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ABSTRACT2

Computational models of neural circuits with varying levels of biophysical detail have been3
generated in pursuit of an underlying mechanism explaining the ubiquitous hippocampal theta4
rhythm. However, within the theta rhythm are at least two types with distinct frequencies associated5
with different behavioural states, an aspect that must be considered in pursuit of these mechanistic6
explanations. Here, using our previously developed excitatory-inhibitory network models that7
generate theta rhythms, we investigate the robustness of theta generation to intrinsic neuronal8
variability by building a database of heterogeneous excitatory cells and implementing them in our9
microcircuit model. We specifically investigate the impact of three key ‘building block’ features10
of the excitatory cell model that underlie our model design: these cells’ rheobase, their capacity11
for post-inhibitory rebound, and their spike-frequency adaptation. We show that theta rhythms at12
various frequencies can arise dependent upon the combination of these building block features,13
and we find that the speed of these oscillations are dependent upon the excitatory cells’ response14
to inhibitory drive, as encapsulated by their phase response curves. Taken together, these15
findings support a hypothesis for theta frequency control that includes two aspects: (i) an internal16
mechanism that stems from the building block features of excitatory cell dynamics; (ii) an external17
mechanism that we describe as ‘inhibition-based tuning’ of excitatory cell firing. We propose that18
these mechanisms control theta rhythm frequencies and underlie their robustness.19
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1 INTRODUCTION
Hippocampal theta rhythms (≈ 3-12 Hz) observed in local field potential (LFP) recordings are associated21
with cognitive processes of memory formation and spatial navigation (Colgin, 2013, 2016; Hinman et al.,22
2018). Exactly how theta rhythms emerge is a complicated and multi-layered problem, but it is known23
that there are two types, denoted type 1 and type 2, that have high (7-12 Hz) or low (4-7 Hz) frequencies24
respectively. Type 2, but not type 1, rhythms are dependent on cholinergic drive (Bland, 1986; Buzsáki,25
2002; Kramis et al., 1975). In rodents, it has been shown that social stimuli elicit high theta, and fearful26
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stimuli elicit low theta (Tendler and Wagner, 2015), and type 2 theta oscillations have been shown to be27
associated with increased risk-taking behaviour (Mikulovic et al., 2018). In humans, theta frequencies are28
lower overall (Jacobs, 2014), but it is still possible to distinguish high and low theta frequencies, with low29
theta supporting encoding and retrieval of memories (Kota et al., 2020). Clearly, theta frequency control is30
functionally important.31

It is now well-documented that theta rhythms can be generated intra-hippocampally, emerging32
spontaneously from an isolated whole hippocampus preparation in vitro (Goutagny et al., 2009).33
Simultaneous access to cellular and population output presents an opportunity to untangle cellular and34
population dynamics of how theta rhythms are generated. In previous work, we took advantage of this35
and built cellular and microcircuit models that could generate theta rhythms with parameters directly36
constrained by experimental data from the whole hippocampus preparation and the experimental literature37
(Ferguson et al., 2013, 2015a, 2017). Motivated by the perspective presented by Gjorgjieva et al. (2016),38
we considered a ‘building blocks for circuit dynamics’ analysis approach in our microcircuit model39
design (Ferguson et al., 2017). In this perspective, biologically known cellular, synaptic and connectivity40
characteristics are considered as building blocks for circuit dynamics. For example, one such cellular41
‘building block’ is post-inhibitory rebound (PIR), which has previously been invoked as a contributor to the42
generation of cortical oscillations (McCormick et al., 2015).43

In this paper we use our theta-generating microcircuit model to develop a hypothesis of how the theta44
frequencies could be controlled. We first describe the model microcircuit design and then assess the45
robustness of theta generation in the model by considering heterogeneous pyramidal (PYR) cell populations.46
From this, we use phase response curves (PRCs) and show that inhibitory inputs affect the theta frequency.47
We thus propose a hypothesis for theta frequency control in CA1 microcircuits that is dependent on48
internal features of PYR cells and ‘inhibition-based tuning’ of PYR cell firing. We summarize our study in49
schematic form in Fig 1.50

2 A DESIGN OF MICROCIRCUIT MODELS THAT PRODUCE THETA RHYTHMS
We have built cellular-based excitatory-inhibitory (E-I) network models (Ferguson et al., 2017) to51
understand how the intrinsic theta rhythms observed in a whole hippocampus preparation by Goutagny52
et al. (2009) could be generated. The model networks (see Fig 1 schematic) are designed to represent53
a ‘piece’ of the CA1 region of the hippocampus - approximately one mm3 that was determined to be54
enough to self-generate theta rhythms. It includes only two distinct cell types, pyramidal (PYR) cells55
and fast-firing parvalbumin-positive (PV+) cells, as represented by a single compartment model with an56
Izhikevich mathematical model structure (Izhikevich, 2006). The model network consists of 10,500 cells57
(10,000 PYR cells and 500 fast-firing PV+ cells) (Ferguson et al., 2013, 2015b). We note that we have taken58
advantage of a scaling relationship between cell number, connection probability and excitatory synaptic59
weight that allowed us to use 10,000 PYR cells rather than the 30,000 cell number size as estimated for the60
‘piece’ of tissue.61

