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Abstract 

Primary visual cortex (V1) has been the focus of extensive neurophysiological investigation, and 

its laminar organization provides a key exemplar of the functional logic of neocortical 

microcircuits. Using newly developed high-density, linear array probes, we measured visual 

responses from large populations of simultaneously recorded neurons distributed across layers of 

macaque V1. In single recordings, myriad differences in the functional properties of neuronal 

subpopulations could be observed. In particular, we found that although standard measurements 

of orientation selectivity yielded only minor differences between laminar compartments, 

decoding of stimulus orientation from layer 4C responses was superior to that of both superficial 

and deep layers within the same cortical column. The superior orientation discrimination within 

layer 4C was associated with greater response reliability of individual neurons rather than lower 

correlated activity with neuronal populations. The results demonstrate the utility of high-density 

electrophysiology in revealing the functional organization and network properties of neocortical 

microcircuits in single experiments.  
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Introduction 

Early neurophysiological investigations of primary visual cortex (V1) identified the striking 

emergence of shape processing by orientation-selective neocortical neurons as observed first in 

the cat (Hubel & Wiesel, 1962) and subsequently in primates (Hubel & Wiesel, 1968). Input 

from the dorsal lateral geniculate nucleus (dLGN) is fundamentally transformed in V1 from 

circular, center-surround receptive fields (RFs) into selectivity for orientation in simple cells. A 

vast number of past studies have examined the distribution of orientation and other functional 

properties of V1 neurons across cortical layers and morphological cell types in an effort to fully 

understand the transformation of visual information carried out at this crucial stage of visual 

processing (Bauer, Dow, & Vautin, 1980; Gur, Kagan, & Snodderly, 2005; Hawken & Parker, 

1984; Livingstone & Hubel, 1984; Poggio, Doty, & Talbot, 1977; Ringach, Hawken, & Shapley, 

1997; Ringach, Shapley, & Hawken, 2002; Schiller, Finlay, & Volman, 1976). To date, although 

much is understood about the functional organization and microcircuitry of primate V1, a 

number of key questions remain unresolved. For example, contrary to early evidence of a lack of 

orientation selectivity in V1 input layers (4Cα  and 4Cβ) (Hubel & Wiesel, 1968), a number of 

other studies demonstrated that orientation selectivity is more broadly distributed across layers 

(Hawken & Parker, 1984; Ringach et al., 2002; Schiller et al., 1976). Although a wealth of 

computational models has been proposed to explain the emergence of orientation selectivity in 

V1 (e.g. Adorjan, Levitt, Lund, & Obermayer, 1999; Chariker, Shapley, & Young, 2016; 

McLaughlin, Shapley, Shelley, & Wielaard, 2000), the validity of such models rests on the 

availability of sufficient data to test key predictions and assumptions. 
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 Historically, the bulk of neurophysiological measurements of the visual properties of 

macaque V1 neurons have been carried out in successive extracellular recordings from individual 

neurons or small numbers of neurons using conventional single-electrodes (e.g. Hawken & 

Parker, 1984; Livingstone & Hubel, 1984; Ringach et al., 1997; Schiller et al., 1976) or low-

channel count linear arrays (Hansen, Chelaru, & Dragoi, 2012; Nigam, Pojoga, & Dragoi, 2019; 

Ziemba et al., 2019). Typically, from such data, the distributions of those properties are studied 

in aggregated sets of recordings accumulated across multiple sessions. As a result, direct 

comparisons between subpopulations of neurons within local circuits, e.g. within single cortical 

columns, are less than ideal. Recent advances in recording technology have facilitated the 

development of high-density micro-electrode arrays resulting in a substantial increment (~20x) 

in the number of neurons that can be studied simultaneously within a localized area of neural 

tissue. A prime example is the recent development of the Neuropixels probe (IMEC, Inc.), which 

consists of a high-channel count Si shank with continuous, dense, programmable recording sites 

(~1000/cm). Numerous recent studies have demonstrated the advantages of such probes, such as 

their use in recording large neuronal populations within deep structures where optical approaches 

cannot be deployed (Jun et al., 2017; Steinmetz, Zatka-Haas, Carandini, & Harris, 2019). 

However, only a few electrophysiological studies of the primate brain have been carried out thus 

far (Hesse & Tsao, 2020; Trautmann et al., 2019), and none have targeted primate V1.  

 Using Neuropixels probes, we studied the visual activity of populations of neurons 

distributed across layers of macaque V1. The large capacity of Neuropixels probes facilitated 

comparisons between substantial populations of neurons within single cortical columns, both 

within and between defined laminar compartments. Robust differences in the functional 
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properties of neurons within different subpopulations were observable within a single recording 

session. For example, synchrony and spike count correlations among layer 4C neurons differed 

dramatically from those of superficial and deep layer neurons. Most surprisingly, although 

standard measurements of orientation selectivity yielded only minor differences between laminar 

compartments, we found that decoding of orientation from layer 4C neuronal responses was 

superior to that of superficial and deep layer neurons within the same cortical column. 

Furthermore, the superior orientation decoding from layer 4C activity was associated with 

greater response reliability of individual neurons rather than from the lower correlated activity 

among layer 4C neurons. The results demonstrate the utility of high-density electrophysiology in 

revealing the functional organization and network properties of primate neocortical microcircuits 

in single experiments.  
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Results  

We recorded the activity of neurons in V1 of 2 anesthetized monkeys (M1, M2) using high-

density, multi-contact Neuropixel probes (version 3A; IMEC Inc, Belgium)(Figure 1A)

(METHODS). Each probe consisted of 986 contacts (12 µm x 12 µm, 20 µm spacing) distributed 

across 10 mm, of which 384 contacts could be simultaneously selected for recording. Probes 

were inserted into the lateral operculum of V1 with the aid of a surgical microscope at angles 

nearly perpendicular to the cortical surface. The dense spacing between electrode contacts 

provided multiple measurements of the waveforms from individual neurons (mean = 4.52) and 

facilitated the isolation of each of a large number of single neurons (Figure 1B), typically >300 

in a single penetration. In total, we recorded the activity of 1,833 well-isolated single neurons 

across layers of V1 in 5 penetrations in the two monkeys (1,124 neurons, M1; 709 neurons, M2). 

In each of the 5 recordings, we studied the functional properties of simultaneously recorded 

populations of neurons within different laminar compartments. In order to assess the distribution 

of properties of V1 neurons across layers, we first estimated the borders of laminar 

compartments by combining the histological data with current-source density (CSD) 

measurements (Fig. 1C) in each recording (METHODS). Using those estimates, we assigned 

each of the recorded neurons to a specific laminar compartment.  Cortical layers were divided 

into four comparably sized laminar compartments, specifically layers 2/3, 4A/B, 4C, and 5/6 

(Mean depth: 650µm, 311µm, 281µm, 489µm, respectively). Notably, we combined layers 4Cα 

and 4Cβ, respectively the Magnocellular and Parvocellular recipient layers, into a single 

compartment in order to achieve comparable numbers of recorded neurons in each compartment.  
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Differential distribution of neuronal waveforms across V1 compartments 

First, we found that neurons with different waveform shapes were distributed unequally across 

cortical layers. As expected, extracellular spike waveforms throughout most of the recording 

depths typically exhibited initial negative components, followed by positive ones of variable 

length (Fig. 2A). At the deepest recording sites, the positive and negative components of spike 

waveforms were reversed, characteristic of axonal spikes (Schomburg, Anastassiou, Buzsaki, & 

Figure 1. Neuropixels recordings in primate V1. a, Upper cartoon depicts the angle of probe 
penetrations made into the lateral surface and underlying calcarine sulcus of V1. Lower, Image 
of Neuropixels probe base and shank. Right diagram shows the layout of electrode contacts for 
a section of the recording shank. b, Example single-neuron recordings with Neuropixels 
probes, three simple cells (orange, blue, green) and 1 complex cell (purple). Top, neuronal 
waveforms recorded across multiple adjacent electrode contacts are shown for each neuron. 
Bottom, each neuron’s response to its preferred orientation (rasters and instantaneous spike 
rates) and their corresponding tuning curves. Red arrows denote the drift direction of oriented 
gratings. c, CSD profiles for each of the five recording sessions. CSDs were derived from LFP 
responses to drifting gratings. In each session, laminar compartment boundaries (dashed lines) 
were determined using histological data and the CSD profile.  
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Koch, 2012). Accordingly, we labeled these latter waveforms as putative ‘axonal’ spikes (Fig. 

