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ABSTRACT 19 

Crop-associated microbiota are key factors affecting host health and productivity. Most crops are 20 

grown within heterogeneous landscapes, and interactions between management practices and 21 

landscape context often affect plant and animal biodiversity in agroecosystems. However, 22 

whether these same factors typically affect crop-associated microbiota is less clear. Here, we 23 

assessed whether orchard management strategies and landscape context affected bacterial and 24 

fungal communities in pear (Pyrus communis) flowers. We found that bacteria and fungi 25 

responded differently to management schemes. Organically-certified orchards had higher fungal 26 

diversity in flowers than conventional or bio-based integrated pest management (IPM) orchards, 27 

but organic orchards had the lowest bacterial diversity. Orchard management scheme also best 28 

predicted the distribution of several important bacterial and fungal genera that either cause or 29 

suppress disease, with organic and bio-based IPM best explaining the distributions of bacterial 30 

and fungal genera, respectively. Moreover, patterns of bacterial and fungal diversity were 31 

affected by interactions between management, landscape context, and climate. When examining 32 

the similarity of bacterial and fungal communities across sites, both abundance- and taxa-related 33 

turnover were mediated primarily by orchard management scheme and landscape context, and 34 

specifically the amount of land in cultivation. Our study reveals local- and landscape-level 35 

drivers of floral microbiome structure in a major fruit crop, providing insights that can inform 36 

microbiome management to promote host health and high-yielding quality fruit. 37 

  38 
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IMPORTANCE. In tree fruits, proper crop management during bloom is essential for producing 39 

disease-free fruit. Tree fruits are often grown in heterogeneous landscapes; however, few studies 40 

have assessed whether landscape context and crop management affect the floral microbiome, 41 

which plays a critical role in shaping plant health and disease tolerance. Such work is key for 42 

identification of tactics and/or contexts where beneficial microbes proliferate, and pathogenic 43 

microbes are limited. Here, we characterize the floral microbiome of pear crops in Washington 44 

State, USA, where major production occurs in inter-mountain valleys and basins with variable 45 

elevation and microclimates. Our results show that both local (crop management) and landscape 46 

(habitat types and climate) level factors affect floral microbiota, but in disparate ways for each 47 

kingdom, suggesting a need for unique management strategies for each group. More broadly, 48 

these findings can potentially inform microbiome management in orchards for promotion of host 49 

health and high-quality yields. 50 

 51 
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INTRODUCTION. 54 

Microbial communities affect plant health and productivity. For agricultural crops, microbes can 55 

affect nutrient mobilization and transport, often promoting plant growth and disease resistance 56 

(Pii et al., 2015; Vurukonda et al., 2016; Berg and Koskella, 2018). In turn, understanding and 57 

managing microbiome assembly could enhance agricultural sustainability by reducing reliance 58 

on external inputs, enhancing yields, and potentially contributing to the maintenance of both 59 

biodiversity and the functioning of agricultural landscapes (Mueller and Sachs, 2015; Busby et 60 

al., 2017; Toju et al., 2018). Yet, despite the growing recognition of the importance of the 61 

microbiome to crop productivity, processes governing the assembly of microbiomes for many 62 

crop species are still largely unclear (but see Edwards et al., 2015; Grady et al., 2019).  63 

 Agricultural landscapes are often spatially heterogeneous. Accruing through shifts in land 64 

tenure over time, this heterogeneity reflects a landscape’s composition and configuration (Fahrig 65 

and Nuttle, 2005; Fahrig et al., 2011; Smith et al., 2020). Specifically, crop production occurs on 66 

patches of land that exist within habitat mosaics containing patches of the same crop, alternative 67 

commodities, and semi-natural vegetation. Such variation in land cover around a crop field may 68 

strongly affect local abiotic and biotic conditions. Most studies assessing the effects of spatial 69 

context, however, have focused primarily on plants (Smith et al., 2020) and animals (Karp et al., 70 