We examined our models from a ‘building block for circuit dynamics’ perspective (Gjorgjieva et al.,62
2016) to determine if theta rhythms (i.e., theta frequency population bursts) could be generated according to63
experimental constraints. We first found that experimentally constrained PYR cell network models (E-cell64
networks alone) could generate population bursts of theta frequency (Ferguson et al., 2015b), suggesting65
that a cellular ‘building block’ feature of spike frequency adaptation (SFA) present in the constrained66
PYR cell models could be an important contributor to theta rhythm generation. However, we also found67
that in these E-cell only networks the PYR cells do not fire sparsely as was observed experimentally68
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Figure 1. Schematic showing aspects involved in the hypothesis developed in this study.
Theta rhythms are generated intrinsically in a whole hippocampus preparation of Goutagny et al. (2009)
(‘Experiment’). Their generation is captured in a microcircuit model design by Ferguson et al. (2017)
(‘Model Networks’). In the present paper we assess the robustness of this model design and develop a
hypothesis for theta frequency control (‘Hypothesis Development’).

(Huh et al., 2016). When we included PV+ cells to create E-I model networks, population bursts of theta69
frequency were still possible and were now associated with sparse PYR cell firing in accordance with the70
experimental data. As the addition of PV+ cells allows PIR to be possible in the PYR cells, we consider71
PIR as another building block feature of importance in generating these intrinsic theta rhythms. Along with72
SFA and PIR features, the PYR neurons have an inherent rheobase (Rheo) feature, which is the amount of73
current required to make the PYR cell spike (derived from fitting to the experimental data in Ferguson et al.74
(2015a)). We consider this to be a third building block feature for theta rhythm generation. Further, for the75
model output to be consistent with experimental observations of excitatory postsynaptic current (EPSC)76
and inhibitory postsynaptic current (IPSC) amplitude ratios, we found that the connection probability from77
PV+ to PYR cells was required to be larger than from PYR to PV+ cells - a particular prediction that has78
been examined and found to be consistent with empirically derived connectivities (Chatzikalymniou et al.,79
2020).80

3 AN ASSESSMENT OF THE MODEL DESIGN FOR ROBUST THETA RHYTHMS
In our previous work, we did not specifically examine the sensitivity of theta rhythms to SFA, PIR or Rheo81
features. To address this here, we create a model database of 10,000 PYR cell models. While there are82
various ways in which a model database could be created, we do this by simply varying specific parameter83
values of the PYR cell model in a regular fashion. The PYR cell model parameter values determined from84
fits to the experimental data (Ferguson et al., 2015a) are considered as ‘default’ values. Details for the85
model database creation are provided in the Appendix of the Supplementary Material.86
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Figure 2. Distributions of PYR cell features from created model database.
A heterogeneous set of PYR cells was created and their ‘building block’ features of SFA, Rheo and
PIR were quantified. Details of this quantification are provided in the Appendix of the Supplementary
Material. Histograms show the number of occurrences of SFA [=] Hz/pA, Rheo [=] pA, PIR [=] pA values,
and vertical black arrows indicate [SFA,Rheo,PIR] base values. Also shown are narrow (N) and broad
(B) subsets of heterogeneous PYR cell populations and low (L), medium (M) or high (H) subsets of
heterogeneous PYR cell populations that do or do not include base building block values. SFA histogram
has a bin resolution of 0.05, and Rheo, PIR histograms have a bin resolution of 0.5.

From the created model database of PYR cell models, we obtain varied SFA, PIR and Rheo features.87
We define SFA, PIR and Rheo feature quantifications in the following fashion: the larger the quantified88
SFA value is, the stronger is the amount of the PYR cell adaptation, i.e., we get more reduction in the89
PYR cell spike frequency for a fixed amount of input current; the more negative the quantified PIR value90
is, the larger is the hyperpolarizing step required to generate a spike at the end of the step; the larger the91
quantified Rheo value is, the more input is required to cause the cell to spike. Details are provided in the92
Appendix of the Supplementary Material. For the PYR cell model with default parameter values as used in93
Ferguson et al. (2017), the quantified values for the building block features are: SFA = 0.46 Hz/pA, Rheo =94
4.0 pA, and PIR = -5.0 pA. We refer to these as ‘base’ values. Here, with a created database of PYR cell95
models, we obtain a range of building block feature values distributed as shown in Fig 2. Further details96
are provided in the Appendix of the Supplementary Material.97