2B). We compared the frequencies of putative axonal waveforms between white matter (Wm) 

and all combined gray matter (Gm) compartments using the laminar boundaries derived from the 

CSD and histological data. These comparisons revealed that the density of axonal spikes (n per 

100 𝝁m) was significantly larger within the Wm than in the Gm (Median Wm: 6.9, Gm 2.2, 

p=0.0159, Mann-Whitney U test) (Fig. 2C). Moreover, axonal waveforms within the Wm were 

much more frequent than other waveform types in both animals (M1, 7% Gm, 60% Wm, 

p=5.7E-56; M2, 17% Gm, 72% Wm, p=5.3E-39, 𝛘2 test). This result thus corroborated our 

estimates of Gm-Wm boundaries.  

A number of past studies have exploited known differences in somatic spike waveform 

durations to potentially distinguish different functional classes of cortical neurons in extracellular 

recordings (McCormick, Connors, Lighthall, & Prince, 1985; Mitchell, Sundberg, & Reynolds, 

2007; Mountcastle, Talbot, Sakata, & Hyvarinen, 1969; Wilson, O'Scalaidhe, & Goldman-Rakic, 

1994), specifically so-called regular-spiking (RS) and fast-spiking (FS) neurons. These two 

classes correspond respectively to putative excitatory neurons and inhibitory interneurons, 

though with important exceptions (Kawaguchi & Kubota, 1997). Thus, we classified all non-

axonal spike waveforms initially as RS or FS, according to standard criteria (Methods)(Fig. 2B-

C). As expected, RS neurons outnumbered FS neurons roughly 2.4:1 (RS: 963; FS: 406). For 

both types of neurons, the density of neurons varied significantly across layers (RS: p = 0.0167; 

FS: p = 0.0093. Kruskal-Wallis test), with greater numbers of both types in Layer 4C 

(Supplementary Table 1). However, the disproportionality of the two waveform classes differed 
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Figure 2. Waveform classes and their laminar distributions. a, Spike waveform heat maps 
of neurons recorded across cortical depth in all five sessions. Laminar compartments are 
indicated as in Fig. 1. b, Top left, three waveform classes identified from their trough-to-peak 
delay, regular-spiking, fast-spiking, and putative axonal (negative delay). Bottom left, 
histogram of trough-to-peak delays for all neurons. Right, the location of neurons within 
different waveform classes across cortical depth (and horizontal position). Horizontal axes are 
magnified for visualization. c, Density of waveform classes across cortical depth for all 
sessions combined. Densities were computed within a sliding 100-µm window. d, Histogram of 
trough-to-peak delays for neurons within each laminar compartment for all sessions combined. 
e, Trough-to-peak delays of RS neurons increase with distance from Layer 4A/B. f, Density of 
two subclasses of RS waveforms across cortical depth.
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significantly across cortical layers (𝛘=9.2010, df=3, p=0.02673, 𝛘2 test), due to more equal 

proportions (~2:1) of cell types within layers 4A/B and 4C.  

In addition to the two major subclasses of somatic waveforms, we found that the trough-

to-peak durations of RS neurons varied widely across laminar compartments (Fig. 2D). In 

particular, durations were greater within supragranular and infragranular layers. Overall, 

waveform durations of RS neurons increased with distance from Layer 4A/B (r=0.32, 

p=1.74E-26)(Fig. 2E).  This suggests that perhaps at least one additional subclass of broader 

spiking neurons exists within V1 and is generally consistent with evidence of more than two 

distinct classes of spike waveforms within mammalian neocortex (e.g. Munoz, Tremblay, & 

Rudy, 2014; Trainito, von Nicolai, Miller, & Siegel, 2019) . Thus, we separated the two putative 

subclasses of RS neurons accordingly into Regular-medium (RSM) and long-broad (RSL) (Fig. 

2D). The densities of the two classes peaked at different cortical depths; RSL neurons peaked at 

the 4C-5/6 border, and RSM neurons peaked within the 4A/B compartment. Consequently, the 

distributions of the two subclasses of RS neurons differed across layers (𝛘=64.3571, df=3, 

p=6.88E-14, 𝛘2 test)(Fig. 2F).  

Differences in correlated activity between laminar compartments and waveform types 

The high-density recordings also allowed us to measure correlated activity among many 1000s of 

neuronal pairs within and between layers and neuronal subtypes, thus providing a robust assay of 

network connectivity within single recording sessions. We first measured synchrony (cross-

correlograms) and spike count (‘noise’) correlations in the responses of neuronal pairs to visual 
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stimulation (Methods). The two measures gauge the degree of correlated spiking activity, but at 

short and long timescales, respectively (Averbeck, Latham, & Pouget, 2006; Cohen & Kohn, 

2011). Both measures were computed from the responses of 3,486-17,044 neuronal pairs in each 

recording session. Cross-correlograms (CCGs) measure the pairwise correlation structure of 

spiking activity, the peak amplitude of which is thought to gauge the strength of the functional 

connectivity between two neurons (Alonso & Martinez, 1998; Perkel, Gerstein, & Moore, 1967b; 

Toyama, Kimura, & Tanaka, 1981) (Fig. 3A). The temporal delay of the CCG peak indicates the 

lead-lag relationship between the activity of neuronal pairs. We computed CCGs for all pairs of 

neurons using their spike trains evoked during visual stimulation. Pairs of neurons were drawn 

from a total of 676 cells (461 M1, 215 M2) with significant visual responses to drifting 

sinusoidal gratings. In most of the recording sessions, data were obtained from >17 visually 

responsive neurons recorded in each compartment (Supplementary Table 2).  Figure 3B shows 

the network of CCGs for all neuronal pairs across cortical depth for a single session (S3). The 

CCG network not only reveals apparent local connections between neurons within the same 

laminar compartment (e.g. layer 2/3), but also a large number of strong distant connections 

between neurons across layers. In addition, the network revealed a greater tendency of layer 2/3 

neurons to lag responses of neurons in all other layers. 

For the same session, the average peak correlations for neuronal pairs were compiled into 

a matrix of correlations across cortical depth (Fig. 3C). This matrix revealed measurable 

synchrony among neurons within and between all layers, with the exception of 4C. Synchrony 

was notably weak between 4C pairs, as were distant pairings involving 4C neurons. Overall, 

correlations between pairs excluding layer 4C neurons, either within or between laminar 
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compartments, were significantly greater than those including 4C neurons (t-test, p=5.87E-178), 

and those differences highlighted the boundaries between assigned laminar compartments. These 

differences were not a result of differences in mean firing rate between the different laminar 

compartments (Fig. S1A). In addition, similar to the pattern observed in the CCG network (Fig. 

3B), layer 2/3 neurons were significantly more likely to lag neurons within other layer 

compartments (sign test, 5/6 to 2/3: p=8.49E-41; 4C to 2/3: p=4.62E-3; 4A/B to 2/3: p=3.57E-14) 

Figure 3. Cross-correlations in neuronal activity across V1 layers. a, An example CCG of a 
single pair of neurons. Arrows denote the CCG peak and the CCG delay (tau at the peak). b, 
CCG network diagram from session S3. Dots mark individual neurons at their estimated 
cortical positions. Connecting lines denote the CCG peak (thickness) and the proportion of 
lead-lag relationship (direction of color gradient). Dot size and color respectively denote the 
mean of CCG peaks and proportion of lead-lag relationships for all pairings of each neuron. c, 
Matrix of CCG peaks across cortical depth from session S3. Each pixel shows the mean CCG 
peak across neuronal pairs at each depth. Cortical depth is aligned to the 4C - 5/6 border and 
normalized by the thickness of each compartment. d, Correlation direction matrix across 
cortical depth from session S3. Each pixel shows the proportion of lead-lag relationships 
between neuronal pairs. e, CCG peak matrix for all sessions combined. Right columns show the 
distributions of peaks for neuronal pairs within and between laminar compartments that include 
(left) or exclude (right) layer 4C neurons, and a comparison of the two (bottom left). f, 
Correlation direction matrix of all sessions combined. Right columns show the distribution of 
CCG delays for neuronal pairs between laminar compartments.
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(Fig. 3D). Both results were similar in the remaining 4 sessions (Fig. S2). Analyses of data 

combined across sessions revealed significantly lower synchrony for layer 4C neurons (t-test, 

p<1.00E-200)(Fig. 3E), and showed that layer 2/3 neurons tended to lag neurons in other layers 

(sign test, 5/6 to 2/3: p=8.06E-60; 4C to 2/3: p=1.97E-4; 4A/B to 2/3: p=4.84E-73)(Fig. 3F). Both 

of these major observations are consistent with previous evidence. Noise correlations were 

previously shown to be significantly lower in the input layers (Hansen et al., 2012). The lag in 

layer 2/3 is consistent with an overall convergence of inputs toward layer 2/3 neurons from 

which projections to extrastriate areas largely originate (Callaway, 1998), though circuit models 

of V1 often posit deep layers as a later stage corticofugal output (Gilbert & Wiesel, 1983). 

