

in DNA11. AID-generated U:G mismatches are processed mainly by the base-excision repair (BER) 

enzyme uracil-DNA-glycosylase (UNG)4,12 but also by mismatch repair (MMR)13 proteins to introduce 

mutations or double-stranded DNA breaks (DSBs) during SHM and CSR, respectively2-4. During SHM, 

DNA replication over U:G mismatches generates transition mutations at G:C base pairs. Uracil 

excision by UNG, followed by replication over abasic sites introduces both transition and 

transversion mutations at C:G base pairs. In addition, single stranded DNA surrounding the U:G 

mismatch or abasic site can be excised by both MMR and BER to introduce transition and 

transversion mutations at A:T base pairs. During CSR, cytidine deamination and DNA cleavage on 

opposite strands generate DSBs10, which are a necessary intermediates for recombination3. While 

uracils in DNA are usually faithfully repaired2-7, the mechanisms by which AID-induced uracils are 

instead processed in an error-prone way in the context of antibody diversification through SHM and 

CSR is largely unknown2-4. 

 

To get insight into the molecular mechanisms controlling CSR, we conducted a genome-wide 

CRISPR/Cas9 knockout screen (Fig. 1A). The screen was performed with the second-generation 

mouse Brie (mBrie)14 gRNA library and using the IgM+ murine B cell line CH12, which can be induced 

to express endogenous levels of AID and undergo CSR from IgM to IgA very efficiently in vitro when 

cultured with TGF-, IL-4 and an anti-CD40 antibody15. To conduct the screen, we established a CH12 

cell line stably expressing Cas9 (CH12Cas9; Fig. S1A) and sub-cloned the gRNA library into a retroviral 

vector (pMX-mBrie; Fig. S1B), which efficiently transduces CH12 cells. CH12Cas9 cells were 

transduced with the pMX-mBrie gRNA library and selected with puromycin for two weeks to allow 
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for the Cas9-mediated generation of knockouts. Cells were then stimulated to undergo CSR for 72h. 

Cells which failed to undergo CSR (which remained IgM+) or that succeed (which became IgA+) were 

sorted using magnetic beads (Fig. 1A and S1C). Genes, whose loss-of-function affect the efficiency 

of CSR, were identified by looking at gRNA enrichment in the IgM+ versus IgA+ populations through 

deep sequencing16 (Fig. 1A). The screen identified 654 candidate genes with a significant (p<0.05) 

gRNA enrichment and having more than 2 effective gRNAs (Fig. 1B). The screen was successful as it 

identified genes known to be required for CSR (Aicda, Ung, Trp53bp1) together with transcription 

factors driving AID expression (Batf, Pten, Irf4), Non-homologous end joining factors (Xrcc5, 

Fam35a), mismatch repair proteins (Msh2, Msh6, Pms1, Pms2, Mlh1), members of the TGF-, IL-4 

and CD40 signaling pathways (Tfgbr1, Tgfbr2, Il4ra, Il2rg, CD40) and other genes known to be 

implicated in CSR (Mediator, Trim28, Zmynd8, etc.). Consistent with this, gene ontology analysis 

revealed a significant enrichment in pathways that are relevant for CSR and SHM (Fig. 1C). 

Importantly, the screen revealed a significant number of genes with no known function in CSR, 

including Fam72a (Fig. 1B).  

 

We focused our analysis on Fam72a because of its high-position in the gene-ranking (Fig. 1B) and 

since similarly to AID, its expression is enhanced in wild-type splenic primary B cells undergoing CSR 

(Fig. S1D). Fam72a encodes a poorly characterized protein, which has been shown to bind to the 

nuclear isoform of Uracil DNA Glycosylase (UNG2) in a tryptophan 125-dependent manner9 and 

which is overexpressed in multiple cancers9. To validate the screen and determine whether Fam72a 

is required for CSR, we generated Fam72a-/- CH12 cells using the high-fidelity Cas9 (Cas9-HF1)17 (Fig. 

S2A and S2B). Interestingly, we found that the efficiency of CSR was reduced by 50-60 % in four 

independent Fam72a-/- CH12 clones when compared to Fam72a+/+ controls (Fig. 1D). The CSR defect 

observed was not due to impaired AID expression (Fig. S2C) or defects in proliferation (Fig. S2D) or 

switch region transcription (Fig. S2E). We conclude that Fam72a is required for efficient CSR in CH12 

cells. 

 

To investigate the physiological role of Fam72a in CSR and SHM in vivo, we obtained a Fam72a-/- 

mouse model (Fig. S3A) generated by the knockout mouse program (KOMP)18. Fam72a-/- mice gave 

offspring at Mendelian ratios and showed no obvious deleterious phenotype. Fam72a-/- mice did 

not display any specific defects in B cell development, and all B cell populations were found to be 

represented in normal proportions and numbers in the bone marrow and the spleen (Fig. 2A, 2B, 
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S3B and S3C). This suggests that FAM72A is dispensable for RAG1/2- and non-homologous end 

joining (NHEJ)-dependent V(D)J recombination.  