In the extensive E-I network simulations of Ferguson et al. (2017), the PYR cell models used were98
homogeneous, and all had default model parameter values. However, the networks themselves were not99
homogeneous because of the noisy external drives to the PYR cell models. To examine the robustness of100
the theta-generating mechanism in the E-I network models to variability in the SFA, PIR and Rheo features,101
we create heterogeneous PYR cell populations from the model database and examine whether the presence102
of theta rhythms in E-I networks is affected by varying these building block features.103

We carry out our examination such that the heterogeneous PYR cell population in the E-I networks either104
does or does not include PYR cells that have base values. As a brief aside, we note that when we examine105
E-I networks that have homogeneous PYR cell models with parameter values different from the default106
ones, but that have similar SFA, PIR and Rheo base values, the resulting networks produce clear population107
bursts, but with a bit of variation in frequency and power. Specific examples are provided in the Appendix108
of the Supplementary Material.109
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Figure 3. Frequency and power of theta rhythms in heterogeneous E-I networks.
Each dot represents the frequency (left) or power (right) of the output of the network that has
[SFA,Rheo,PIR] features with a L, M or H range of values as plotted, with the dot color representing the
specific frequency or power value given in the color bar. The red circled dot is the network that has feature
values that include base values for all of the features, i.e., [SFA,Rheo,PIR]=HML. The dark blue circles
do not produce a rhythmic output, and the vertices that do not have any dots are where there were no
individual PYR cell models to generate the particular heterogeneous network. Further details are provided
in the Appendix of the Supplementary Material.

For E-I networks with heterogeneous PYR cell populations that have PYR cells that do include SFA,110
Rheo and PIR base values, theta rhythms continue to be expressed. We also find that the network theta111
power is larger when there is a narrow rather than a broad range of values encompassing base ones. Fig 2112
shows the narrow and broad ranges of values in our created database. Further details are provided in113
the Appendix of the Supplementary Material. This observation of theta power difference suggests that114
particular quantified feature values affect the robustness of theta rhythms since the power is larger when it115
more narrowly encompasses base values.116

For heterogeneous E-I networks that have PYR cells that do not include base values for all features, we117
build E-I networks that have a low (L), medium (M) or high (H) range of values for SFA, Rheo and PIR118
features in different combinations. Thus a given heterogeneous E-I network has a triplet of [SFA,Rheo,PIR]119
features that have a L, M or H range of values. These values are shown in Fig 2. In Fig 3, we show the120
frequency (left) and power (right) of the output of these heterogeneous E-I networks designated by dots of121
a given color. The red circled dot is the only E-I network that does have base values for all of the building122
block features, i.e., [SFA,Rheo,PIR]=HML. We observe the following for the network frequency: Networks123
with Rheo=L do not produce theta rhythms when PIR and SFA= M or H; There are no theta rhythms when124
Rheo=M values and SFA and PIR= H; As Rheo increases, the network frequency increases, and there125
appears to be a stronger control of frequency by the Rheo feature relative to SFA and PIR features. For126
the theta power, we find that it is lowest when Rheo=L and increases as Rheo increases, but decreases as127
SFA or PIR increase. However, when Rheo=M, the power increases as SFA increases and as PIR decreases.128
From these trends, it would appear that the Rheo feature controls the theta frequency and power more than129
SFA or PIR. As larger values of Rheo refer to larger depolarizing currents being required for the PYR130
cell to fire, our observations imply that the amount of current needed for a PYR cell to fire is an essential131
controller of theta frequency and power, assuming that other features allow rhythms to exist in the first132
place. Further details from this examination are provided in the Appendix of the Supplementary Material.133
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In summary, the exploration of our microcircuit model of theta rhythm generation in the whole134
hippocampus preparation leads us to the following conclusions regarding the influence of the three135
‘building blocks’ on this dynamic: (i) a larger theta power occurs in E-I networks with heterogeneous136
PYR cells that include their base values and are narrowly distributed around them, and (ii) particular137
rheobase current values control the frequency and power of network rhythms more than the ability of the138
PYR cell to spike on inhibitory rebound or the particular amount of spike frequency adaptation. Thus,139
these simulations of E-I networks with heterogeneous PYR cell populations have allowed us to gauge the140
contributions of the different features and have helped us to confirm the robustness to cellular heterogeneity141
of the theta-generating rhythm mechanism in our microcircuit model design.142