2018), but effects of landscape-level drivers on plant-associated microbiomes has received less 71 

attention. This is a problematic knowledge gap as microbes often disperse over long distances, 72 

and studies show that spillover of microbes from agricultural into natural habitats is affected by 73 

landscape context and dispersal ability of individual taxa (Bell and Tylianakis, 2016). Many 74 

microbes are often affected strongly by environmental conditions, and abiotic variation across 75 

landscapes can sometimes predict outbreaks of pathogenic microbes (Smith and Pusey 2010) 76 
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At the orchard scale, management practices employed to control pests and disease can also 77 

shape microbiome assembly and structure. Agricultural producers often rely on agrochemicals to 78 

prevent establishment or directly suppress both pests and pathogens. As part of an integrated pest 79 

management (IPM) program, these practices can vary in intensity across orchards, including the 80 

frequency of application, the active ingredients of chemical controls, and how they are coupled 81 

with other biological or cultural-control strategies (Agrios, 2005). Indeed, the application of 82 

antibiotics, fungicides, or microbiological control agents can leave distinct signatures on the 83 

microbiome associated with tree fruits (Johnson and Stockwell, 1998; Schaeffer et al., 2017). 84 

Though their application can often have direct, suppressive effects on the abundance of targeted, 85 

pathogenic taxa (Johnson and Stockwell, 1998), non-target effects on associated yeasts and 86 

bacteria have also been observed (McGhee and Sundin, 2011; Schaeffer et al., 2017).  87 

Here, we assessed how local- and landscape-level processes affected the diversity and 88 

structure of microbe communities associated with pear (Pyrus communis) flowers in Washington 89 

State, USA. We focused on microbes on flowers, as these ephemeral structures produce the fruit, 90 

but are also the primary infection site for pathogens such as the bacterium Erwinia amylovora, 91 

the causal agent of fire blight (Vanneste 2000). As a consequence, pear orchards are typically 92 

heavily managed during bloom to minimize disease risk while promoting pollination (McGregor 93 

1976, Johnson and Stockwell 1998). Such management tactics range from the use of managed 94 

honey bees, to application of diverse bactericides for control of fire blight. We predicted that 95 

floral microbiota would be impacted by orchard management practices and the abiotic and biotic 96 

landscape conditions. Such work provides important insights into microbial colonization and 97 

community structure pre- and post-pollination, important windows for production.  98 

 99 
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RESULTS 100 

Pear flower microbiome. Our study sampled bacterial and fungal communities associated with 101 

pear flowers across 15 orchards with three management types (conventional, bio-based IPM, and 102 

organic; 5 sites of each). After quality-filtering and processing, we detected 142 bacterial and 103 

1703 fungal amplicon sequence variants (ASVs) from the pear flowers. The bacterial community 104 

was dominated by members of the Bacillaceae, Enterobacteriaceae, Lactobacillaceae, and 105 

Pseudomonadaceae (Fig. 1A), with each family comprising on average, 22%, 15%, 9%, and 9% 106 

of sequences, respectively. Beneficial bacteria previously found to be associated with disease 107 

suppression in this system (i.e., Bacillus, Pantoea, and Pseudomonas) comprised ~11% of taxa 108 

(ASVs) observed, and ~41% of the relative abundance. The fungal community was dominated 109 

by members of Aureobasidiaceae, Cladosporiaceae, Mycosphaerellaceae, and Sclerotiniaceae 110 

(Fig. 1B), with each family comprising on average, 16%, 8%, 14%, and 7% of sequences, 111 

respectively. Of the Aureobasidiaceae, four ASVs were identified to the species level as 112 

Aureobasidium pullulans, a beneficial fungus used for biological control of fire blight. Twenty-113 

one additional ASVs were identified as belonging to genera Botrytis, Cladosporium, Monilinia, 114 

Mycosphaerella, or Penicillium, potentially important agents of pre- and post-harvest disease. 115 

 116 

Orchard management and landscape context affect bacterial and fungal alpha diversity. 117 

Orchard pest management practices were significantly associated with pear flower bacterial and 118 

fungal diversity (Shannon Index) (Table 1). Considered alone, conventional and bIPM-managed 119 

orchards were found to have ~60% higher bacterial diversity than those managed organically 120 

(Fig. 2A), while organically managed orchards exhibited the highest fungal diversity (Fig. 2B). 121 

Yet, the positive effects of organic management on fungal diversity were not significant in the 122 
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multiple variate linear model when controlling for land cover and climate. In these linear 123 

regression models, both organic and bIPM-management styles reduced bacterial and fungal 124 

diversity, although the negative influence of organic management on fungal diversity was weak. 125 