The pattern of differences in overall synchrony observed across laminar compartments 

was similar for comparisons of noise correlations; neurons in layer 4C exhibited considerably 

lower noise correlations than more superficial or deep compartments (Fig. 4A, Fig. S3) (t test, 

p<1.00E-200). In addition, we measured correlation coefficients between responses to different 

stimuli (i.e., signal correlations) in order to quantify the extent to which pairs of neurons 

exhibited similar tuning properties. As with synchrony and noise correlations, overall mean 

signal correlations differed significantly across laminar compartments (ANOVA, p=7.42E-30). 

However, the pattern of results was reversed. Rather than exhibiting lower correlations, signal 

correlations in layer 4C were greater than those of layers 5/6 and 4A/B (5/6: mean=0.307, 4C: 

mean=0.420, 4A/B: mean=0.314; Post Hoc t test, 5/6 vs. 4C: p=1.94E-15, 4A/B vs. 4C: 

p=1.28E-20) and were comparable with layer 2/3 (2/3: mean=0.423, 2/3 vs. 4C: p=0.80). 

Furthermore, layer 5/6 neurons, from which the highest levels of synchrony and noise 

correlations were measured, exhibited lower signal correlations than compartments 4C and 2/3 
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(Post Hoc t test, 5/6 vs. 4C: p=1.94E-15, 5/6 vs. 2/3: p=5.19E-17). As with synchrony, these 

differences did not result from differences in mean firing rate between the different laminar 

compartments (Fig. S1B). 

Next, we compared synchrony, noise and signal correlations across the 3 waveform 

classes (FS, RSM, and RSL). Overall, there was a main effect of waveform class on all 3 measures 

Figure 4. Synchrony, noise, and signal correlations across laminar compartments and 
waveform classes. a, Mean CCG peaks, noise, and signal correlations within different 
compartments and for different neuronal waveform classes. Error bars denote +/- S.E.M.. b, 
Relationship between CCG peak and signal correlation for all neuronal pairs within and 
between laminar compartments. Right plot shows mean CCG peak - signal correlation 
relationship for pairs within each compartment. Lines denote linear fits; shaded region shows 
+/- S.E.M.. Dotted vertical and horizontal lines denote marginal means.  
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(ANOVA, synchrony: p=0.03; noise correlation: 6.16E-54; signal correlation: p=1.27E-54). 

Moreover, significant differences were observed for all pairwise comparisons between classes for 

each measure (Supplementary Tables S3-5). Within a given laminar compartment, measures of 

synchrony and correlation could differ between waveform classes by more than a factor of 2. 

Notably, lower synchrony, noise, and signal correlations were generally exhibited by FS neurons. 

These differences were not a result of differences in mean firing rate between the different 

neuron classes (Fig. S4). Thus, synchrony, noise, and signal correlations among neurons clearly 

depended on both layer and waveform type.  

We next assessed the dependence of synchrony on the similarity of tuning properties 

between neuronal pairs across the different laminar compartments. Previous studies have shown 

that greater functional and synaptic connectivity typically occurs between neurons with similar 

stimulus preferences (Cossell et al., 2015; Denman & Contreras, 2014; Lee et al., 2016). Thus, 

we hypothesized that the strength of synchrony between V1 neurons should depend on the 

similarity of visual properties of neurons within the same cortical column, i.e. their signal 

correlations. Moreover, we wondered if the lower synchrony values observed among layer 4C 

neurons might be accompanied by correspondingly low signal correlations. For virtually all 

neuronal pairings, both within and between laminar compartments, we observed a positive 

relationship between CCG peaks and signal correlations (p<10-30 for all linear regressions) (Fig. 

4B). However, the relationships differed across laminar compartments. Specifically, within layer 

4C, synchrony was dramatically less dependent on signal correlations (slope t test, 4C vs. 5/6: 

p=4.79E-45; 4C vs. 4A/B: p=4.53E-63; 4C vs. 2/3: p=3.72E-26), such that even at high levels of 

signal correlation (i.e. >0.5), synchrony remained very low. Thus, layer 4C neurons exhibited a 
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qualitatively different relationship between the signal correlation and synchrony. The limited 

functional connectivity among layer 4C neurons was present in spite of substantial signal 

correlations, and thus strong similarities in stimulus preference. 

Visual properties of simultaneously recorded neurons across V1 layers 

A wealth of past electrophysiological studies has explored the differences in the functional 

properties of neurons across the layers of primate V1 (Bauer et al., 1980; Gur et al., 2005; 

Hawken & Parker, 1984; Livingstone & Hubel, 1984; Poggio et al., 1977; Ringach et al., 2002; 

Schiller et al., 1976). The most classically examined properties include firing rates, the 

proportions of simple and complex cells, the incidence of direction selectivity, and various 

components of orientation selectivity. The high density recordings enabled us to assess these 

properties in the large numbers of visually responsive neurons recorded simultaneously in single 

sessions. Drifting circular Gabor gratings were presented for 1 second within the joint RFs of 

recorded neurons at 36 different directions (0 – 360°, 10° step). Four spatial frequencies (0.5, 1, 

2, 4 cycle/deg.) were tested and responses to the optimal spatial frequency were used in the 

analyses (Methods). Consistent with previous studies, we found significant difference in the 

maximum firing rates of neurons located across laminar compartments (Kruskal-Wallis test, 

𝛘2(3) =16.65, P=.0008), with the highest median rates found in layer 4C (Fig. 5A). Next, we 

compared the distribution of simple and complex cells across layers. Simple and complex cells 

are known to differ dramatically in their response to drifting gratings in that simple cells, being 

sensitive to phase, exhibit robust oscillatory modulation, while complex cells do not (De Valois, 

Albrecht, & Thorell, 1982) (Figure 1B). Thus, we could use the modulation ratio of visual 
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responses to reveal any differential distribution of simple and complex cells across layers in each 

recording (Figures 5B). As expected, modulation ratios varied significantly across laminar 

compartments (Kruskal-Wallis test, 𝛘2(3) =28.55, P=2.79E-6), with larger ratios found among 

layer 4C neurons. 

 Given that our probe penetrations were made largely perpendicular to the cortical surface, 

we could visualize the known columnar organization of orientation tuning in V1 by simply 

plotting the orientation preference of individual neurons recorded across the cortical depth. 

Gratings drifted across all directions, and a majority of neurons exhibited peak responses at two 

orientations that were equal but moving in opposite directions (Fig. 5C). Moreover, for most 

recordings (sessions 1,3-5), the preferred orientation remained similar for neurons distributed 

across depth, indicating that these penetrations remained largely within a single orientation 

column (columnar sessions). In contrast, the preferred orientation varied systematically across 

cortical depth in session 2 (non-columnar session).  Across recordings, a subset of neurons 

responded more strongly to one of the drift directions, thus exhibiting direction selectivity. 