 

To determine whether Fam72a-/- B cells display a defect in CSR, we purified resting splenic B cells, 

labeled them with CFSE to track proliferation and cultured them under conditions that induce CSR 

to different isotypes. We found that Fam72a-/- B cells display a 40-70% reduction in the efficiency of 

CSR to all isotypes tested (Fig. 2C and 2D), which was not due defects in proliferation (Fig. 2C), AID 

expression (Fig. 2E), or switch region transcription (Fig. 2F). We conclude that deficiency in Fam72a 

results in a B cell intrinsic CSR defect in mouse primary B cells. 

 

To demonstrate that the CSR defect observed is due to deficiency in Fam72a and investigate the 

functional relevance of the FAM72A-UNG2 interaction, we re-expressed FAM72A and the 

FAM72AW125R or FAM72AW125A UNG2-binding defective mutants9 in Fam72a-/- CH12 B cells. We 

found that the CSR defect observed was indeed due to the absence of FAM72A, as re-expression of 

FAM72A (Fig. S2B) rescued the CSR defect (Fig. 3A and 3C), ruling out unlikely Cas9-HF1 off-target 

effects. Interestingly, we found that contrary to wildtype FAM72A, the FAM72AW125R or 

FAM72AW125A mutants were unable to rescue the CSR defect (Fig. 3A and 3C). Furthermore, we 

found that the residual CSR activity observed in Fam72a-/- B cells is dependent on the catalytic 

activity of UNG, as expression of an UNG-inhibitor (Ugi)19 abolishes CSR (Fig. 3B and 3C). We 

conclude that the CSR defect observed is due to the lack of FAM72A, that the FAM72A-UNG2 

interaction is of functional relevance for CSR and that the residual CSR activity is dependent on the 

catalytic activity of UNG. 

 

Alternative promoter usage and splicing of the Ung gene generates a mitochondrial (UNG1) and a 

nuclear (UNG2) isoform20 (Fig. S2F), both of which have been shown to be able to sustain CSR21. To 

examine the relative contribution of both these isoforms relative to FAM72A, we generated Ung1-/-

, Ung2-/-, Ung-/-, Fam72a-/- Ung1-/- and Fam72a-/- Ung2-/- CH12 cell clones using CRISPR/Cas9-HF1 

(Fig. S2F) and tested their ability to undergo CSR. As shown before12,21, while Ung1-/- and Ung2-/- 

cells underwent CSR at wildtype levels (Fig. 3D and S2G), CSR in Ung-/- CH12 cells was completely 

abolished (Fig. 3D and S2G). Surprisingly, while Fam72a-/- Ung2-/- rescued the CSR defect observed 

in Fam72a-/- CH12 cells, Fam72a-/- Ung1-/- did not (Fig. 3D and S2G). This result prompted us to 

further explore the significance of the FAM72A-UNG2 interaction. For this, we analyzed the 

expression level of UNG1 and UNG2 in the different single and double knockout CH12 cell lines by 
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Western blot. Surprisingly, we found that loss-of-function of Fam72a results in a significant and 

specific up-regulation of the UNG2 isoform (Fig. 3E), which accumulated on chromatin (Fig. 3F). This 

suggests that FAM72A controls the protein level of UNG2 and its access to chromatin. This 

phenotype, which was not at the mRNA level (Fig. S2H), was also observed in Fam72a-/- primary B 

cells (Fig. 3G). Furthermore, when we overexpressed FAM72A in Fam72a-/- CH12 cells (Fig. S2B), the 

up-regulation of UNG2 was almost abolished (Fig. 3E). Significantly, overexpression of the 

FAM72AW125A mutant (Fig. S2B), which does not interact with UNG29, did not down-regulate UNG2 

(Fig. 3E). We conclude that FAM72A specifically regulates the protein level of the UNG2 isoform by 

controlling its degradation and that the CSR defect observed in Fam72a-/- and Fam72a-/- Ung1-/- cells 

is due to increased levels of the UNG2 isoform. Consistent with this, we found that overexpression 

of UNG2 in wildtype CH12 cells was sufficient to suppress CSR (Fig. 3H). Therefore, it appears that 

the maintenance of the physiological levels of UNG2 is of critical importance for the efficiency of 

CSR and explains why mutants, with defective catalytic activity of UNG2, reconstitute CSR better 

than wildtype UNG2 in Ung-/- B cells22-24. Our results suggest that FAM72A, by controlling the level 

of UNG2, influences the usage of error-prone versus error-free DNA repair in response to AID-

induced uracils in DNA. 