Land cover was also associated with bacterial and fungal diversity: bacterial diversity declined 126 

with increasing proportion of habitat containing forest or pear, while fungal diversity increased 127 

with pear crop cover. Microclimatic conditions were also associated with both bacterial and 128 

fungal diversity, though minimum temperature was the only variable of significant effect on 129 

fungi, and minimum VPD was for bacteria in the top AIC selected model (Table 1).  130 

 131 

Orchard management practices drive the distribution of pathogenic fungal species and the 132 

presence of bacterial genera associated with disease suppression. Focal bacterial and fungal 133 

genera of concern were first investigated to assess the scale of spatial autocorrelation, as well as 134 

potential associations with aspects of landscape context. Positive spatial autocorrelation was 135 

exhibited for each of the nine taxa examined, but only at the shortest distances of less than 1 km. 136 

Using canonical correlation analysis to assess how landscape and management variables were 137 

associated with the microbial species composition, we found significant associations between 138 

predictors and bacterial (Table S1; Pillai’s trace P = 0.014) and fungal communities (Table S2; 139 

Pillai’s trace P = 0.005) (Fig. 3). The three bacterial genera associated with disease suppression 140 

were distributed very differently in association with the factors of interest. More specifically, the 141 

relative abundance of Bacillus, a bacteria commonly applied to suppress disease in pear, was 142 

most strongly associated with organic management (Fig. S1), followed closely by the amount of 143 

surrounding forest, and then geographic distance. These top factors, aligned with Axis 1, were 144 

negatively associated with Pseudomonas, while bIPM was the most important predictor of 145 
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Pantoea (more aligned with Axis 2). Similar to Pantoea, bIPM (+) and organic management (-) 146 

best predicted the presence of Aureobasidium, a beneficial fungi aligned with Axis 1, and 147 

Monilinia to a lesser degree. Minimum temperature (+) and minimum VPD (+) best predicted 148 

Botrytis, Cladosporium, and Mycosphaerella, as well as Monilinia (-), all pathogenic fungi of 149 

concern for pears. Finally, the proportion of forest in the landscape, and geographic distance, 150 

were associated with the distribution of these fungal genera of interest (Table S2).  151 

 152 

Microbial beta diversity was affected by orchard management and landscape context. 153 

Overall bacterial community similarity, and turnover of specific taxa across orchards, was best 154 

predicted by geographic distance between orchards and orchard management (Fig. 4; Table 2). In 155 

other words, sites that were located nearby, or had the same management scheme, tended to be 156 

most similar in terms of community composition. In contrast, abundance-related turnover across 157 

sites was affected mainly by the proportion of landscape under fruit cultivation, namely apple. 158 

With respect to fungi (Fig. 4; Table 3), turnover of fungal communities across sites was 159 

associated with the amount of pear production in the landscape, temperature, and vapor pressure 160 

deficit (VPD). Temperature and VPD, along with surrounding forest, were important drivers of 161 

taxa-related turnover. In contrast, abundance-related community turnover was associated with 162 

geographic distance and the proportion of landscape represented by forest around orchards.   163 

 164 

DISCUSSION 165 

The Pacific Northwest is responsible for ~80% of pear production in the United States (USDA 166 

NASS 2019). Pre- and post-harvest diseases that can take hold during bloom threaten production 167 

and the quality of yield, however. Here, we investigated how local, orchard-level IPM practices 168 
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interacted with landscape-level growing conditions to influence the structure and diversity of 169 

microbiota associated with pear flowers, potential sites for infection. Our analyses revealed that 170 

orchard management scheme can significantly influence the structure and diversity of both 171 

bacterial and fungal communities. Beyond local, orchard-level management, land cover and 172 

climate were also found to be significant predictors of microbe diversity, and bacterial and 173 

fungal communities were sensitive to different habitat types found in landscapes surrounding 174 

orchards. Finally, fungal alpha and beta diversity were far more sensitive than bacteria to 175 

microclimatic conditions experienced in orchards. In the sections that follow, we discuss these 176 

findings in light of understanding the key drivers of floral microbiome structure in this system.  177 

 178 

Orchard management mediates microbial diversity. Bacterial and fungal alpha diversity 179 

responded differently to orchard management scheme. Bacterial diversity was significantly 180 

higher in conventional and bIPM orchards compared to organic orchards; however, the opposite 181 

pattern was observed for fungi. Organic orchards had a high relative abundance of Bacillus, 182 

likely because of its application as a biological control agent. The strong effect of orchard 183 

management on bacterial diversity suggests that application of Bacillus reduced bacterial 184 

diversity, which may occur through resource competition, priority effects, or mass effects. 185 