Direction selectivity was quantified using a standard selectivity index that compared the 

preferred drift direction to the opposite direction (Methods) (Figures 5D). Direction selectivity 

varied significantly across layers (Kruskal-Wallis test, 𝛘2(3) =52.36, P=2.51E-11), with 

significantly lower values in layer 4C (Two-tailed Mann-Whitney U test, P=1.55E-11). Similarly, 

for each neuron, we also computed a selectivity index for orientation, by comparing responses to 

the preferred and orthogonal orientations (Methods)(Figures 5E). As with direction selectivity, 

orientation selectivity varied significantly across layers (Kruskal-Wallis test, 𝛘2(3) =20.33, 
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Fig 5. Functional properties of single V1 neurons recorded simultaneously across laminar 
compartments. Components of visual responses of all V1 neurons recorded in five sessions 
across identified laminar compartments. a, Maximum firing rate response (to preferred 
stimulus). b, Modulation ratio. c, Heat map of visual responses across drift direction of oriented 
grating. (vertical thickness is greater for less dense neuronal populations.)  d, Direction index. 
e. Orientation index. f. Orientation tuning bandwidth. Data from each neuron is plotted at its 
corresponding cortical depth. Gray lines (top abscissa) denote kurtosis of each value in a 
running 100 µm window.  Bottom row plots show averaged results across all 5 sessions. 
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P=.0001). However, consistent with previous studies (Hawken & Parker, 1984; Ringach et al., 

2002; Schiller et al., 1976), orientation selectivity was not significantly lower in layer 4C than in 

other layers (All sessions: n4C=247, nothers=414, Median: 4C 0.68, others 0.70, P=.084; All 

columnar sessions: Median: 4C 0.77, others 0.72, P=.52; Two-tailed Mann-Whitney U test). For 

most of the recorded neurons, responses across orientation were well fit by a circular Gaussian 

(median R2 = 0.95)(Methods). From the population of well fit neurons (R2 ≥ 0.7, 89.4 %), we 

obtained tuning bandwidths and compared them across cortical depth (Figures 5F). Overall, 

tuning bandwidths differed significantly across layers (Kruskal-Wallis test, 𝛘2(3) =9.51, P=.023), 

consistent with previous evidence (Ringach et al., 2002). Bandwidth was very slightly, but 

significantly, greater in 4C compared to other layers (All sessions: n4C=211, nothers=380, Median: 

4C 17.0, others 15.7, P=.012; All columnar sessions: Median: 4C 17.5, others 16.5, P=.011; 

Two-tailed Mann-Whitney U test).  

Superior decoding of orientation from layer 4 neurons 

Orientation selectivity emerges within primate V1 and is thus perhaps the most fundamental 

property of primate V1 neurons. Differences in orientation selectivity of neurons within different 

layers have been the focus of numerous previous studies (Bauer et al., 1980; Gur et al., 2005; 

Hawken & Parker, 1984; Livingstone & Hubel, 1984; Poggio et al., 1977; Ringach et al., 1997; 

Ringach et al., 2002; Schiller et al., 1976). Similar to our observations, these studies found 

equivocal differences in the orientation selectivity of individual neurons distributed across layers. 

However, classical measurements of selectivity (e.g. bandwidth, selectivity index) are limited in 

their ability to adequately quantify the information contained in the responses of sensory 
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neurons. As an alternative, more recent studies have deployed machine learning algorithms to 

decode orientation signals contained in the responses of populations of simultaneously recorded 

V1 neurons (Berens et al., 2012; Graf, Kohn, Jazayeri, & Movshon, 2011). These studies capture 

the rapid and highly orientation-sensitive signals conveyed by populations of V1 neurons. 

However, recordings in these studies did not allow for simultaneous comparisons of orientation 

decoding between different subpopulations of neurons within layers of the same cortical column. 

Thus, we leveraged our high-density recordings to examine the strength of orientation signals 

within different V1 layers using a decoding approach. Specifically, we employed a Linear-

Discriminant Analysis (LDA) decoder (Fisher, 1936; Mendoza-Halliday & Martinez-Trujillo, 

2017) to predict visual stimuli based on the combined activity of subpopulations of 

simultaneously recorded neurons distributed across layers of V1.  

LDA decoders were trained to discriminate between pairs of stimulus orientations from 

the activity of neuronal subpopulations in each recording session (Methods). First, we compared 

the performance of the decoder at discriminating orientation changes, relative to the peak 

(preferred) orientation, using responses from a constant number of neurons (n=10) in each 

laminar subpopulation (Fig 6A). In this comparison, orientation change thresholds (minimal Δθ 

for performance exceeding 50%) did not differ between laminar compartments, perhaps due to a 

limited resolution in orientation sampling near the peak orientation (Δθ = 10deg.). However, for 

the majority of recording sessions, decoders trained on the activity of populations within 

different laminar compartments exhibited clear differences in orientation discrimination. 

Specifically, we found that populations of layer 4C neurons consistently outperformed 

populations in other layers, particularly those within layers 2/3 and 5/6. Only in the non-
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columnar session, in which the preferred orientation varied widely across cortical depth (Fig. 

5C), was the performance of layer 4C decoders inferior to that of other layers. When compared 

to other laminar subpopulations, the average suprathreshold performance of layer 4C decoders in 

columnar sessions significantly exceeded that of superficial (L2/3) and deep (L5/6) layers (4C vs 

2/3: mean Δ% = 9.9 ± 1.7; 4C vs 5/6: mean Δ%=15.2 ± 2.6; P=.0312, Two-tailed Wilcoxon 

signed-rank test). Decoding performance for layer 4A/B neurons also exceeded that of 

superficial (L2/3) and deep (L5/6) layers (4A/B vs 2/3: mean Δ% = 9.4 ± 0.1; 4A/B vs 5/6: mean 

Δ%= 12.0 ± 1.0; P=.0312, Two-tailed Wilcoxon signed-rank test). We considered that the 

apparent superiority of layer 4 neurons at discriminating orientation could have resulted from the 

arbitrary number of neurons chosen (n=10) in each neuronal subset. Thus, for each session, we 

also generated neuron-dropping curves (NDCs) (Wessberg et al., 2000) from the performance of 

neuronal subsets obtained in each laminar compartment in order to compare performances across 

varying population sizes (Fig. 6B). For each of the columnar sessions, the NDC revealed greater 

performance for layer 4 neurons (4A/B and 4C) across the range of population sizes compared to 

supragranular and infragranular compartments. 

Next, we measured the sensitivity to laminar subpopulations to orientation changes across 

the range of orientations. Measurements of pairwise discrimination performance were obtained 

for all combinations of the 18 orientations (n=153). For each orientation, sensitivity was 

measured as the reciprocal of the threshold change in orientation required to exceed 60% 

performance in subsets of 10 neurons distributed across layers. Peaks in orientation change 

sensitivity were typically observed on the flanks of the preferred orientation of the constituent 

neurons (Fig. 6C) corresponding to the steepest points in the orientation tuning curves. Across 
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Fig 6. Decoding of orientation from laminar subpopulations of V1 neurons. a, Performance 
of decoders trained to discriminate between the preferred and a second orientation. Decoders 
were trained from the responses of populations of neurons within different laminar 
compartments. Each point shows the average decoder performance using the activity of fixed 
subsets of 10 neurons within each laminar subpopulation for 9 pairwise orientation 
discriminations. Lines denote curve fits for each compartment. Results from each recording 
session are shown separately.  Vertical lines on abscissa indicate orientation thresholds. b, 
Neuron dropping curves for the different laminar subpopulations. c, Sensitivity of orientation 
decoding across cortical depth. Each point in the heat map shows the orientation sensitivity (1/
threshold) for subpopulations of neurons based on a 60% performance threshold in decoder 
discrimination of orientation changes from different comparison points. Each heat map is 
aligned to the preferred orientation of the recorded cortical column. Bottom plots show average 
sensitivities across orientation comparison points for each laminar compartment. Error bars 
denote +/- S.E.M.. 
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sessions, sensitivity was consistently highest in middle layers 4A/B and 4C, with the lowest 

values found in the 5/6 compartment. Thus, in the columnar recordings, populations of layer 4 

neurons exhibited greater orientation sensitivity than their superficial and deep layer 

counterparts. 

Single neuron properties contribute to superior orientation decoding in layer 4C 

We next considered the extent to which the superior decoding of orientation in layer 4 might be 

due to the reduced correlated variability there. Much experimental and theoretical work describes 

how noise correlations can reduce or limit the amount of information available in the responses 

of neuronal populations (Abbott & Dayan, 1999; Averbeck et al., 2006; Cohen & Kohn, 2011). 