4 USING THE ASSESSMENT AND DESIGN TO DEVELOP A HYPOTHESIS FOR
THETA FREQUENCY CONTROL

As described above, we find that large, minimally connected recurrent networks with fast-firing PV+ cells143
and PYR cells can produce theta frequency population rhythms consistent with experiment, driven and144
controlled in part by the building block features of SFA, PIR and Rheo in PYR cells. In our previous I-cell145
only network models of PV+ cells, coherent network output was possible with experimentally constrained146
PV+ cellular models and synaptic connectivities (Ferguson et al., 2013). In creating the E-I network147
model setup, the PV+ cell network was ‘designed’ to be in a coherent state - a function of the appropriate148
excitatory drive being received and the connectivity of PV+ cells. Specifically, we chose the synaptic149
weight (between PV+ cells) to be such that it could be at the ’edge’ of firing coherently (high frequency)150
or not (see Fig. 3 in Ferguson et al. (2013)), and as such, given an appropriate excitatory drive from the151
PYR cells, the PV+ cell network could be in a high frequency coherent regime and be considered to be152
producing an inhibitory ’bolus’ to the PYR cells. This is an important consideration for our phase response153
curve (PRC) considerations below.154

From the several model sets of heterogeneous E-I model network outputs described in the previous155
section, we choose three that exhibit strong population rhythms of different frequencies. Details on these156
three chosen networks (specifically the heterogeneous PYR population as well as the classification of their157
rhythms as ‘strong’) can be found in the Appendix of the Supplementary Material. Raster plot outputs158
of the PYR cells in these chosen heterogeneous E-I networks are shown in Fig 4 where the different159
rhythms are referred to as ‘slow’, ‘medium’ and ‘fast’. Given the minimal nature of the microcircuit model,160
the frequencies of these rhythms fall a bit outside theta ranges (higher) for some networks, although the161
underlying theta generation mechanism and the model design is the same.162

Let us now take advantage of our microcircuit design to examine how these frequencies are controlled by163
turning to PRC considerations (Schultheiss et al., 2011). We note that while PRCs are commonly calculated164
using a brief, strong, excitatory current pulse as a perturbation, we slightly modify that paradigm here165
and intead use a negative pulse whose amplitude and duration is motivated by the type of synaptic inputs166
generated during an ‘inhibitory bolus’ in our network model (see Fig 5). We know that the PYR cell167
network can generate theta population bursts on its own given its cellular adaptation characteristics (SFA168
feature) (Ferguson et al., 2015b). While on their own the PYR cells do not fire sparsely as in experiment,169
they do when a PV+ cell population is included (Ferguson et al., 2017). We consider that the resulting170
frequency of the E-I network’s population bursts is due to a combination of the individual PYR cell’s firing171
frequency and how much an inhibitory input could advance or delay the PYR cell spiking (as quantified by172
PRCs). The setup to consider this is schematized in Fig 5 and consists of the following: Each PYR cell in173
the heterogeneous population receives excitatory input from other PYR cells as well as a noisy drive (other174
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Figure 4. Raster plot outputs of PYR cells from three heterogeneous E-I simulations.
These three model sets generating population burst rhythmic output exhibit three different frequencies that
we refer to as ‘slow’ (9.6 Hz), ‘medium’ (13 Hz) and ‘fast’ (15 Hz) from their respective model sets. For all
three sets, the heterogeneous PYR cells include those with Rheo base values, whereas only the model set
producing the ‘medium’ output has PYR cells with SFA base values. Except for the model set producing
‘slow’ output, PYR cells have PIR base values. That is, the triplet [SFA,Rheo,PIR] feature for the slow,
medium and fast networks are MMH, HML and LML respectively.

input). The amount of input a PYR cell receives would of course fluctuate over time, but under reasonable175
approximation the PYR cell receives a mean excitatory input of about 20 to 30 pA. This approximation176
is based on the fact that in our E-I network models (see Fig 1), theta population bursts occur when PYR177
cells receive a zero mean excitatory drive with fluctuations of ≈ 10-30 pA (Ferguson et al., 2017). We then178
calculate PRCs as described above. The inhibitory pulse can advance or delay the subsequent PYR cell’s179
spike as quantified by the PRC, which in turn is dependent on the PYR cell’s intrinsic properties. All of180
these aspects are schematized in Fig 5.181

We consider the three cases of heterogeneous E-I networks exhibiting different population burst182
frequencies shown in Fig 4 and described as having a ‘slow’, ‘medium’ or ‘fast’ population burst frequency183
output. We generate PRCs for the several PYR cell models in the population for each of these model sets184
that produce the different frequency population burst outputs. Each PYR cell model in the heterogeneous185
population has particular PRC characteristics due to its given model parameter values, and thus exhibits a186
specific intrinsic frequency for a given input.187