Bacillus species have shown promise in limiting the establishment and development of the 186 

bacterial pathogen E. amylovora, the causal agent of fire blight (Sundin et al., 2009; Shemshura 187 

et al., 2020), and may also affect other floral microbes. Indeed, increased fungal diversity in 188 

organically-managed orchards could be a consequence of Bacillus application, although we were 189 

unable to directly assess if fungal abundance was affected in our study. In contrast to bacteria 190 

applied for biological control, we observed that Aureobasidium had a higher relative abundance 191 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.12.23.424173doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.23.424173
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

in conventional and bIPM orchards than organic ones (where it was applied in one orchard for 192 

biological control). Background levels of some microbial taxa may be high and more prevalent 193 

in the presence of particular landscape and climate conditions (e.g., higher precipitation and high 194 

proportion of forest; Tables S1 and S2). These patterns may represent preferential use of these 195 

biological treatments across orchards in our survey. Though unable to confirm whether ASVs 196 

recovered in our dataset are these exact commercial strains, biologicals applied to pear flowers 197 

often have a high recovery rate in surveys (Stockwell et al., 2002; Johnson and Temple, 2013).  198 

 199 

Land cover and microclimate shape microbial diversity. Our results show that habitat patches 200 

with alternate tree fruit crops (apple, cherry) were negatively associated with both bacterial and 201 

fungal diversity on pear flowers, and appeared to be primary drivers of microbial community 202 

structure (Tables 2-3). Pear orchards in the Wenatchee River Valley are primary located in 203 

narrow, inter-mountain areas with highly variable elevation and land cover, including forest, 204 

additional pear orchards, and those dedicated to production of other deciduous fruits, namely 205 

apple. Vegetation in and around orchards can be an important source of inocula via airborne 206 

dispersal (Lindow and Andersen, 1996; Lymperopoulou et al., 2016). Furthermore, previous 207 

work on apple and pear flowers has revealed considerable overlap in the identity of microbes 208 

associated with each host species (Stockwell et al., 1999; Pusey et al., 2009; Smessaert et al., 209 

2019). Such overlap, in addition to a reduction in diversity with increasing land cultivation, 210 

suggests a role for several key processes in shaping floral microbiomes in tree fruits. First, there 211 

is a high degree of shared usage of disease and pest management practices employed in pear and 212 

apple production systems, as both can suffer greatly from fire blight disease. Inputs applied in 213 

conventional and bIPM orchards, including antibiotics and fungicides (Table S3) can act as 214 
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strong environmental filters on potential floral colonists (McGhee and Sundin, 2011; Schaeffer et 215 

al., 2017), or serve as a source for inocula when applied as biologicals, as observed in organic 216 

orchards. Second, both apple and pear systems rely considerably on honey bees (Apis mellifera) 217 

for pollination, which are known to leave a distinct imprint on floral microbiome diversity 218 

(Aizenberg-Gershtein et al., 2013). Increased reliance on a single pollinator species, combined 219 

with chemical and non-chemical inputs, are likely important contributors to patterns observed.     220 

 221 

Bacterial and fungal community turnover and dispersal. Orchard management scheme was a 222 

key determinant of bacterial community similarity across sites; however, other predictors often 223 

explained high levels of variance in community structure across sites. In particular, geographic 224 

distance explained a significant amount of variance in both whole-community and taxa-related 225 

beta-diversity of bacteria. In contrast, for fungi, spatial distance was a significant predictor of 226 

only abundance-related turnover. Beyond distance, climatic conditions contributed significantly 227 

to explained variance in the beta-diversity of fungal communities. In particular, VPD and 228 

temperature were negatively associated with fungal diversity, suggesting both microclimate 229 

variables affecting either species-specific patterns of growth and/or competition. Moisture 230 

availability is also an important determinant of microbial growth on the surface of plant tissues 231 

(Beattie 2002), with free water and humidity often being necessary for conidial germination, 232 

germ tube growth, and potential penetration of plant tissues, including floral organs. This has 233 

been frequently observed in other flowering systems of commercial value, including blueberries 234 