Indeed, superior orientation discrimination in layer 4 was previously predicted from the 

observation of reduced correlated variability (Hansen et al., 2012). However, superior Layer 4 

performance appeared to be present even in very small populations, or even single neurons 

(NDCs, Fig. 6B), suggesting that correlated variability was not a key factor. To address this more 

directly, we repeated the decoding comparisons using shuffled trials, thus removing correlated 

activity (Methods). As with the unshuffled datasets, decoders trained on the activity of 

populations within different laminar compartments exhibited clear differences in orientation 

discrimination in columnar recordings. In the trial shuffled populations, we also found that 

populations of layer 4 neurons consistently outperformed populations in layers 2/3 and 5/6 (Fig. 

7A). When compared to other laminar subpopulations, the average suprathreshold performance 

of layer 4C neurons in columnar sessions significantly exceeded that of superficial (L2/3) and 

deep (L5/6) layers (4C vs 2/3: mean Δ% = 9.8 ± 1.8; 4C vs 5/6: mean Δ%=15.4 ± 2.7; P=.0312, 
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Two-tailed Wilcoxon signed-rank test). Decoding performance for layer 4A/B neurons also 

exceeded that of superficial (L2/3) and deep (L5/6) layers (4A/B vs 2/3: mean Δ% = 9.4 ± 0.2; 

4A/B vs 5/6: mean Δ%= 12.3 ± 0.8; P=.0312, Two-tailed Wilcoxon signed-rank test). We also 

directly compared the discrimination performance between shuffled and unshuffled datasets for 

all pairwise orientation differences (Fig. 7B). These comparisons revealed no differences, or only 

very small differences, for any of the laminar compartments (2/3: mean Δ%=-0.060 ± 0.025; 

P=.0181; 4C: mean Δ%=-0.001 ± 0.014; P=.942; 4A/B: mean Δ%=-0.018 ± 0.015; P=.233; 5/6: 

mean Δ%=-0.066 ± 0.020; P=.001. Two-tailed t test), confirming that trial shuffled populations 

produced the same results as the unshuffled populations.  

 Given that single-neuron properties seemed to be contributing more to differences in 

decoding performance, we used the same decoder to discriminate orientation from the activity of 

single neurons within different laminar compartments (Fig. 7C) (Methods). As expected, the 

overall average performance of single-neuron decoders at discriminating orientation pairs was 

reduced compared to that of 10-neuron populations. However, the pattern of results was 

remarkably similar between the single and population-level analyses. Specifically, in columnar 

sessions, the suprathreshold performance of layer 4C single-neuron decoders significantly 

exceeded that of superficial (L2/3) and deep (L5/6) layers (4C vs 2/3: mean Δ% = 8.5 ± 3.0; 4C 

vs 5/6: mean Δ%=9.9 ± 1.2; P=.0312, Two-tailed Wilcoxon signed-rank test). Decoding 

performance for layer 4A/B neurons also exceeded that of superficial (L2/3) and deep (L5/6) 

layers (4A/B vs 2/3: mean Δ% = 8.2 ± 1.9; 4A/B vs 5/6: mean Δ%=6.9 ± 2.6; P=.0312, Two-

tailed Wilcoxon signed-rank test), similar to the population-level comparisons. Thus, the 

properties of single neurons were sufficient to yield superior performance of layer 4 decoders. 
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Fig 7. Trial-shuffled and single-neuron decoding of orientation. a, Performance of 
orientation decoders within different laminar compartments using shuffled trials. As in Fig. 6A, 
each point shows the average decoder performance using the activity of 10 neurons within each 
subpopulation for 9 pairwise orientation discriminations, but with shuffled trials. b, 
Distribution of differences in decoding performance between shuffled and unshuffled trials for 
each laminar compartment. Data from all pairwise decoding performances are shown.  c, Mean 
single-neuron decoding performance within different laminar compartments. d, GLM 
coefficients for different predictors of decoding performance using all 5 (left) or the 4 columnar 
recordings sessions (right). Error bars denote +/- S.E.M.. e, Fano factors for single neurons 
within different laminar compartments. 
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We observed a similar pattern of results when comparing performance using a multi-class 

decoder, and across spatial frequency (Fig. S5). 

 As previously described, layer 4 neurons differ from those in superficial and deep layers 

in other important ways. For example, we observed clear differences in the proportions of 

different waveform classes across the four laminar compartments (Fig. 2). Furthermore, as 

expected, layer 4C contained a larger proportion of simple cells (Fig. 3). Thus, it is possible that 

differences in the performance of single cell decoders was associated more with those properties 

than with layer. To examine this possibility, we built a Generalized Linear Model (GLM) to 

measure the influence of three factors: waveform class (RSL, RSM and FS), functional class 

(simple or complex), and laminar compartment. The GLM was built from data obtained either 

from all five sessions or from the four columnar sessions (Fig. 7D). For both models, differences 

in single-neuron decoder performance were more robustly associated with laminar compartment 

than with waveform or functional class.  In neither case were performance differences associated 

with the functional class of neurons; simple and complex cell decoders performed equally well 

(All sessions: Δcoeff. = -0.73%, p =.5532; columnar sessions: Δcoeff. = -1.89%, p =.1757). 

However, in both models, decoders made from the activity of RSM neurons performed 

significantly greater than FS neurons (All sessions: Δcoeff. = -3.53%, P =.0185; columnar 

sessions: Δcoeff. = -3.53%, P =.0381 ), but were statistically equal to the performance of RSL 

neurons (All sessions: Δcoeff. = -2.07%, P =.1112; columnar sessions: Δcoeff. = -0.91%, P 

=.5201). Performance differences associated with laminar compartments were generally larger. 

Layer 4C decoder performance exceeded that of layer 2/3 and 5/6 decoders in both models and 

by as much as 10% (All session: 2/3 - 4C = -4.34%, P =.0063; 5/6 - 4C = -8.66%, P = 3.76E-08; 
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columnar sessions: 2/3 - 4C = -7.0%, P = 1.27E-04; 5/6 - 4C = -11.1%, P = 7.31E-11). 

Furthermore, in columnar sessions, layer 4C decoders significantly exceed the performance of 

layer 4A/B (4A/B - 4C = -4.29%, P =.0052). Thus, cortical layer was clearly a factor in 

determining the performance of single-neuron decoders. 

 Given the lack of substantial differences in the basic tuning measures between neurons 

across layers, e.g. orientation index and tuning bandwidth, it is surprising that single neuron 

decoding of layer 4 neurons exceeded that of superficial and deep neurons. However, these 

measures fail to fully capture the information available in sensory responses. In particular, these 

measures do not account for differences in the reliability of stimulus-driven responses between 

different neurons, for example differences in the Fano factor (FF) (Churchland et al., 2010; 

Churchland, Yu, Ryu, Santhanam, & Shenoy, 2006; Steinmetz & Moore, 2010). Across the full 

population of visually responsive neurons (N = 676), the relative performance of single-neuron 

decoders was negatively correlated with the FF of the corresponding neuron responses (r = 

-0.1033; p =.0072). Thus, we considered the possibility that layer 4C neuronal responses might 

be more reliable than those of superficial and deep neurons. Previous studies comparing the FFs 

of V1 neurons across layers yielded equivocal results (Gur & Snodderly, 2006; Hansen et al., 

2012), perhaps due to comparatively small datasets.  We compared the FFs of neurons within the 

different laminar compartments (Methods)(Fig. 7E). We found highly robust differences in the 

FF of visual responses across laminar compartments (2/3 (n=116): 1.87+0.07, 4A/B (n=179): 

1.62+0.04, 4C (n=247): 1.28+0.02, 5/6 (n=119): 1.94+0.06; Kruskal-Wallis test, 𝛘2(3) =167.32, 

P=4.82E-36). Moreover, the FFs of layer 4C neurons were significantly lower than that of neurons 

in layers 2/3 (P=5.22E-22, Two-tailed Mann-Whitney U test), 5/6 (P=3.53E-23), and also layer 4A/
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B (P=4.16E-19). The Fano factors of layer 4A/B neurons were also significantly lower than that 

of neurons in layers 2/3 (P=4.30E-3), 5/6 (P=6.30E-5). These differences were not a result of 

differences in firing rate across layers (Fig. S6A) and they were present across all stimulus 

orientations (Fig. S6B). Moreover, these differences were largely independently of cell type (Fig. 

