bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

MaPPeRTrac: A Massively Parallel, Portable, and
Reproducible Tractography Pipeline

A collaboration between the U.S. Department of Energy and TRACK-TBI!

Joseph Moon?, Peer-Timo Bremer?, Pratik Mukherjee®, Amy J.
Markowitz®, Eva M. Palacios®, Lanya T. Cai®, Alexis Rodriguez®, Yukai
Xiao®, Geoffrey T. Manley”, Ravi K. Madduri®

*Lawrence Livermore National Laboratory
b University of California, San Francisco
¢ Argonne National Laboratory

Abstract

Large-scale diffusion MRI tractography remains a significant challenge. Users
must orchestrate a complex sequence of instructions that requires many soft-
ware packages with complex dependencies and high computational cost. We
developed MaPPeRTrac, a probabilistic tractography pipeline that simpli-
fies and vastly accelerates this process on a wide range of high performance
computing (HPC) environments. It fully automates the entire tractography
pipeline, from management of raw MRI machine data to edge density imag-
ing (EDI) of the structural connectome. Dependencies are containerized
with Docker or Singularity and de-coupled from code to enable rapid proto-
typing and modification. Data artifacts are strictly organized with the Brain
Imaging Data Structure (BIDS) to ensure that they are findable, accessible,
interoperable, and reusable following FAIR principles. The pipeline takes
full advantage of HPC resources using the Parsl parallel programming frame-
work, resulting in the creation of connectome datasets of unprecedented size.
MaPPeRTrac is publicly available and tested on commercial and scientific
hardware, so that it may accelerate brain connectome research for a broader
user community.

Keywords: Connectomes, Edge Density Imaging, High Performance
Computing, FAIR, Tractography

!Transforming Research and Clinical Knowledge in Traumatic Brain Injury

Preprint submitted to Neurolmage May 7, 2021

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1. Introduction

Diffusion MRI can be digitally processed into a tensor field describing
white matter fiber orientation in-vivo (Basser et al., 1994). By Monte Carlo
sampling on this field, it is possible to estimate axon pathways between
regions of the brain (Behrens et al., 2003). The resulting graph, known as a
structural connectome (Sporns et al., 2005), provides a quantitative measure
of brain connectivity useful to analyze both healthy brains and changes
caused by neurological and psychiatric diseases (Sporns, 2013). Structural
connectomes can be evaluated using a plethora of well-developed techniques
based on graph theory and matrix analysis. They can be further processed
into edge density imaging (EDI), which maps the number of connectome
edges that pass through every white matter voxel in the brain (Owen et al.,
2015, 2016; Qi and Arfanakis, 2021). Both structural connectomes and
EDI show great promise towards the timely evaluation of disorders of white
matter connectivity such as traumatic brain injury (TBI) (Raji et al., 2020;
Reber et al., 2021).

Figure 1: An edge density image (EDI) generated by MaPPeRTrac

Recent advances in diffusion MRI have enabled the creation of vast high-
resolution datasets (Palacios et al., 2020). However, connectome research
has been limited by the throughput of neuroimaging software. Existing tools
tend to require complicated prerequisite tools that are difficult to install
and run or that do not support parallel and efficient execution. Generating
connectomes for even a handful of patients can take days on a high-end per-
sonal computer and requires the dedicated attention of an operator skilled

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

in neuroimaging and computer science (Madhyastha et al., 2017). As a re-
sult, dealing with cohorts of hundreds or thousands of patients is virtually
impossible for most research groups. Addressing this challenge requires a
neuroimaging pipeline that can be easily deployed, has been designed to use
high performance computing (HPC) seamlessly, and can leverage existing
standards to ensure reproducibility. And although other pipelines can gen-
erate structural connectomes, at time of publication this pipeline will be the
only publicly available software that can generate EDI at scale.

1.1. Related Work

There exist several neuroimaging pipelines for diffusion MRI, but only
a few take advantage of HPC capabilities. This is especially true at the
largest scale, where computation is coupled to sophisticated resource alloca-
tion algorithms and distributed across multiple different clusters. The LONI
Processing Environment provides an interactive neuroimaging workspace
with fully modular components (Rex et al., 2003). However, it has sev-
eral limitations: HPC execution is only possible with the Grid Scheduler,
heterogeneous resources such as GPUs are poorly supported, and software
dependencies must be installed manually with elevated-user privileges.

Schirner et al. (2015) propose a multi-modal pipeline that can generate
connectomes on HPC clusters. Though closely related, it does not meet all
of our requirements. The pipeline’s imperative software architecture makes
data and scripts brittle and difficult to modify. There is no support for GPU
acceleration or low-level parallelism, with the result that processing even a
single patient exceeds time limitations on certain HPC clusters. And similar
to the LONI pipeline, it demands root privileges to install software libraries.

There exist functional MRI (fMRI) pipelines that do meet many of our
computational requirements, such as TractoFlow (Theaud et al., 2020) and
NDMG (Kiar et al., 2017). However, none of them can be configured to run
probabilistic tractography on structural connectomes. This is particularly
limiting as new research suggests that EDI generated using structural con-
nectomes offer novel insights distinct from fMRI connectomes (Reber et al.,
2021). Furthermore, the tight software coupling of fMRI pipelines makes
them impractical to re-write to our requirements.