 

Activated B cells expressing AID display mutations at switch regions during CSR25 and at a region 

spanning immunoglobulin variable regions during SHM3. To determine whether deficiency in 

Fam72a and the concomitant up-regulation of UNG2 have an influence in the frequency and pattern 

of AID-induced mutations, we sequenced the 5’ end of the S switch regions in Fam72a-/- and 

control CH12 cells that were stimulated to undergo CSR for three days. Interestingly, we found that 

the mutation frequency was reduced by 50% in Fam72a-/- CH12 cells when compared to controls 

(Fig. S4A). To confirm whether deficiency in Fam72a results in lower AID-induced mutation 

frequency, we analyzed the JH4 intron (JH4i), a sequence which gets heavily mutated by AID during 

SHM in vivo26, in germinal center B cells isolated from the Peyer’s patches of unimmunized 

Fam72a+/+ and Fam72a-/- mice (Fig. 4A). Interestingly, we found that the mutation frequency at the 

JH4i sequence was drastically reduced (five-fold) in Fam72a-/- B cells, when compared to controls 

(Fig. 4B, 4C and S4B). Consistent with UNG2 up-regulation, we found that the percentage of 

transition mutations at C:G base pairs, which are generated by replication over U:G mismatches 

were reduced from 57 % in Fam72a+/+ to 16 % in Fam72a-/- B cells (Fig. 4C and S4B). Conversely, 

transversion mutations at C:G base pairs, which are generated through replication over UNG-

generated abasic sites, increased from 43 % in Fam72a+/+ to 84 % in Fam72a-/- B cells (Fig. 4C and 
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S4B). This phenotype is diametrically opposed to Ung-/- B cells12, in which transition mutations at 

C:G base pairs reaches 95 % and transversion mutations at C:G base pairs are suppressed to 5 %12. 

These results support the hypothesis that in Fam72a-deficient B cells, where UNG2 is upregulated, 

AID-induced uracils are more efficiently excised from DNA by UNG2 and that error-free repair is 

enforced. Furthermore, enhanced uracil excision would result in fewer U:G mismatches, rendering 

MMR less effective in generating mutations at A:T base pairs surrounding the deaminated cytosines. 

Therefore, the level of UNG2 needs to be tightly controlled to trigger error-prone DNA repair, which 

is essential for antibody diversification through SHM and CSR. 

 

CSR is sensitive to the expression level of AID and concomitantly to the amount of AID-induced DSBs, 

which are obligatory intermediates3,10. Indeed, AID is haplo-insufficient and CSR is reduced in AID+/- 

B cells27. The CSR defect observed in Fam72a-/- B cells could be explained by enforced error-free 

repair due to the up-regulation of UNG2, which in turn would lead to the generation of fewer DSBs 

at switch regions. In wildtype B cells, a small fraction of AID-induced DSBs can be detected in the 

form of chromosome breaks or translocations28. To determine whether up-regulation of UNG2 

in the absence of FAM72A might influence the level of IgH DSBs, we conducted fluorescence in situ 

hybridization experiments using two IgH-specific probes and chromosome 12 paint in activated AID-

/-, Ung-/-, Fam72a+/+ and Fam72a-/- cells reconstituted (or not) with FAM72A or FAM72AW125R and 

quantified aberrant metaphases in these cells (Fig. 4D, 4E and Table S1). We found lower levels of 

aberrant metaphases in Fam72a-/- cells or Fam72a-/- cells reconstituted with FAM72AW125R as 

compared to wild type and Fam72a-/- cells reconstituted with wild type FAM72A, suggesting that 

FAM72A-mediated UNG2 upregulation controls the level of AID-induced DSBs during CSR. We 

conclude that the CSR defect observed in the absence of Fam72a is due to the inefficient generation 

of AID-induced DSBs. 

 

Our results are consistent with a model in which FAM72A interacts with UNG2 to control its 

physiological level by triggering its degradation. Consequently, deficiency in Fam72a leads to the 

specific upregulation of the UNG2 isoform and its accumulation on chromatin. This is sufficient to 

enforce uracil excision, resulting in a reduction in the efficiency of SHM and CSR. It is possible that 

supraphysiological levels of UNG2 in the absence of FAM72A tilt the balance toward error-free BER 

by favoring the recruitment of polymerase 5,6,29,30. A shift in the balance from error-free to error-

prone DNA repair in response to uracils in DNA has significant implications in the onset of cancer. 

As Fam72a is overexpressed in several types of tumors and transformed cell lines9 and as Ung-/- 
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mice develop B cell lymphomas31-33, it is possible that Fam72a overexpression would suppress the 

levels of UNG2 leading to inefficient uracil excision, enforcing error-prone DNA repair and making 

these cells more susceptible to accumulate mutations and hence more prone to tumorigenesis. 
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Methods 

 

CH12Cas9 cell generation. 

CH12 cells were transduced with retroviral supernatants obtained by transfecting Bosc23 cells with 

a retrovirus (pMX-26) expressing a Cas9-mCherry-P2A-Hygromycin cassette (Fig. S1A). After 72h of 

hygromycin selection (Sigma; 300 µg/mL), mCherry+ cells were sorted into 96-well plates using a 

cell sorter FACS ARIA Fusion (Becton Dickinson) and cultured for 10 days with hygromycin (Sigma; 

300 µg/mL). Individual clones were then tested for their ability to express Cas9 by western-blot (Fig. 

S1A), and their ability to undergo efficient CSR after stimulation (Fig. S1A). To test the functionality 

of Cas9, clones were transfected with gRNAs known to be effective (see Table S2 for gRNA 

sequences). Three days later, PCR was performed to identify clones with Cas9-mediated deletions 

(Fig. S1A). Clone #11, which had the highest Cas9 activity and which displayed a CSR efficiency 

similar to the parental CH12 cell line was selected to conduct the screen. 