(Ngugi and Scherm, 2004), raspberries (McNicol et al., 1985), strawberries (Bulger et al., 1987), 235 

and cut roses (Muñoz et al., 2019). Within these systems, infection of the gynoecium can be a 236 

primary route of disease development. Alternatively, infection of petals and other organs can 237 
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facilitate secondary infections of fruits (Petrasch et al., 2019). Of the fungal genera examined in 238 

our study, Botrytis has been documented to successfully infect the mesocarp via stamen 239 

filaments (de Kock and Holz, 1992). For the others of interest, it is unclear if there is a link 240 

between flower colonization and resulting development and pre- and post-harvest diseases.  241 

More broadly, our results provide insight into local- and landscape-level drivers of floral 242 

microbiome diversity in an important tree fruit commodity, pear. Given the critical link between 243 

flowers, yield, and disease, identifying such drivers across both spatial and temporal scales could 244 

improve the understanding of links between management, host microbiome structure, and 245 

potentially disease resistance or susceptibility. With growing appreciation for the role of host 246 

microbiota in affecting resistance against disease (Berg and Koskella, 2018; Vannier et al., 247 

2019), such information has potential to inform development of sustainable management 248 

practices in many different types of agroecosystems.  249 

 250 

MATERIALS AND METHODS 251 

Landscape survey. We surveyed 15 orchards throughout the Wenatchee River Valley of 252 

central Washington, USA (Fig. 5) in spring 2018. Within the United States, Washington State is 253 

the leading producer of deciduous tree fruit crops such as apples, pears, and cherries. These, as 254 

well as other commodities, are grown in variable inter-mountain river valleys and basins east of 255 

the Cascade mountains. These production areas generally experience temperate, dry conditions, 256 

in addition to favorable access to irrigation water originating from streams and rivers fed by 257 

snowmelt (Smith, 2000). Given the diverse topography of this region, however, individual 258 

orchards range in elevation from 20 to 1000 m above sea level (Smith, 2000). Key stages of fruit 259 

production, such as flower bloom, can thus experience considerable variation in microclimatic 260 
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conditions among orchards, affecting bloom timing, fertilization, and fruit development (Logan 261 

et al., 2000; Lopez and DeJong, 2007). As flowers are habitat for diverse microbiota (Vannette, 262 

2020), including a number of pathogenic species that cause pre- and post-harvest diseases of tree 263 

fruits (Ngugi and Scherm, 2006), microclimatic conditions could affect habitat quality, as well as 264 

colonization dynamics and the resulting structure of the floral microbiome. 265 

Our survey assess microbe communities on orchards that used one of three management 266 

schemes, with five replicates per scheme: organically-certified, conventional, and biological 267 

based integrated pest management (bIPM) (DuPont and Strohm, 2020). With each of these broad 268 

management types, growers were not restricted to a specific spray schedule, but each used a 269 

defined set of tools for pest and disease management (Table S3; DuPont and Strohm, 2020). 270 

Conventional management followed a standard practice (e.g., application of synthetic pesticides), 271 

while organic orchards were all managed following USDA‐certified organic standards, which 272 

prohibits use of such synthetic chemicals. To control fire blight, organic producers often use 273 

Serenade® Opti (Bayer CropScience, St. Louis, MO, USA) at full bloom, a bio-based fungicide 274 

and bactericide that leverages Bacillus subtilis (strain QST 713) endospores and its metabolic by-275 

products as active ingredients (DuPont et al., 2019). Serenade® is not the only bio-based product 276 

leveraged by producers for control of fire blight in pear, however, and other products such as 277 

Blossom Protect™ (Westbridge Agricultural Products, Vista, CA, USA) can be used across 278 

organic, bIPM, and conventional schemes. Blossom Protect™ is derived from air-dried spores of 279 

Aureobasidium pullulans (strains DSM 14940 and 14941), an epiphytic or endophytic fungus 280 

associated with a wide range of plant species, including many tree fruits (Kunz 2006, Kunz et al. 281 

2008, Leibinger et al. 1997). For those orchards that employed the bIPM scheme, growers used a 282 

toolbox of cultural controls combined with pesticides with less documented negative impact on 283 
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natural enemies and other beneficial organisms. Such products included lime sulfur, kaolin, 284 

spinosad, and biologicals, applied at various stages of bloom stage (DuPont and Strohm, 2020).  285 