S6C). Thus, the greater performance of layer 4C neurons was associated with larger reliability in 

single neuron responses. Given that orientation selectivity indices and tuning bandwidths of layer 

4C neurons were largely comparable to those in other layers (Fig. 5E-F), it is likely that the 

superior orientation decoding in 4C is due at least in part to greater response reliability of 4C 

neurons. !
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Discussion 

We studied the visual activity of large populations of neurons distributed across layers of primate 

V1 using high-density Neuropixels probes. The high capacity of the probes yielded single-

neuron recordings from substantial numbers of nearby cells located within the same laminar 

compartments of single cortical columns, thereby facilitating robust comparisons between 

different subpopulations of neurons in single experiments. These comparisons revealed myriad 

differences in the functional properties of neurons across layers as well as between neurons of 

different putative cell types. In the latter case, putative inhibitory (FS) neurons, subclasses of 

putative excitatory (RS) neurons were distributed differently across the cortical depths and 

within laminar compartments, consistent with previous anatomical evidence (Fitzpatrick, Lund, 

Schmechel, & Towles, 1987; Hendry, Schwark, Jones, & Yan, 1987). In the former case, several 

noteworthy functional differences between neuronal subpopulations were observed. First, we 

observed robust differences in synchronized and correlated activity between neuron pairs within 

and across laminar compartments. Both synchrony and noise correlations were dramatically 

reduced among pairs involving layer 4C neurons, compared to all other laminar pairs. This 

observation expands on an earlier report of surprisingly low noise correlations in layer 4C 

(Hansen et al., 2012). Our results revealed a clear decrement in synchrony coinciding with the 

superficial and deep borders of 4Cα and 4Cβ, respectively (Fig. 3E). Although lower synchrony 

and noise correlations can be a result of correspondingly low shared inputs, this is an unlikely 

basis for the input layers of V1 given that neurons there share inputs and are highly connected. 

Instead, it may be that the reduced level of coordinated activity in layer 4C results from a greater 

balance of excitatory and inhibitory inputs, which has been shown to limit correlations in highly 
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connected neurons (Renart et al., 2010). Indeed, this is consistent with the relatively high ratio of 

FS neurons to RS neurons we observed within layer 4C (Fig. 2C).  

In contrast to synchrony and noise correlations, signal correlations among layer 4C 

neurons were elevated compared to that of other laminar compartments. Furthermore, the 

relationship between synchrony and signal correlations within layer 4C differed dramatically 

from that of all other compartments; synchrony remained very low even for neurons with high 

signal correlations, and thus similar tuning properties. In addition, we found that both noise and 

signal correlations were generally lower among FS neurons than among RS cells. Notably, this 

latter observation directly contrasts with the pattern reported in mouse visual cortex in which 

greater correlations, both signal and noise, have been observed among inhibitory neurons, 

including parvalbumin+ (Hofer et al., 2011) and other inhibitory subtypes (de Vries et al., 2020). 

This contrast suggests a distinct difference between the functional microcircuitry of mouse and 

primate V1. 

 In addition, single recording sessions could reveal a number of well-known differences in 

the response properties of neurons across cortical layers, including higher firing rates, but lower 

proportions of complex cells or direction-selective neurons in layer 4C. However, as with many 

previous studies, comparisons of orientation selectivity across laminae using standard measures 

yielded equivocal results in terms of identifying clear differences in orientation selectivity 

between layers. We therefore used a decoder to measure the orientation discrimination 

achievable from the activity of populations within different laminar compartments. Surprisingly, 

we found that in columnar recording sessions, decoder performance in layer 4C was superior to 

that of superficial and deep layers. This is the first observation of an unambiguous difference in 
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orientation discrimination between neurons spanning different layers of the same V1 column.  

Importantly, the superior orientation discrimination from layer 4C activity was not dependent 

upon differences in correlated variability observed between laminar compartments, as might be 

predicted (Hansen et al., 2012). Instead, single-neuron decoding yielded an identical pattern of 

results, with orientation decoding from layer 4C neurons exceeding the performance of 

superficial and deep layer neurons. In addition, the superior orientation discrimination was 

associated with reduced response variability in layer 4C neuronal responses. This result not only 

contrasts with the classic view that orientation selectivity is largely absent among neurons in 

layer 4C of primate V1, particularly 4Cβ (Blasdel & Fitzpatrick, 1984; Livingstone & Hubel, 

1984), and confirms earlier evidence of clear orientation tuning in 4C (Hawken & Parker, 1984; 

Livingstone & Hubel, 1984; Ringach et al., 2002; Schiller et al., 1976), but it demonstrates that 

when comparing neurons within the same column, the fidelity of orientation information is at its 

peak in the output of layer 4C neurons.  

The visual system of the macaque monkey has proven to be remarkably similar to that of 

the human and is thus an ideal model.  However, in contrast to simpler model systems, extracting 

circuit-level information from studies of the nonhuman primate visual system has proven 

particularly challenging given the limited arsenal of appropriate tools. One key shortcoming of 

past neurophysiological studies in nonhuman primates is their relative inability to capture the 

diversity of neural signals present within both local and distributed populations of neurons in 

simultaneous recordings. Neurophysiological studies within the primate visual system have 

largely involved successive recordings from individual neurons, or small numbers of neurons 

using conventional single-electrodes, or low-channel count linear arrays. From such data, 
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neuronal properties are studied in aggregated datasets of recordings accumulated across multiple 

sessions. As a result, direct comparisons between subpopulations of neurons within local circuits, 

e.g. within single cortical columns, are less than ideal. Although many studies employing 

implanted arrays have yielded datasets from ~100s simultaneously recorded neurons, particularly 

within the motor system (Churchland et al., 2012; Wannig, Stanisor, & Roelfsema, 2011), such 

recordings can only be achieved within surface (and flat) cortical areas, and importantly, tend to 

restrict sampling of neurons at a fixed depth.  A number of recent studies have demonstrated the 

advantages of recently developed high-density silicon probes, particularly Neuropixels probes, in 

capturing the properties and dynamics of large populations of local and distributed neurons (Jun 

et al., 2017; Steinmetz, Koch, Harris, & Carandini, 2018; Steinmetz et al., 2019). In these first 

high-density recordings of primate V1, we have shown the value of such an approach in 

revealing the major properties of neurons comprising neocortical columns, a fundamental unit of 

neocortical circuitry. !
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Methods 

Electrophysiological Recordings 

Anesthetized recordings were conducted in 2 adult male macaques (M1, x kg, M2 x kg. All 

experimental procedures were in accordance with National Institutes of Health Guide for the 

Care and Use of Laboratory Animals, the Society for Neuroscience Guidelines and Policies, and 

Stanford University Animal Care and Use Committee. Prior to each recording session, treatment 

with dexamethasone phosphate (2 mg per 24 h) was instituted 24 h to reduce cerebral edema. 

After administration of ketamine HCl (10 mg per kilogram body weight, intramuscularly), 

monkeys were ventilated with 0.5% isoflurane in a 1:1 mixture of N2O and O2 to maintain 

general anesthesia. Electrocardiogram, respiratory rate, body temperature, blood oxygenation, 

end-tidal CO2, urine output and inspired/expired concentrations of anesthetic gases were 

monitored continuously. Normal saline was given intravenously at a variable rate to maintain 

adequate urine output. After a cycloplegic agent was administered, the eyes were focused with 

contact lenses on a CRT monitor. Vecuronium bromide (60 µg/kg/h) was infused to prevent eye 

movements. 

With the anesthetized monkey in the stereotaxic frame, an occipital craniotomy was 

performed over the opercular surface of V1. The dura was reflected to expose a small (~3 mm2) 

patch of cortex. Next, a region relatively devoid of large surface vessels was selected for 

implantation, and the Neuropixels probe was inserted with the aid of a surgical microscope. 