4.1 PRC calculations188

These proceed as follows: A set input current (20:2:30 pA) is tonically applied to the model cell, and189
the period (defined λ) of the cell’s firing is calculated as the time between the ninth and 10th cell spike.190
The inverse of the period represents the firing frequency of the cell, reported as averages and standard191
deviations for entire model sets. We compute the phase response of a model neuron to a perturbation at 100192
equidistant times in its normal firing cycle, where the perturbation is a 1 ms current pulse with -500 pA193
amplitude (as mentioned previously, considered an approximation of the synaptic input received by these194

cells following an ‘inhibitory bolus’). For 1 ≤ i ≤ 100, we define ∆p =
λ

100
and deliver the perturbation195

at i ∗ ∆p ms after the 10th cell spike. We then measure the time between the 10th and 11th cell spike as the196
“perturbed period” (defined λp). We calculate the difference between this and the previously calculated197
period (in the absence of any perturbation) and normalize this by the normal firing period, meaning that in198

the PRC plots the y-axis is
λ− λp
λ

. This means that negative values plotted in the PRC correspond with a199
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Figure 5. Schematic of setup for phase response curve (PRC) calculations.
Assuming a theta-generating mechanism based on model design, PRCs are generated based on an inhibitory
input (’bolus’) coming from the PV+ cell network to a PYR cell in the PYR cell network. Each PYR cell is
receiving a noisy drive shown as ‘Other Input’, and an illustrative f-I curve is shown for one of the PYR
cells. An illustration of a computed PRC based on the inhibitory input to a particular PYR cell is also
shown. It would be dependent on the particular PYR cell’s model parameter values that dictates its f-I
curve.

phase-delay, i.e. the perturbed period was longer than the unperturbed period, and vice-versa. The x-axis in200

the PRC plots are the normalized time at which the perturbation was delivered, simply calculated as
i

100
.201

We note that we perform this calculation separately for each i, i.e. we re-initialize the cell and let it respond202
naturally to a tonic input until the 10th spike for each value of i, rather than perform these perturbations203
sequentially and risk confounding the responses.204

In Fig 6B and C we quantify aspects of the PRC curves. In Fig 6B we simply extract the value of the205
normalized phase difference from the mean PRC curve for a perturbation delivered at a normalized phase206
of 0.3 (denoted by the arrows overlaid on Fig 6A). In Fig 6C, we quantify one aspect of the mean PRC207
curve’s rate of change, specifically the variability of the difference quotient calculated at each phase step,208
in the following straightforward way: first, this difference quotient is calculated for all but the last value209
of the normalized phase; second, the variance of these data is calculated simply using the var function in210
MATLAB.211

The code for generating and plotting these PRCs can be found at https://github.com/sbrich/212
Theta_PRCs. PRCs for input currents other than 20 pA that is shown in Fig 6A can be found at213
https://osf.io/yrkfv/).214
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Figure 6. Theta rhythm frequency is influenced by inhibitory drive as quantified via PRCs and
firing frequencies of individual PYR cells.
(A) Mean PRC (solid line) for the heterogeneous PYR cell population involved in ‘slow’ (left), ‘medium’
(middle), and ‘fast’ (right) theta oscillations, calculated with an input current of 20 pA and with the
shading representing ± the standard deviation. There are 25, 556 and 74 different PYR cell models in the
10,000 PYR cell populations of slow, medium and fast cases respectively. More details are provided in the
Appendix of the Supplementary Material. The mean and standard deviation of the firing frequencies of
the PYR cells at this input level are included in the inset of each panel. (B-C) After calculating both the
mean PRC and mean intrinsic firing frequency for the PYR cell populations associated with our ‘slow’
(red), ‘medium’ (blue), and ‘fast’ (green) theta oscillations for six input currents (20:2:30 pA), we extract a
particular feature of the mean PRC (the mean phase shift caused by a perturbation delivered at a phase of 0.3
in panel B and the variance of the mean PRC’s derivative in panel C) and plot it against the mean intrinsic
firing frequency. In neither case is there a linear relationship between either axis and the theta rhythm
frequency, indicating that it is a more complex combination that determines the population frequency. Note
that, given the monotonic relationship between the input current and firing frequency in this range, the
leftmost point for each color represents an input current of 20 pA, with each subsequent point moving
rightwards representing the next input current step.