Orchards were sampled once at peak bloom, either on April 30th or May 1st of 2018. At 286 

each orchard, 10 trees (‘Bradford’ variety) were sampled: five near the edge of the orchard and 287 

five in the interior. We chose this approach because previous studies suggest that semi-natural 288 

habitat in the surrounding landscape can both support and increase rates of visitation by native 289 

pollinators such as bees and flies (Klein et al., 2012). Moreover, pollinators can be important 290 

dispersal agents for microbes (Aizenberg-Gershtein et al., 2013; Vannette and Fukami, 2017); 291 

thus, our aim was to detect potential contributions of pollinator visitation to flower microbiome 292 

assembly in orchards. For each site (i.e., edge or interior) and sampling event, 50 open flowers 293 

(N = 10 per tree) were collected using aseptic technique and pooled at the site level. Flowers with 294 

flat, fully-reflexed petals that had been open for ~3 days were collected. Once collected, flowers 295 

were placed in a cooler and transferred to the lab, then stored at 4ºC until processing. 296 

  297 

Sample processing. In a laboratory, whole flowers were washed with 20 mL of 1x-0.15% PBS-298 

Tween solution, and samples were sonicated for 10 min to dislodge epiphytic microbes. After 299 

sonication, floral tissue debris was removed from sample tubes by pouring samples through 300 

autoclaved cheesecloth into a new, sterile Falcon tube. Falcon tubes containing debris-filtered 301 

samples were centrifuged at 3000 rpm for 10 min at 4ºC to pellet microbial cells. We poured off 302 

the supernatant, re-suspended microbial cell pellets in 1 mL of autoclaved PBS solution, 303 

vortexed tubes, then transferred the cell suspensions to new 1.7 mL microcentrifuge tubes.  304 

  305 
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DNA extraction and sequencing. Genomic DNA was extracted from samples using a 306 

ZymoBIOMICS® DNA Microprep kit (Zymo Research, Irvine, CA, USA) following the 307 

manufacturer’s protocol. Extracted DNA was then used as template for library preparation and 308 

amplicon sequencing following Comeau et al. (2017), performed at the Centre for Comparative 309 

Genomics and Evolutionary Bioinformatics at Dalhousie University (Halifax, Nova Scotia, 310 

Canada). There, amplicon fragments were PCR-amplified from DNA in duplicate, using separate 311 

template dilutions (1:1 & 1:10) and high-fidelity Phusion polymerase (New England BioLabs 312 

Inc., Ipswich, MA, USA). A single round of PCR was performed using "fusion primers" 313 

(Illumina adaptors + indices + specific regions) targeting either the 16S V4-V5 (Bacteria; 314 

Primers: 515FB and 926R; Parada et al. 2015; Walters et al. 2015) or ITS2 (Fungi; Primers: 315 

ITS86 and ITS4; Op De Beeck et al. 2014) regions with multiplexing. PCR products were 316 

verified visually by running a high-throughput Invitrogen 96-well E-gel (Thermo Fisher 317 

Scientific Corp., Carlsbad, CA, USA). Any samples with failed PCRs (or spurious bands) were 318 

re-amplified by optimizing PCR conditions to produce correct bands to complete a sample plate 319 

before continuing with sequencing. The PCR reactions from the same samples were pooled in 320 

one plate, cleaned, and then normalized using the high-throughput Invitrogen SequalPrep 96-321 

well Plate Kit (Thermo Fisher Scientific Corp.). Samples were then pooled to make one library, 322 

then quantified fluorometrically before sequencing. Amplicon samples were then run on an 323 

Illumina MiSeq using 300+300 bp paired-end V3 chemistry. Raw sequences are available on the 324 

NCBI Short Read Archive (SRA) under BioProject PRJNA659266. 325 

Demultiplexed sequences were trimmed of trailing low-quality bases using the DADA2 326 

pipeline (v.1.8.0; Callahan et al., 2016) in R (v. 3.5.2; R Core Team, 2013). Paired-end reads 327 

were then quality-filtered, error-corrected, and assembled into ASVs. Once assembled, chimeras 328 
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were detected, removed, and taxonomic information was then assigned to each ASV using the 329 

RDP Naïve Bayesian Classifier (Wang et al., 2007) trained to either the RDP training set (v.14) 330 

or UNITE general fasta release (v.7.2) for bacteria or fungi respectively. ASVs that failed to 331 

classify to kingdom, or identified as chloroplast or mitochondrial sequences, were discarded. 332 