Given the width of the probe (70 um x 20 um), insertion of it into the cortex sometimes required 

multiple attempts if it flexed upon contacting the pia. The junction of the probe tip and the pia 

could be visualized via the (Zeiss) surgical scope and the relaxation of pia dimpling was used to 
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indicate penetration, after which the probe was lowered at least 3-4 mm.  Prior to probe insertion, 

it was dipped in a solution of the DiI derivative FM1-43FX (Molecular Probes, Inc) for 

subsequent histological visualization of the electrode track. 

Given the length of the probe (1 cm), and the complete distribution of electrode contacts 

throughout its length, recordings could be made either in the opercular surface cortex (M1) or 

within the underlying calcarine sulcus (M2), by selecting a subset of contiguous set of active 

contacts (n = 384) from the total number (n=986). Receptive fields (RFs) from online multi-unit 

activity were localized on the display using at least one eye. RF eccentricities were ~ 4-6° (M1) 

and ~ 6-10° (M2). Recordings were made at 1 to 3 sites in one hemisphere of each monkey. At 

the end of the experiment, monkeys were euthanized with pentobarbital (150 mg kg−1) and 

perfused with normal saline followed by 1 liter of 1% (wt/vol) paraformaldehyde in 0.1 M 

phosphate buffer, pH 7.4.   

Visual Stimulation 

Visual stimuli were presented on a LCD monitor NEC-4010 (Dimensions= 88.5 (H)* 49.7 (V) 

cm, pixels=1360 * 768, frame rate= 60 Hz) positioned 114 cm from the monkey. Stimuli 

consisted of circular drifting Gabor gratings (2 deg./sec., 100% Michelson contrast) positioned 

within the joint RFs of recorded neurons monocularly. Gratings drifted in 36 different directions 

between 0 to 360° in 10° steps in a pseudorandom order. Four spatial frequencies (0.5, 1, 2, 4 

cycle/deg.) were tested and optimal SFs were determined offline for data analysis. The stimulus 

in each condition was presented for 1s and repeated 5 or 10 times. A blank screen with equal 

luminance to the Gabor patch was presented for 0.25s during the stimulus interval.     
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Layer Assignment 

The laminar location of our recording sites was estimated based on a combination of 

functional analysis and histology results. For each recording, we first performed the current 

source density (CSD) analysis on the stimulus-triggered average of LFP. LFP signals recorded 

from each 4 neighboring channels were averaged and realigned to the onset of visual stimulus. 

CSD was estimated as the second-order derivatives of signals along the probe axis using the 

common five-point formula (Nicholson & Freeman, 1975). The result was then smoothed across 

space (σ = 120 µm) to reduce the artifact caused by varied electrode impedance. We located the 

lower boundary of the major sink (the reversal point of sink and source) as the border between 

layer 4C and layer 5/6. Based on this anchor point, we assign other laminar compartment borders 

using the histological estimates. 

Waveform Classification 

We classified different waveform types based on the trough-peak duration of the spike 

template of all recorded neurons (including the non-visual responsive cells). For each spike 

template, we measured the trough-peak duration by subtracting the time of the maximum value 

from the time of the minimum value. In some cases, the peak before the trough has a greater 

amplitude than the peak following the trough, leading to a negative duration value. We defined 

this group of neurons as putative “axonal” units (Schomburg et al., 2012). For the rest of 

waveforms, we divided them into 2 classes based on the peak-trough duration, referred as “fast-

spiking” (≤ 200 µs) and “regular-spiking” (> 200 µs) units. The classification boundary of 
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duration was chosen in consistent with previous studies (Mitchell et al., 2007). To investigate the 

heterogeneity of waveforms in the regular-spiking class, we further divided these waveforms into 

“regular-spiking (medium)” and “regular-spiking (long)” units using an arbitrarily selected 

boundary (300 µs).  

Cross-correlograms 

The pairwise cross-correlogram (CCG) was calculated based on spike trains of 

simultaneously recorded neurons (Perkel, Gerstein, & Moore, 1967a). To make sure that our 

analysis was not affected by the instationary transient response, we considered only the spiking 

activity during the 0.4 ~ 0.6 s period of each visual stimulation, and computed the CCG for each 

pair (j,k) as a function of time lag τ: 

    

where  is the auto-/cross- correlation calculated on spike train data from trials of the same 

condition; T is the total time length of the spike train (0.2 s);  and  are the mean firing rate of 

neuron j and neuron k, respectively. The divisor terms serve to normalize the result so that CCG 

remains relatively constant with varied τ and firing rates. To further eliminate the component in 

CCG that is attributed to the stimulus-locked activity, we computed a shift- (or shuffle-) predictor 

based on non-simultaneous responses (i.e., post-stimulus time histograms, PSTH):    

        

CCG (τ) =
Cjk(τ)

(T − |τ |） λjλk

Cjk(τ)

λj λk

CCG*
jk(τ) =

MSjk(τ) − Cjk(τ)

(M − 1)(T − |τ |） λjλk
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Where M is the trial number;  denotes the auto-/cross- correlation calculated on PSTHs of 

neuron j and neuron k. For every pair of simultaneously recorded neurons, a CCG was computed 

for each unique condition, shift-corrected (CCG minus CCG*), and then averaged among all 

conditions that yielded non-zero visual responses. Synchrony between a pair of neurons was 

defined as the peak (maximum) value of the shift-corrected CCG function. Direction of signal 

transfer was estimated using the temporal delay (τ) that corresponds to the CCG peak.  

To be comparable with the CCG measurements, noise correlation and signal correlation 

were also calculated using spiking activity during the 0.4 ~ 0.6 s period of each visual 

stimulation for each pair of neurons. As commonly defined, noise correlation between two 

neurons was estimated with the correlation coefficient of their spike counts across repetitive 

trials under the same experimental conditions and averaged over conditions. Signal correlation 

was estimated with the correlation coefficient of their mean spike counts across different 

experimental conditions. 

Single neuron properties 

To characterize neuronal properties, the evoked activity was assessed using mean firing 

rate (spikes/sec) over the whole stimulus presentation period, offset by response latency delay. 

Only responses to the preferred spatial frequency were selected. The maximum firing rate was 

the neuron's response to the preferred drifting orientation and direction.  Modulation ratio was 

defined as F1/F0, where F1 and F0 are the amplitude of the first harmonic at the temporal 

frequency of drifting grating and constant component of the Fourier spectrum to the neuron’s 

Sjk(τ)
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response to preferred orientation. Direction selectivity (Direction Index, DI) was determined as 

the response to preferred orientation and drift direction minus the response to preferred 

orientation but opposite drift direction, divided by the sum of these two responses (Swindale, 

1998). Orientation selectivity (Orientation Index, OI) was determined as the response to 

preferred orientation minus the response to orthogonal orientation, divided by the sum of these 

two responses (Swindale, 1998). To estimate the orientation tuning bandwidth, the orientation 

tuning responses were first smoothed with a hanning window (half width at half height of 20°), 

and then fitted with a von-Mises function (Swindale, 1998) 

    

Only neurons that were well fit by the function (R2>0.7) were included in the bandwidth 

analysis. The locations of the peak of the fitted curves were determined. The two orientations 

closest to the peak on either side of the tuning curve where responses dropped to  of the 

peak response were then estimated (Schiller et al., 1976). Bandwidth was defined as the half of 

the differences between the two orientations.  If the response around the peak never went below 

the response criteria, the tuning bandwidth was defined as 180°.  

Fano factor were computed to assess individual neuron’s response variability. For each 

stimulus condition and 100ms time window bin, spikes occurrences were counted for all the trial 

repetitions. And Fano factor was defined as the spike counts variance across trials divided by 

spike counts mean. And then Fano factors generated from the whole stimulus presentation period  

to all the stimulus conditions were then averaged to determine the Fano factor for that neuron. 

y = a0 + a1*ea2*(cos(2*x − 2*a3)−1)

1/ 2
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LDA Decoding 

Linear discriminant analysis (LDA) decoders were performed to quantify the ability of 

neuronal populations in encoding stimulus orientations. The analysis was performed using 

Matlab function “Classify” and the “diaglinear” option (Fisher, 1936; Mendoza-Halliday & 

Martinez-Trujillo, 2017) . For each recording session, multiple LDA decoders were built from 

each neuronal subpopulation’s responses to each pair of stimulus orientations. Neuronal 

subpopulations consisted of a fixed number of 10 nearby single neurons, and the depth of neuron 

in the center was used to assign this subpopulation to corresponding laminar compartment. 