 

Sub-cloning of the mBrie gRNA library. 

The mouse Brie CRISPR knockout pooled library (lentiCRISPRv2 backbone; a gift from David Root 

and John Doench (Addgene #73633) was sub-cloned into the pMX-28 retroviral vector (Fig. S1B) as 

described16 to generate the pMX-mBrie gRNA library. Briefly, the U6p-gRNA-scaffold cassette was 

amplified by PCR (see Table S2 for primers), digested with BamHI and a NotI restriction enzymes 

and ligated into pMX-28 (Fig. S1B). Stbl4 electrocompetent cells (ThermoFisher) were 

electroporated using Eporator Eppendorf (Program1-1700V), plated on ampicillin agar plates and 

incubated at 37°C for 15 hours. Plasmid DNA was extracted and the U6-gRNA-scaffold cassette was 

amplified by PCR to add sequencing adaptors and barcodes (see Table S2 for primers) and then 

analyzed by deep sequencing to determine gRNA representation and library uniformity as 

described16. 

 

CRISPR/Cas9 knockout screen. 

CH12Cas9 cells were transduced with the pMX-mBrie gRNA library in quadruplicate at a multiplicity 

of infection (MOI) of 0.3 and with a 300X coverage, as previously described16. Transduced cells were 

selected with puromycin (Sigma; 0.5 µg/mL) and hygromycin (Sigma; 300 µg/mL) for 15 days. 

Selected cells were then induced to undergo CSR with TGF- (1 ng/ml; R&D Systems Europe), IL-4 (5 

ng/ml; Peprotech) and an anti-CD40 antibody (200 ng/ml; eBioscience) for 72h. IgM+ and IgA+ cells 

were sorted using anti-IgM and anti-IgA coupled magnetic beads (Mitentyi). Population purity was 
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assessed by flow cytometry (Fig. S1C) using a Fortessa flow cytometer (Becton Dickinson). Genomic 

DNA from 24 million of cells was extracted using phenol/chloroform and subjected to PCR (1x (95°C 

for 2min)/ 28-31X (95°C for 15s, 65°C for 20s, 72°C for 30s) and 72°C for 3 min) to amplify gRNA 

sequences using staggered primers having Illumina adaptors and barcodes (see Table S2 for 

primers). Multiplexed samples were submitted to high-throughput sequencing (1x50 bp) on an 

Illumina HiSeq4000 sequencer at the GenomEast sequencing platform of IGBMC. gRNA counts were 

extracted from raw data using the PoolQ software from the Broad Institute. gRNA counts were 

normalized according as described16. Ranking of candidate genes was performed using MaGeCK34. 

Candidate genes (p<0.05) and having more than 2 effective gRNAS were selected. 

 

Cell culture. 

Bosc23 cells were cultured in DMEM supplemented with glucose (4,5g/L), 10% of heat-inactivated 

fetal calf serum, penicillin-streptomycin (100U/mL) and sodium pyruvate (1mM). CH12 cells and 

primary B cells were cultured in RPMI supplemented with 10% of heat-inactivated fetal calf serum, 

HEPES (10 mM), penicillin-streptomycin (100 U/mL), Sodium Pyruvate (1 mM) and -

mercaptoethanol (50 µM). 

 

CSR assays. 

CH12 cells were cultured for 72h in the presence of TGF- (1 ng/ml; R&D Systems Europe), IL-4 (5 

ng/ml; Peprotech) and an anti-CD40 antibody (200 ng/ml; eBioscience). Cells were then stained with 

an anti-IgA-PE antibody (Southern Biotech) to assess CSR by flow cytometry. Prior to analysis, DAPI 

was added to discriminate dead cells. Samples were analyzed using a Fortessa flow cytometer 

(Becton Dickinson) and the FlowJo software. 

 

Primary B cell cultures. 

Splenic resting B cells were purified using anti-CD43 magnetic beads (Miltentyi), labeled with CFSE 

(COMPANY) and cultured from 4 days with a combination of LPS (25 g/ml, Sigma-Aldrich), IL-4 (25 

g/ml, Preprotech), anti-IgD-Dextran (6 ng/ml, Fina Biosolutions), IFN- (100 ng/ml, Preprotech), IL-

5 (5 ng/ml, R&D Systems), TGF- (3 ng/ml, R&D Systems) and Retinoic Acid (RA; 0.3 ng/ml, Sigma-

Aldrich). 

 

RTq-PCR. 
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RNA and cDNA were prepared using standard techniques. qPCR was performed in triplicates using 

Roche LightCycler 480 Probes Master mix Universal Probe Library (UPL) in combination with 

appropriate UPL probes (Table S2). Transcript quantities were calculated relative to standard curves 

and normalized to HPRT or Ig mRNA. 

 

Retroviral transductions. 