Further, potential contaminant ASVs were identified through inclusion of negative controls 333 

during sample and sequence processing, and then removed using the ‘prevalence’ method with 334 

the decontam package in R (Davis et al., 2018). This filtering resulted in samples sequenced at a 335 

mean depth of 43,057 sequences per sample for bacteria and 25,890 for fungi. Samples were then 336 

rarefied (bacteria: 49; fungi: 14,920), with all but one bacterial sample (19orgedge) retained in 337 

the analyses that follow. Such a low cutoff for bacteria is consequence of a large proportion of 338 

reads being identified as plastid DNA, which were removed from the dataset. Despite this, we 339 

included bacterial data in our study because sampling curves indicate that we were able to 340 

identify the majority of bacterial taxa present in samples (Supplementary material, Fig. S2). 341 

Moreover, previous characterization of microbial communities associated with flowers has 342 

frequently observed low species richness (Vannette 2020). 343 

 344 

Landscape context. Land cover within a 1 km buffer of each study orchard was classified into 345 

three habitat types: (i) pear orchard, (ii) other fruit orchard (apple and cherry), and (iii) forest. 346 

These classifications were performed using the cropland data layer spatial product (USDA 347 

2018). Across our study region, pears were the dominant agricultural crop, although the habitat 348 

around individual study sites varied widely from 2 to 66% pear orchards. Other fruit crops had 349 

less variability, with 0 to 6% of surrounding land cover, while forest land was highly variable 350 

and ranged from 0 to 46%. Forest patches were primarily composed of evergreen trees.  351 
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To assess the role of abiotic factors, high resolution climatic metrics for each site were 352 

obtained from publicly accessible PRISM data in April 2018. PRISM data is collected at a spatial 353 

resolution of 2.5 arcmin (~4km). PRISM data used included elevation, min and max temperature, 354 

min and mix vapor pressure deficit (VPD) and precipitation. Vapor pressure deficit is the 355 

difference between the amount of moisture in the air and how much moisture the air can hold 356 

when saturated, where high VPD indicates drier conditions. As with land cover, the abiotic 357 

conditions where sites were located were variable, with elevation ranging from 1152 to 1526 m 358 

above sea level, April precipitation ranging from 4.2 to 5.3 cm, minimum temperatures ranging 359 

from 2.4 to 3.7 °C, and maximum temperature ranging from 13.6 to 15.7 °C. 360 

 361 

Statistical analyses. We used multivariate linear regression to assess effects of land cover, 362 

orchard management, and climate on alpha diversity (Shannon diversity index) and dominance 363 

of pear-flower microbiomes. All analyses were conducted using R v. 3.6.1 (R Core Team 2013). 364 

To reduce multicollinearity among predictors, we calculated variance inflation factors (VIFs) and 365 

used to a threshold of 10 to eliminate variables with problematic covariance. This eliminated 366 

temperature, precipitation, and elevation from the alpha diversity models. We calculated multi-367 

model average coefficients based on the 90% confidence interval of top models as well as the 368 

importance of each coefficient, which indicated the number of top models in which it appeared. 369 

We also assessed effects of landscape, climate, and farm management on the dominance 370 

(relative abundance) of a few focal genera that are highly important for pre- and post-harvest 371 

diseases of pear—including putative pathogens and beneficial taxa. These included fungal genera 372 

Aureobasidium, Botrytis, Cladosporium, Monilinia, Mycosphaerella, Penicillium, and beneficial 373 

bacteria including Bacillus, Pantoea, and Pseudomonas. One ASV (BactSeq29) identified as an 374 
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Erwinia sp. was detected at a single orchard in our survey. Given such limited detection, we 375 

were unable to perform an analysis of links between variables of interest and Erwinia presence 376 

and abundance. However, to examine associations between microbial genera and predictors 377 

described earlier, we used canonical correlation analysis (CCA), an extension of linear regression 378 

that finds linear relationships between combinations of explanatory and response variables which 379 

maximize the correlation. Separate models were run on fungi and bacteria of interest.  380 