4.2 Observations215

In Fig 6 we first show an example of PRCs calculated for an input current of 20 pA (Fig 6A). PRCs are216
calculated for each model in a particular model set of heterogeneous PYR cell models, with the averaged217
curve presented along with a range of ± one standard deviation (shown by the shading around the curve in218
each plot of Fig 6A). These PRCs showcase distinct features: for instance, the PYR cells in the medium219
case uniquely exhibit a region of phase-advance, while the PYR cells in the fast case have the largest phase220
delay for perturbations delivered at all but the latest phases. Clear distinctions between the PRCs for each221
model set persist for all the input currents used.222

To better visualize the influence of the intrinsic properties of the PYR neurons on theta rhythm frequency,223
we plot an extracted feature of the mean PRC against the mean firing frequency of these model sets for224
each of our computed input currents in Fig 6B and C, with the corresponding theta rhythm frequencies225
associated with each model set denoted by the data point’s color, with the extracted PRC features in226
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each case described in the previous section. These visualizations clearly illustrate that both the PRC and227
the mean intrinsic firing frequency of the PYR neurons in a given model set contribute to the overall228
theta rhythm frequency; otherwise, these points would be “flat” with respect to either the x or y axis.229
Furthermore, the relationship between the extracted PRC feature of interest and the mean intrinsic firing230
frequency varies notably depending on the output theta rhythm frequency: for instance, in Fig 6B both the231
‘slow’ and ‘medium’ model sets show a monotonically decreasing relationship between the extracted PRC232
value and the mean intrinsic firing frequency, while the ‘fast’ model set shows a monotonically increasing233
relationship. Taken together, these results show that it is a combination of the inhibitory drive and the PYR234
cell’s excitability that contributes to the overall theta rhythm frequency.235

The intrinsic properties quantified by the PRCs help articulate potential mechanisms by which these236
differing theta rhythm frequencies arise. For instance, while the PYR cells in the fast case have the fastest237
individual firing frequencies (notably faster than what is seen in population models), their PRCs may be238
illustrative of how the inhibitory ‘bolus’ decreases this firing frequency towards the theta range. Meanwhile,239
the PYR cells in the medium case have the slowest individual firing frequencies, although they participate240
in ‘medium’ theta rhythm frequencies. The PRC in this case, particularly the region of phase-advance, may241
elucidate how inhibitory synaptic input actually accelerates PYR cell activity. These particular examples242
rely upon the PRC feature extracted and plotted in Fig 6B.243

This analysis of the PRC features of our model sets supports our hypothesis that the frequency of the244
network population bursts are due to a combination of the inputs that the PYR cells receive and the intrinsic245
properties of those cells dictating their responses to said inputs. The cells’ response to excitatory drive is246
quantified in part by the mean intrinsic firing frequency of the model sets, while their response to inhibitory247
drive is quantified by the properties of the computed PRCs. However, this is all in the context of being able248
to have a stable population burst in the first place, as given by our model design with SFA, PIR and Rheo249
features: our models include a PYR cell population that can generate theta frequency population bursts on250
its own, with the PV+ cell population serving to facilitate sparse PYR cell firing. The PRC calculations251
here show that an appropriate inhibitory input contributes to the resulting population burst frequency.252

5 DISCUSSION
Several models of theta rhythms have been developed (Ferguson and Skinner, 2018; Kopell et al., 2010), but253
they have not specifically looked at theta frequency control as coupled with its generation in an experimental254
context. Here, we have used a microcircuit model, as designed to generate theta rhythms representing those255
observed in a whole hippocampus preparation, to develop a hypothesis for theta frequency control. Our256
work has allowed us to propose a hypothesis for theta frequency rhythm control that encompasses two257
aspects: (i) an internal mechanism that stems from SFA, PIR and Rheo building block features of PYR258
cells; (ii) an external mechanism that involves an ‘inhibition-based tuning’ of PYR cell firing. From our259
previous work we already knew that minimally connected PYR cell networks produced theta frequency260
population bursts on their own (Ferguson et al., 2015b), but the majority of the PYR cells would fire during261
population theta bursts which is unlike the experimental observations of sparse PYR cell firing. With the262
inclusion of PV+ cells to create E-I networks, the population of PYR cells fired sparsely in accordance263
with experiment. It makes sense that the addition of inhibitory cells leads to less firing of PYR cells due264
to potential silencing from the inhibition. That theta rhythms of strong power can still emerge despite265
the participation of fewer PYR cells in the rhythm is likely due to the PV+ cells tuning the otherwise266
diverse frequencies of the PYR cells to similar frequencies, enabling this smaller group of cells to produce267
strong rhythms. This constitutes a main part of our proposed hypothesis. Relatedly, it has been shown that268
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feedforward inhibition plays a role in maintaining low levels of correlated variability of spiking activity269
(Middleton et al., 2012).270