CH12 cells were transduced with retroviral supernatants obtained by transfecting Bosc23 cells with 

an empty retrovirus (pMX-PIE; Puromycin-IRES-EGFP) or expressing mFam72a (pMX-Fam72a), o 

mFam72aW125R (pMX-mFam72aW125R), mFam72aW125A (pMX-Fam72aW125A), mUng2 (pMX-mUng2) or 

Ugi (pMX-Ugi). Transduced cells were then selected with puromycin (1 µg/ml) for 7 days and 

submitted to CSR assays. 

 

Generation of CH12 knockout clones.  

CH12 cells were transfected by electroporation using the Neon transfection System (ThermoFisher) 

with a plasmid expressing one or two gRNAs targeting a critical exon (see Table S2 for gRNA 

sequences) and co-expressing the high-fidelity Cas9 nuclease17 coupled to EGFP. 24h after 

transfection, individual EGFP-positive cells were sorted into 96-well plates using a cell sorter FACS 

ARIA Fusion (Becton Dickinson) and cultured for 10 days. Clones were then genotyped by PCR and 

sequencing. 

 

S and JH4i somatic hypermutation analysis. 

For S mutation analysis, genomic DNA was extracted from CH12 cells cultured for 3 days with TGF-

 (1 ng/ml; R&D Systems Europe), IL-4 (5 ng/ml; Peprotech) and an anti-CD40 antibody (200 ng/ml; 

eBioscience). For JH4i mutation analysis, genomic DNA was extracted from B cells isolated from the 

Peyer’s patches and sorted by flow cytometry using anti-B220-PE-Cy7 (eBiosciences), anti-Fas-PE 

(BD Pharmingen) and anti-GL7-Pacific Blue (BioLegend) antibodies. S and JH4i sequences were 

amplified by PCR (1x 98°C for 30s, 35x (98°C for 10s, 70°C for 10s and 72°C for 30s) and 1x 72°C for 

5 min) using the Q5 polymerase (New England BioLabs) and cloned into pUC57 using the 

MEGAWHOP35 method. Inserts were sequenced (Sanger sequencing) using the M13 Forward 

universal primer. Sequences were aligned with Lasergene (DNASTAR) and analyzed with the 

SHMTool36 server.  

 

Cloning. 
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All gRNA/Cas9HF1 plasmids were generated through golden gate cloning37. cDNAs were cloned into 

the pMX-PIE retrovirus through SLICE38. 

 

Mice. 

Fam72a-/- mice (C57BL6) were generated by the knockout mouse program (KOMP)18. Mice were 

bred under pathogen-free (SPF) conditions. In all experiments 8-12 week old age-matched 

littermates were used. Animal work was performed under protocols approved by an ethics 

committee (APAFIS#23104-2019112915476749). 

 

IgH FISH. 

Metaphases were prepared using standard procedures39. DNA FISH on metaphases spreads was 

performed as previously described39 using BAC probes RP24-134G24 (5’ Igh C) and RP24-386J17 (3’ 

Igh V) and XCyting Mouse Chromosome 12 (Orange) paint from MetaSystems. Metaphases were 

imaged using a ZEISS AxioImager.Z2 microscope and the Metafer automated capture system 

(MetaSystems), and counted manually. 

 

Western blot analysis. 

Proteins extracts were prepared using standard techniques. Proteins were separated by SDS-PAGE 

using gradient gels (4-12%; Invitrogen), transferred to PVDF membranes (Immobilon; Millipore) and 

analyzed using anti-AID40, anti--Actin (Sigma), anti-UNG1/2 (Gift from B. Kavli) antibodies. Cell 

fractionation experiments were performed as previously described41. 

 

B cell development.  

Total splenic or bone marrow cells were labeled with suitable antibodies and analyzed on an FACS-