Differences in species composition among sites could be affected by processes including 381 

substitution of taxa, or variation in abundance of particular taxa, so we further evaluated the 382 

effects of farm management, land cover, and climate variables on abundance-related and taxa-383 

related aspects of community turnover (microbial beta diversity), and the overall community 384 

dissimilarity (which incorporates both processes). Beta diversity was partitioned into abundance-385 

related and taxa-related components of Bray-Curtis dissimilarity using the ‘bray.part’ function in 386 

the ‘betapart’ R package. The influence of explanatory variables on these two components of 387 

community turnover between sites, as well as their cumulative overall Bray-Curtis dissimilarity 388 

was investigated using Restricted Distance-based Analysis (RDA) and AIC model selection, 389 

executed using the ‘capscale’ and ‘ordiR2step’ functions in the ‘vegan’ R package. The variance 390 

explained by factors included in the top AIC selected models are included in the results. 391 

 392 
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FIGURE LEGENDS 516 

Figure 1. Relative abundance (Proportion of sequences) of (A) bacterial and (B) fungal families 517 

associated with pear flowers. Flowers were collected from orchards that reflected three unique 518 

management schemes (Conventional, bIPM, Organic). 519 

Figure 2. (A) Boxplots of Shannon diversity by orchard management style and (B) coefficients 520 

from the 90% confidence set of top multivariate models. Variable importance was evaluated as 521 

the number of models within the 90% confidence model set in which the factor was included. 522 

Figure 3. Canonical correlation analysis of three beneficial bacteria taxa and five pathogenic 523 

fungal taxa. The left panel depicts the variance explained by the factors in the canonical axes, 524 

and the right panel depicts the variance explained by the canonical axes in the taxa of interest. 525 

Figure 4. Restricted Distance-based Analysis of bacterial and fungal community beta diversity 526 

and explanatory variables included in the top AIC-selected RDA models. Variance explained by 527 

each factor is in Tables 2 and 3. 528 

Figure 5. Geographic extent of survey, where fifteen pear orchards in central Washington across 529 

variable landscape contexts were sampled during peak bloom.  530 

Table 1. Multivariate linear regression models for bacterial and fungal Shannon diversity. Top 531 

models were selected by AICc. 532 

Table 2. Results from Restricted Distance-based Analysis (RDA) of bacterial community beta-533 

diversity. Top model selected by AIC.  534 

Table 3. Results from Restricted Distance-based Analysis (RDA) of fungal community beta-535 

diversity. Top model selected by AIC.  536 

 537 

 538 
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Table 1. Multivariate linear regression models for bacterial and fungal Shannon diversity. Top models 
were selected by AICc. 
Bacteria

Variable Estimate Std Error P Model adj  R 2 P
Intercept 0.869 0.274 0.005 0.522 <0.001
Organic management -1.728 0.478 0.002

bIPMa management -0.964 0.369 0.016
Proportion of landscape - forest -0.597 0.186 0.004
Proportion of landscape - pear -0.506 0.187 0.013

VPDb minimum -0.498 0.281 0.090
VPD maximum -0.411 0.250 0.114

Fungi

Variable Estimate Std Error P Model adj R 2 P
Intercept 0.460 0.294 0.131 0.426 0.002
Organic management -0.357 0.494 0.477
bIPM management -1.022 0.392 0.015
Proportion of landscape - pear 0.367 0.153 0.025
VPD maximum -0.252 0.188 0.191
Minimum temperature -0.411 0.184 0.035
aBiological-based Integrated Pest Management
bVapor Pressure Deficit

Table 2. Results from Restricted Distance-based Analysis (RDA) of 
bacterial community beta-diversity. Top model selected by AIC. 
Whole community beta-diversity

Variable adj R 2 Pr (>F )
Orchard management scheme 0.147 0.002
Geographic distance 0.172 0.026

Abundance-related community beta-diversity
Proportion of landscape - fruit 0.594 0.040

Taxa-related community beta-diversity
Orchard management scheme 0.164 0.002
Geographic distance 0.195 0.026
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Table 3. Results from Restricted Distance-based Analysis (RDA) of 
fungal community beta-diversity. Top model selected by AIC. 
Whole community beta-diversity

Variable adj R 2 Pr (>F )
Proportion of landscape - pear 0.170 0.046
Minimum temperature 0.092 0.002

VPDa minimum 0.132 0.018

Abundance-related community beta-diversity
Geographic distance 0.266 0.008
Proportion of landscape - forest 0.579 0.002

Taxa-related community beta-diversity
Proportion of landscape - forest 0.177 0.046
Minimum temperature 0.089 0.002
VPD minimum 0.134 0.026
aVapor Pressure Deficit
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