It is important to highlight two key aspects that underlie our proposed hypothesis. First, the PYR cell271
population needs to be large enough so that it can collectively generate a strong excitatory drive to the272
inhibitory PV+ cells, and in turn the PV+ cell population should be able to fire enough (and coherently) to273
create a strong inhibitory ‘bolus’ to tune the PYR cell population output. Second, the net input (recurrent274
excitation, excitatory drive, incoming inhibition) received by the PYR cells leads to the generation of275
theta rhythms and its resultant frequency. It is interesting to note that similarities exist between these key276
aspects and the “PING mechanism” underlying the generation of gamma rhythms in E-I networks (Kopell277
et al., 2010; ter Wal and Tiesinga, 2013), especially considering recent research showing that rhythms with278
frequencies approaching the theta range can arise in PING-motivated networks (Rich et al., 2017).279

We do not know whether a clear relationship between PYR cell inputs and network frequency as described280
in the second key aspect above actually exists, and it would be highly challenging to directly examine this281
experimentally. However, it is possible to use detailed, biophysical network models to explore this and282
gain biological insights. We have done this by bringing together the described microcircuit model used283
herein and a detailed, full-scale CA1 microcircuit model (Bezaire et al., 2016), and examining how the284
theta network frequency produced by the detailed model depends on the net input received by the PYR285
cells (Chatzikalymniou et al., 2020). We found that the biologically detailed models strongly support this286
dependence and thus our proposed hypothesis for theta rhythm frequency control. Thus, this indicates that287
theta frequencies in the biological system may be controlled in such a fashion.288

In the previous work of Ferguson et al. (2015a), we had created PYR cell models that were either strongly289
adapting based on fits to the experimental data, or weakly adapting based on another experimental dataset.290
In Ferguson et al. (2015b), when either PYR cell models were used in E-cell only networks, that could291
produce theta frequency population bursts. As discussed in Ferguson et al. (2015a), it is unlikely that there292
are distinct types of biological PYR cells that are strongly or weakly adapting, but rather a continuum293
of adaptation amount dependent on the underlying balances of biophysical ion channel currents. Our294
explorations of the robustness of the theta generation mechanism in the microcircuit model here revealed295
that the frequency and power of theta rhythms were not strongly controlled by SFA feature values relative296
to Rheo feature values. Thus, although we created the model database starting from the strongly adapting297
PYR cell model parameter basis, it likely would not have mattered if the robustness examination of theta298
rhythm generation had been undertaken using weakly adapting PYR cell models instead.299

It is perhaps not surprising that Rheo feature values are the main controller of the existence of theta300
rhythms and their frequency and power, as the particular Rheo value dictates whether a PYR cell would301
spike or not. We note that the experimental findings of Goutagny et al. (2009) had already suggested the302
importance of PIR in the generation of theta rhythms. In actual CA1 PYR cells, it has been shown that PIR303
spiking does occur, mediated by h-channels, and is locally controlled by biophysical ion channel balances304
(Ascoli et al., 2010). Whether PYR cells actually fire due to PIR during ongoing theta rhythms may or305
may not be the case, and one could potentially disentangle this in the models. However, the hypothesis306
developed in this work points to a confluence of features that culminate in the net current to individual307
PYR cells being a focus of theta rhythm frequency control. Thus, changes in the net drive to PYR cells or308
changes to the PYR cell’s intrinsic properties such as h-currents that would affect PIR would be expected309
to affect the resulting theta rhythm frequency.310

Frontiers 11

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 24, 2020. ; https://doi.org/10.1101/2020.12.23.424154doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.23.424154
http://creativecommons.org/licenses/by-nc-nd/4.0/


Skinner et al. Theta rhythm frequency control

PRC theory has been used in a variety of ways in the Neuroscience field (Schultheiss et al., 2011),311
and particularly in consideration of network dynamics. For example, Hansel et al. (1995) used PRCs312
to explain the differential capacity for excitatory drive to synchronize networks of Type I or Type II313
neurons (these types are differentiated by their bifurcation type (Izhikevich, 2006)), Rich et al. (2016)314
analyzed synchronization features in purely inhibitory networks using PRCs, and Achuthan and Canavier315
(2009) used PRCs to understand clustering in networks. We took advantage of PRC theory by considering316
phase-resetting of the PYR cells due to incoming inhibitory input. In this way, we were able to hypothesize317
an inhibition-based tuning mechanism for control of the theta rhythm frequency based on the PRC shape318
(amount of advance or delay) and the PYR cell’s intrinsic firing frequency. Our use of PRCs relied on319
our observations of the effect of different PRC shapes on the resulting theta rhythm. For example, such320
a consideration was used by Rich et al. (2016) to explain differential synchrony patterns in inhibitory321
networks of Type 1 vs Type II neurons.322

In conclusion, we have developed a hypothesis for how theta rhythm frequencies are controlled in the323
CA1 hippocampus. This hypothesis is built on the theta-generating mechanism of the microcircuit model324
design. Even though it does not include all of the known inhibitory cell types, it perhaps captures essential325
elements in play in biological circuits and may apply more widely in the brain regarding the generation and326
control of theta rhythm frequencies.327
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FIGURE CAPTIONS