Fortessa flow cytometer (Becton Dickinson).  
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Figure 1. A genome-wide CRISPR/Cas9 knockout screen for genes involved in CSR identifies Fam72a. (A) Schematic over-
view of the CRISPR/Cas9 screen. (B) Graph depicting the gene significance score of the ranking (-log10 Score Mageck) calculated 
with the MAGeCK algorithm, plotted against the logarithmic value to the base 2 of the ratio of IgM over IgA read counts (LFC) for 
each gene represented by a dot. Genes known to be involved in CSR are depicted in red, TGF-β, IL-4, CD40 and BCR signaling 
pathways are depicted in blue. Genes with no known function in CSR are in black. (C) Gene ontology analysis of genes identified 
in the screen. (D) Flow cytometry analysis of IgA expression in Fam72a+/+ and four independent Fam72a-/- CH12 cell clones cultured 
for 3 days with TGF-β, anti-CD40 antibody and IL4. The percentage of IgA-expressing cells from 3 independent experiments is 
shown on the right. p-value was determined using two-tailed Student’s t-test; ***p<0,0005.
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Figure 2. CSR is defective in B cells from Fam72a-/- mice. Flow cytometry analysis of bone marrow (A) and spleen (B) cells 
from Fam72a+/+ and Fam72a-/- mice. Staining antibodies and percentage of cells within gates are indicated. (C) Flow cytometry 
analysis of Ig expression in Fam72a+/+ and Fam72a-/- splenic B cells cultured for 96h with either LPS + IL-4 + anti-IgD-Dextran 
(CSR to IgG1), LPS +IFN-γ + anti-IgD-Dextran (CSR to IgG2a) or LPS + anti-IgD-Dextran (CSR to IgG2b and IgG3) or LPS +IL-5 
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72h. (F) Real-time qPCR analysis for germline transcripts at donor (GLTµ) and acceptor switch regions (GLTγ3, GLTγ1, GLTγ2b, 
GLTγ2a and GLTα) in Fam72a+/+ and Fam72a-/- splenic B cells cultured for 96h as in (C). Expression is normalized to Igβ and is 
presented relative to expression in Fam72a+/+ B cells, set as 1. Mean of 3 independant experiments and the SEM were calculated 
following the rules for error propagation while calculating a ratio. Statistical analysis was performed using two-tailed Student’s t 
test (*p < 0,05; **p<0,005).
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Figure 3. The CSR defect in Fam72a-/- B cells is due to the specific up-regulation of Ung2. (A) Flow cytometry analysis of IgA 
expression in Fam72a-/- CH12 cells transduced with an empty retrovirus (pMX) or expressing FAM72A, FAM72AW125A or 
FAM72AW125R and cultured for 3 days with TGF-β, anti-CD40 antibody and IL-4. Plots are gated on EGFP expression. The percent-
age of IgA-expressing cells is indicated. (B) Flow cytometry analysis of IgA expression in Fam72a+/+ and Fam72a-/- CH12 cells 
expressing (or not) an UNG inhibitor (Ugi) and cultured for 3 days with TGF-β, anti-CD40 antibody and IL-4. The parental cell line 
(pCH12) was included as a positive control. Representative plots are shown. The percentage of IgA-expressing cells is indicated. 
(C) Plot showing the percentage of IgA-expressing cells from 3 independent experiments. p-value was determined using two-tailed 
Student’s t-test; ***p<0,0005. (D) Flow cytometry analysis of IgA expression in Fam72a-/-, Ung1-/-, Ung2-/-, Ung-/-, Fam72a-/- Ung1-/- 
and Fam72a-/- Ung2-/- CH12 cells cultured for 72h with TGF-β, IL-4 and anti-CD40 antibody. The percentage of IgA-expressing cells 
is indicated. (E) Western blot analysis for UNG (UNG1 and UNG2), AID and β-Actin in Fam72a-/-, Ung1-/-, Ung2-/-, Ung-/-, Fam72a-/- 
Ung1-/-, Fam72a-/- Ung2-/- and Fam72a-/- CH12 cells transduced with a retrovirus expressing FAM72A or FAM72AW125R and cultured 
for 72h with TGF-β, IL-4 and anti-CD40 antibody (CIT). (F) Western blot analysis for UNG (UNG1 and UNG2), NBS1 and Histone 
H3 on nuclear and chromatin fractions prepared from CH12 cells (pCH12) and Fam72a-/- B cells expressing FAM72A or 
FAM72AW125R. (G) Western blot analysis for UNG (UNG1 and UNG2) and β-Actin protein expression levels in Fam72a+/+ and 
Fam72a-/- splenic B cells cultured with LPS, IL-4 and anti-IgD-Dextran for 72h. (H) Flow cytometry analysis of IgA expression in 
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percentage of IgA-expressing cells is indicated.
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B ALL MUTATIONS WT Fam72a-/- SITES bp WT bp Fam72a-/- Frequency WT Frequency Fam72a-/- p value
G->C 97 17 157 20410 20567 0.004752572 0.0008265668 9.308466e-14
G->A 81 6 157 20410 20567 0.003968643 0.0002917295 1.488416e-15
G->T 35 14 157 20410 20567 0.001714846 0.0006807021 0.00390532

sum:G 213 37 157 20410 20567 0.01043606 0.001798998 6.205097e-29
C->G 22 0 91 11830 11921 0.001859679 0 6.882109e-06
C->A 22 10 91 11830 11921 0.001859679 0.0008388558 0.04911894
C->T 51 2 91 11830 11921 0.004311074 0.0001677712 3.387735e-11

sum:C 95 12 91 11830 11921 0.008030431 0.001006627 1.405943e-15
A->G 192 37 152 19760 19912 0.009716599 0.001858176 1.020279e-24
A->C 67 20 152 19760 19912 0.003390688 0.001004419 6.59427e-07
A->T 108 20 152 19760 19912 0.005465587 0.001004419 9.505953e-15

sum:A 367 77 152 19760 19912 0.01857287 0.003867015 9.102467e-44
T->G 43 2 174 22620 22794 0.001900973 8.774239e-05 2.078337e-09
T->C 128 11 174 22620 22794 0.005658709 0.0004825831 4.187917e-23
T->A 83 25 174 22620 22794 0.003669319 0.00109678 3.179272e-08

sum:T 254 38 174 22620 22794 0.011229 0.001667105 6.862086e-37
sum:GC 308 49 248 32240 32488 0.00955335 0.001508249 4.120884e-43
sum:AT 621 115 326 42380 42706 0.01465314 0.00269283 7.535157e-79
sum:ALL 929 164 574 74620 75194 0.01244975 0.002181025 2.703369e-120