Responses were calculated as the mean spike counts within the whole visual stimulation period 

(50 ms to 1050 ms after stimulus onset, considering response latency). Each orientation pair 

consisted of the preferred orientation of the 10-neuron subpopulation, and another orientation at 

varying differences from the preferred (Δθ=10°, 20°, ...90°). Only trials tested with gratings of 

optimal spatial frequency of the subpopulation were selected, which resulted in 20-40 trials 

tested for a given orientation pair. A leave-2-out cross validation was performed using a repeated 

random subsample technique (All except a random selection of two trials for training, remaining 

two trials for testing, ~200 repetitions).  Decoding performance was defined as the percentage of 

correct classification of all the repetitions. For each laminar compartment, decoding performance 

of all the subpopulations within it were averaged, and plotted as a function of the difference 

between orientations. It was then fitted with a saturation function: f~a*e-b*x + c using non-linear 

least-square option in Matlab.   
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Instead of a fixed number of neurons, Neuronal Dropping Curves (NDCs) were generated 

using population decoders with varied neuronal subpopulation size. For a recording session, we 

systematically selected n (n=1, 2, ...) single neurons located within each laminar compartment. 

Each selection for a given n consisted of a different combination of neurons and was repeated for 

a maximum of 200 times. The orientation pairs to discriminate consisted of the preferred 

orientation (θpref) for the whole recording session, and one of 8 other orientations (θpref ± 20°, θpref 

± 40°, θpref ± 60°, θpref ± 80°). Decoding performance for these 8 orientation pairs were later 

averaged. 

Decoding sensitivity was determined for each neuronal subpopulation at each orientation. 

The orientation pairs to discriminate were extended to all pairwise combinations of 18 tested 

orientations, which resulted in 153 pairs of orientations. From the decoder performance at 

discriminating a given orientation from orientations with varying differences (Δθ=10°, 

20°, ...90°), a minimum difference Δθmin was interpolated so that decoder performance could 

reach an arbitrary threshold level (60% in this case). Sensitivity was simply the inverse of Δθmin. 

A decoder with a high sensitivity can robustly discriminate orientation pairs with small 

differences.  

Shuffled population decoders were built almost the same way, except that trials of all the 

10 neurons in a subpopulation were randomly shuffled independently. The relative contribution 

of shuffling on decoding was assessed by simply computing the difference in decoding 

performance between trial shuffled decoder and real data decoder. Decoding to all the pairwise 

orientation discrimination was included.  
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Single neuron decoders were also built almost the same way as the population decoder, 

except that instead of using 10 neurons, only one neuron was used. To quantify the influences of 

various factors on the decoding performance, Generalized Linear Model (GLM) was built. 

Decoding performance ~ Constant + Laminar Compartment + waveform class (RSL, RSM and 

FS) + functional class (simple or complex). !
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Supplementary table 1 

Density of FS waveforms: 

Density of RS waveforms: 

S01 S02 S03 S04 S05 Mean

2/3 2.17 3.22 4.28 3.23

4A/B 8.98 4.87 12.03 4.87 8.01 7.75

4C 4.24 5.77 16.53 14.33 11.76 10.53

5/6 1.60 3.77 3.89 4.28 3.13 3.33

S01 S02 S03 S04 S05 Mean

2/3 7.96 14.57 9.88 10.80

4A/B 10.55 15.58 18.67 20.92 14.10 15.96

4C 10.25 27.88 21.07 26.83 18.49 20.90

5/6 1.96 10.68 10.25 8.82 9.92 8.32
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Supplementary table 2 

Counts of visual responsive neurons: 

S01 S02 S03 S04 S05 Mean

2/3 33 40 40 4 37.7

4A/B 30 57 29 33 30 35.8

4C 27 46 61 76 37 49.4

5/6 12 23 49 18 17 23.8
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Supplementary table 3 

Comparison of synchrony for different waveform types (table shows t-test p values) 

Comparison of synchrony for different laminar compartments. 

FS RSm RSl

FS 1 0.000002 0.000015

RSm 0.000002 1 0.148420

RSl 0.000015 0.148420 1

5/6 4C 4A/B 2/3

5/6 1 1.822276e-56 2.564906e-02 1.446454e-06

4C 1.822276e-56 1 2.369309e-104 3.235028e-91

4A/B 2.564906e-02 2.369309e-104 1 1.779898e-05

2/3 1.446454e-06 3.235028e-91 1.779898e-05 1
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Supplementary table 4 

Comparison of noise correlation for different waveform types. 

Comparison of noise correlation for different laminar compartments. 

FS RSm RSl

FS 1 5.863282e-39 3.925978e-56

RSm 5.863282e-39 1 7.170126e-03

RSl 3.925978e-56 7.170126e-03 1

5/6 4C 4A/B 2/3

5/6 1 6.003955e-08 1.483738e-01 4.260968e-03

4C 6.003955e-08 1 1.879479e-20 8.791248e-26

4A/B 1.483738e-01 1.879479e-20 1 6.064193e-02

2/3 4.260968e-03  8.791248e-26  6.064193e-02 1
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Supplementary table 5 

Comparison of signal correlation for different waveform types. 

Comparison of signal correlation for different laminar compartments.  

FS RSm RSl

FS 1 3.565005e-20 1.391435e-58

RSm 3.565005e-20 1 2.564682e-10

RSl 1.391435e-58 2.564682e-10 1

5/6 4C 4A/B 2/3

5/6 1 1.942508e-15  6.180177e-01 5.194673e-17

4C 1.942508e-15 1 1.275679e-20 8.008676e-01

4A/B 6.180177e-01  1.275679e-20 1 1.061105e-17

2/3 5.194673e-17  8.008676e-01  1.061105e-17 1
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Fig S1. Correlated activity across layers as a function of firing rate. Scatter plots show the 
CCG peak, noise correlation, and signal correlation against the geometric mean of firing rate 
for pairs of neurons, respectively. Colors represent layer compartments where neuron pairs 
belong. Lines denote the linear fit for each layer with shaded areas representing the 95% 
confidence interval of fitting. 
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Fig S2. Cross-correlations in neuronal activity across V1 layers for all individual 
sessions. The CCG peak and the CCG direction matrices are shown for each of the 5 
sessions. Plots follow the same color scheme used in Figure 3. 
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Fig S3. Noise correlation across V1 layers. a, Matrix of noise correlation across cortical depth 
for all sessions combined. b, A comparison between distributions of noise correlation for pairs 
that include vs. exclude layer 4C neurons. 
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Fig S4. Correlated activity across waveform types as a function of firing rate. Scatter plots 
show the CCG peak, noise correlation, and signal correlation against the geometric mean of 
firing rate for pairs of neurons, respectively. Colors represent the neuron pairs' waveform types. 
Lines denote the linear fit for each waveform type combination with shaded areas representing 
the 95% confidence interval of fitting. 
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Fig S5. Single neuron, multi-class decoding of orientation across stimuli spatial frequencies. 
Decoders were trained using activity of single neuron to discriminate all 18 different stimuli 
orientations tested for each spatial frequency. Each point shows the mean decoder performance 
from neurons within each laminar compartment. Different colored lines donate different laminar 
compartment. Error bars denote +/- S.E.M. Results from each recording session are shown 
separately.  
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Fig S6. V1 neuronal response variability across laminar. a, Scatter plots showing Fano 
factor against mean firing rate for all neurons across different laminar compartment. Each point 
represents a single neuron, with different colors representing the corresponding laminar 
compartment it’s located in. Lines denote linear fits for each compartment. Results from all 5 
recording sessions are combined. b, Fano factor across different stimuli conditions. Each point 
shows the mean Fano factor of neurons in each laminar compartment to each of the 18 different 
stimuli orientations. Error bars denote +/- S.E.M. Results from each recording session are 
shown separately. c, Laminar distribution of Fano factor across different cell types. Each point 
shows the Fano factor of each neuron plotted against its relative cortical depth. Different colors 
represent different waveform cell types. Results from all recording sessions are combined. 
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