Figure 1. Schematic showing aspects involved in the hypothesis developed in this study.423
Theta rhythms are generated intrinsically in a whole hippocampus preparation of Goutagny et al. (2009)424
(‘Experiment’). Their generation is captured in a microcircuit model design by Ferguson et al. (2017)425
(‘Model Networks’). In the present paper we assess the robustness of this model design and develop a426
hypothesis for theta frequency control (‘Hypothesis Development’).427

Figure 2. Distributions of PYR cell features from created model database.428
A heterogeneous set of PYR cells was created and their ’building block’ features of SFA, Rheo and429
PIR were quantified. Details of this quantification are provided in the Appendix of the Supplementary430
Material. Histograms show the number of occurrences of SFA [=] Hz/pA, Rheo [=] pA, PIR [=] pA values,431
and vertical black arrows indicate [SFA,Rheo,PIR] base values. Also shown are narrow (N) and broad432
(B) subsets of heterogeneous PYR cell populations and low (L), medium (M) or high (H) subsets of433
heterogeneous PYR cell populations that do or do not include base building block values. SFA histogram434
has a bin resolution of 0.05, and Rheo, PIR histograms have a bin resolution of 0.5.435

Figure 3. Frequency and power of theta rhythms in heterogeneous E-I networks.436
Each dot represents the frequency (left) or power (right) of the output of the network that has437
[SFA,Rheo,PIR] features with a L, M or H range of values as plotted, with the dot color representing the438
specific frequency or power value given in the color bar. The red circled dot is the network that has feature439
values that include base values for all of the features, i.e., [SFA,Rheo,PIR]=HML. The dark blue circles440
do not produce a rhythmic output, and the vertices that do not have any dots are where there were no441
individual PYR cell models to generate the particular heterogeneous network. Further details are provided442
in the Appendix of the Supplementary Material.443

Figure 4. Raster plot outputs of PYR cells from three heterogeneous E-I simulations.444
These three model sets generating population burst rhythmic output exhibit three different frequencies that445
we refer to as ‘slow’ (9.6 Hz), ‘medium’ (13 Hz) and ‘fast’ (15 Hz) from their respective model sets. For all446
three sets, the heterogeneous PYR cells include those with Rheo base values, whereas only the model set447
producing the ‘medium’ output has PYR cells with SFA base values. Except for the model set producing448
‘slow’ output, PYR cells have PIR base values. That is, the triplet [SFA,Rheo,PIR] feature for the slow,449
medium and fast networks are MMH, HML and LML respectively.450

Figure 5. Schematic of setup for phase response curve (PRC) calculations.451
Assuming a theta-generating mechanism based on model design, PRCs are generated based on an inhibitory452
input (’bolus’) coming from the PV+ cell network to a PYR cell in the PYR cell network. Each PYR cell is453
receiving a noisy drive shown as ‘Other Input’, and an illustrative f-I curve is shown for one of the PYR454
cells. An illustration of a computed PRC based on the inhibitory input to a particular PYR cell is also455
shown. It would be dependent on the particular PYR cell’s model parameter values that dictates its f-I456
curve.457

Figure 6. Theta rhythm frequency is influenced by inhibitory drive as quantified via PRCs and458
firing frequencies of individual PYR cells.459
(A) Mean PRC (solid line) for the heterogeneous PYR cell population involved in ‘slow’ (left), ‘medium’460
(middle), and ‘fast’ (right) theta oscillations, calculated with an input current of 20 pA and with the461
shading representing ± the standard deviation. There are 25, 556 and 74 different PYR cell models in the462
10,000 PYR cell populations of slow, medium and fast cases respectively. More details are provided in the463
Appendix of the Supplementary Material. The mean and standard deviation of the firing frequencies of464
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the PYR cells at this input level are included in the inset of each panel. (B-C) After calculating both the465
mean PRC and mean intrinsic firing frequency for the PYR cell populations associated with our ‘slow’466
(red), ‘medium’ (blue), and ‘fast’ (green) theta oscillations for six input currents (20:2:30 pA), we extract a467
particular feature of the mean PRC (the mean phase shift caused by a perturbation delivered at a phase of 0.3468
in panel B and the variance of the mean PRC’s derivative in panel C) and plot it against the mean intrinsic469
firing frequency. In neither case is there a linear relationship between either axis and the theta rhythm470
frequency, indicating that it is a more complex combination that determines the population frequency. Note471
that, given the monotonic relationship between the input current and firing frequency in this range, the472
leftmost point for each color represents an input current of 20 pA, with each subsequent point moving473
rightwards representing the next input current step.474
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