Tv:GC 176 41 248 32240 32488 0.005459057 0.001262004 4.800845e-20
Tr:GC 132 8 248 32240 32488 0.004094293 0.0002462448 1.432898e-25
Tv:AT 301 67 326 42380 42706 0.007102407 0.001568866 1.763476e-34
Tr:AT 320 48 326 42380 42706 0.007550731 0.001123964 5.861283e-46

Tv:ALL 477 108 574 74620 75194 0.006392388 0.001436285 4.281994e-53
Tr:ALL 452 56 574 74620 75194 0.006057357 0.0007447403 1.178364e-69 

Figure S4. (A) Sμ mutation analysis in Fam72a+/+ and Fam72a-/- CH12 cells cultured for 3 days with TGF-β, IL-4 and anti-CD40 
antibody. Pie charts depict the proportion of Sμ sequences with the indicated number of mutations. The mutation frequency per base 
pair sequenced is shown below. The total number of sequences analyzed is indicated in the center. Statistical significance was deter-
mined with the Student’s t test. (B) Mutation analysis at JH4i sequences performed with the SHMTool server. 
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Table	S1.	IgH	FISH	analysis.		

	

Genotype	 Expmt	#	
Metaphase
s	with	Igh	
breaks	

Metaphases	
with	Igh	

translocation
s	

Total	
aberrant	

metaphase
s	

Total	
normal	

metaphase
s	

Total	
metaphase
s	analyzed	

%	
abnormal	
metaphase

s	

Aicda-/-	
1	 2	 0	 2	 248	 250	 0,8	
2	 1	 0	 1	 219	 220	 0,5	

TOTAL	 3	 0	 3	 467	 470	 0,6	

Ung-/-	
1	 4	 0	 4	 235	 239	 1,7	
2	 4	 1	 5	 209	 213	 2,3	

TOTAL	 8	 1	 9	 444	 452	 2,0	

pCH12	
1	 11	 6	 16	 233	 249	 6,4	
2	 17	 2	 19	 252	 271	 7,0	

TOTAL	 28	 8	 35	 485	 520	 6,7	

Fam72a-/-	
1	 6	 4	 10	 242	 252	 4,0	

	 	 	 	 	 	 	
TOTAL	 6	 4	 10	 242	 252	 4,0	

Fam72a-/-																				
+FAM72A	

1	 10	 3	 13	 241	 254	 5,1	
2	 15	 0	 15	 118	 133	 11,3	

TOTAL	 25	 3	 28	 359	 387	 7,2	

Fam72a-/-		

+FAM72AW125R	

1	 3	 0	 3	 157	 160	 1,9	
2	 7	 1	 8	 228	 236	 3,4	

TOTAL	 10	 1	 11	 385	 396	 2,8	
	

Statistical	analysis	(Fisher	exact	test)	 		 p	value	 Level	
Fam72a	+/+																												vs	 	Fam72a-/-		 		 0.14188	 ns	
Fam72a	+/+																												vs	 	Fam72a	-/-	+	FAM72A	 0.79264	 ns	
Fam72a	+/+																												vs	 	Fam72a	-/-	+	FAM72AW125R	 0.00873	 **	
Fam72a	-/-																													vs	 Fam72a	-/-	+	FAM72A	 0.12234	 ns	
Fam72a	-/-																													vs	 Fam72a	-/-	+	FAM72AW125R	 0.49575	 ns	
Fam72a	-/-	+	FAM72A										vs	 Fam72a	-/-	+	FAM72AW125R	 0.00481	 **	
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Table	S2.	Primers	and	gRNAs.	

	

Primers	 Orientatio
n	 Sequence	 UPL	

Transcripts	

Igβ	
Fwd	 TGGTGCTGTCTTCCATGC	

18	
Rev	 TTGCTGGTACCGGCTCAC	

Iµ-Cµ	
Fwd	 CCCAGACCTGGGAATGTATG	

29	
Rev	 GGAAGACATTTGGGAAGGACT	

Iµ-Cµ2	
Fwd	 ACCTGGGAATGTATGGTTGTGGCTT	 	
Rev	 TCTGAACCTTCAAGGATGCTCTTG	 	

Iγ3-Cγ3	
Fwd	 GCAGAAATCTGCAGGACTAACA	

71	
Rev	 ACCGAGGATCCAGATGTGTC	

Iγ2b-Cγ2b	
Fwd	 TGGGCCTTTCCAGACCTAAT	

88	
Rev	 GGGCTGATCTGTCAACTCCT	

Iγ2a-Cγ2a	
Fwd	 CAGCCTGGGATCAAGCAG	

109	
Rev	 TGGGGCTGTTGTTTTGGT	

Iγ1-Cγ1	
Fwd	 GGCCCTTCCAGATCTTTGAG	 	
Rev	 ATGGAGTTAGTTTGGGCAGCA	 	

Iα-Cα	
Fwd	 GGAGACTCCCAGGCTAGACA	

27	
Rev	 CGGAAGGGAAGTAATCGTGA	

Ung1	
Fwd	 CTGCTCGGCTGGACCAT	 	
Rev	 GCGCCAACCGCAAAGAC	 	

Ung2	
Fwd	 AGTGGCGGCCGAGATC	 	
Rev	 CCACCCGGGCCTTCTTG	 	

Sub-cloning	mBrie	library	
5'-BamHI	

site	 Fwd	 CGAATGCATCTAGATATCGGATCCCTTTCCCATGATTCCTTCATATTTGC	 	

3'-NotI	site	 Rev	 GCAGGCCTCTGCAGTCGACGGGCCCGCGGCCGCAAAAAAGCACCGACTC
GGTGCCAC	 	

High-throughput	sequencing	

Stagger	

P5	ARGON	
#1	

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTT
CCGATCTTTGTGGAAAGGACGAAAC*A*C*C*G	 	

P5	ARGON	
#2	

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTT
CCGATCTCTTGTGGAAAGGACGAAAC*A*C*C*G	 	

P5	ARGON	
#3	

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTT
CCGATCTGCTTGTGGAAAGGACGAAAC*A*C*C*G	 	

P5	ARGON	
#4	

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTT
CCGATCTAGCTTGTGGAAAGGACGAAAC*A*C*C*G	 	

P5	ARGON	
#5	

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTT
CCGATCTCAACTTGTGGAAAGGACGAAAC*A*C*C*G	 	

P5	ARGON	
#6	

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTT
CCGATCTTGCACCTTGTGGAAAGGACGAAAC*A*C*C*G	 	

P5	ARGON	
#7	

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTT
CCGATCTACGCAACTTGTGGAAAGGACGAAAC*A*C*C*G	 	

P5	ARGON	
#8	

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTT
CCGATCTGAAGACCCTTGTGGAAAGGACGAAAC*A*C*C*G	 	

Index	
1	 CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGT

GTGCTCTTCCGATCAATGGAAAGTCCCTATTGGCGTTAC	 	

2	 CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCAATGGAAAGTCCCTATTGGCGTTAC	 	
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3	 CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCAATGGAAAGTCCCTATTGGCGTTAC	 	

4	 CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCAATGGAAAGTCCCTATTGGCGTTAC	 	

5	 CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCAATGGAAAGTCCCTATTGGCGTTAC	 	

6	 CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCAATGGAAAGTCCCTATTGGCGTTAC	 	

7	 CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCAATGGAAAGTCCCTATTGGCGTTAC	 	

8	 CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCAATGGAAAGTCCCTATTGGCGTTAC	 	
Genotyping	of	CH12	KO	clones	

	

Fam72a-/-	
Fwd	 CGGGGTCGGAGCTGAAGAGTAGAAG	 	
Rev	 TCAACATAAGGGATGCACAGACACATG	 	

Ung1-/-	
Fwd	 CAATCAGAAGCGGCAAGGGGCGGGAGGTG	 	
Rev	 CTTCCCGAACTCCCCGCACAGC	 	

Ung2-/-	
Fwd	 CTCAGCCCCTCCCACACATG	 	
Rev	 CTAAGGTGTCCCAGTCTGTCCG	 	

Ung-/-	
Fwd	 GAGGCCGGATGTGGGGTGGGTGAGAC	 	
Rev	 TGAAACAGGAGCGGCCAAGGATAACAG	 	

Sµ	mutations	

Sµ	 Fwd	 CGAATGCATCTAGATATCGGATCCCAATGGATACCTCAGTGGTTTTTAATG
GTGGGTTTA	 	

	 Rev	 GCAGGCCTCTGCAGTCGACGGGCCCAGCGGCCCAGCTCATTCCAGTTCAT
TACAG	 	

SHM	
VH588/FR3	 Fwd	 CGAATGCATCTAGATATCGGATCCCGCCTGACATCTGAGGACTCTGC	 	
JH4	intron	 Rev	 GCAGGCCTCTGCAGTCGACGGGCCCGACTTTTGCAGGCTCCACCAGACC	 	

gRNAs	

Fam72a	

gRNA	1		
(5'	-	3')	 AGAGAGTCCTATTTTCCTGG	 	

gRNA	2	
	(5'	-	3')	 TACCAAGTAAGTCTGACGGG	 	

Ung1	

gRNA	1	
	(5'	-	3')	 CCGCCGCCCCAAGACGCCCA	 	

gRNA	2		
(5'	-	3')	 TGCGGTTGGCGCGGAGAGCG	 	

Ung2	

gRNA	1	
	(5'	-	3')	 TCTTCTCTCCGACCCCCACA	 	

gRNA	2		
(5'	-	3')	 GCCGGTCCCAGGGAGCGGAG	 	

Ung	

gRNA	1	
	(5'	-	3')	 ACCTCCACCTACGTGCAGAG	 	

gRNA	2		
(5'	-	3')	 AGCACACTCTATAATCACAG	 	
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