It is important to distinguish neuroimaging pipelines from tractogra-
phy software tools, which are generally run on personal computers. There
exists dozens, if not hundreds, of the latter, each with various software
configurations and performance characteristics (Coté et al., 2013; Maximov
et al., 2019; Cui et al., 2013). However, these tools are nearly all aimed
towards processing individual patients and cannot take advantage of HPC

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

parallelization. And similar to non-modular pipelines, tractography soft-
ware tools often suffer from complex dependencies that present obstacles to
non-expert users.

1.2. Requirements

We propose a novel probabilistic tractography pipeline for structural
connectomes. When designing this pipeline, several competing needs have
been considered.

1.2.1. Need for high performance

Analysis methods should be designed and implemented using appropriate
software constructs to take advantage of HPC resources. This is especially
the case for pipeline instructions that have a memory footprint larger than
what personal computers can handle. The Department of Energy is home
to some of the world’s fastest supercomputers, opening a unique opportu-
nity for large-scale tractography (Top500, 2020). Parallelization and high
performance go hand in hand, so understanding the inherent parallelization
in the analysis will lead to vastly increased efficiency. One must pay close
attention to potential parallelism at every step in the tractography pipeline,
so that it may reduce the steep computational cost.

1.2.2. Need for reproducibility

Regardless of performance, any tractography pipeline must produce re-
sults that are consistent across multiple execution environments and accu-
rately represent the intentions of the analysts. For probabilistic tractogra-
phy, this can be divided into processes that are deterministic and processes
that are stochastic in nature. Deterministic algorithms, such as brain extrac-
tion and segmentation, should produce identical outputs given same inputs
on all computing environments. Any stochastic process - in this case, the
tractography itself - must produce results that are roughly similar given
identical inputs, with values converging as the number of samples increases.
Reproducibility is particularly important for connectome analysis, since it
remains difficult to validate the findings of graph theoretical methods merely
with neurological observation (Roine et al., 2019).

1.2.83. Need for portability

We define portability as the ability to run on any available computa-
tional resources and environments. Portability is key for reusability as well
as wider adoption and deployment. All of the high performance optimiza-
tions should not be limited to HPC platforms, but potentially run on most

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Linux environments (even if they do not have the horsepower to run tractog-
raphy efficiently). It is also important the input and output data be easily
shared between users. As far as possible, data should be organized in stan-
dard, machine-readable structures and use consistent file formats. Similarly,
community standards and best practices should be used for metadata and
naming conventions, so that individual files can be more easily identified and
manipulated. Lastly, the design and implementation of the pipeline should
follow best practices of object oriented programming techniques and enable
customization by configuration files so the pipeline can easily be extended
and modified to suit different users and sites.

1.3. Summary of MaPPeRTrac contributions

Our objective is to perform tractography analysis - from raw signal pro-
cessing to generating the final connectome and EDI - while taking full advan-
tage of HPC resources. Code and dependent libraries ought to be portable
across computing systems, including those where root privileges are not
available. Neuroimaging parameters and resource allocation should be con-
figurable and consistent across different software components. Deterministic
algorithms must be reproducible across systems. And most significantly, the
pipeline should be as performant as possible in a parallel computing environ-
ment. To this end, we have developed MaPPeRTrac, a Massively Parallel,
Portable, and Reproducible Tractography pipeline that is capable of:

1. Leveraging parallelization: Take advantage of the inherent parallelism
in neuroimaging analysis, not only across participants but also within
individual analyses;

2. Portability across computing infrastructures: Transparently execute
neuroimaging analysis on computing infrastructures at different insti-
tutions, with minimal changes to the pipeline itself.

3. Reproducing deterministic results: Ensure that results at different
computing sites are exactly equivalent (or closely comparable, for
stochastic procedures such as tractography).

4. Configuring all neuroimaging parameters: Allow easy access to the
various parameters used by neuroimaging components in the pipeline;
and

5. Being FAIR: Ensure that datasets, software, and other digital objects
are Findable, Accessible, Interoperable, and Reusable according to
standard FAIR guidelines (Wilkinson et al., 2016). This facilitates
long-term use in research, promotes knowledge integration, and in-
creases reusability of existing data.

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

2. Background and Materials

2.1. Original Tractography Scripts

Our pipeline emerged from an existing collection of neuroimaging scripts
by (Owen et al., 2015, 2016). These scripts produce two outputs: 1) the grey
matter connectivity adjacency matrix typical of a structural connectome and
2) the EDI associated with the structural connectome. These are generated
through the following steps:

1. Manually convert DICOM scanner images into NIfTI format using
dem2niix

2. Read NIfTI-formatted diffusion MRI data. Correct for motion and
scan artifacts, remove non-brain tissue, and calculate diffusion anisotropy.

3. Estimate diffusion parameters and fiber directions in each voxel

4. Parcellate the cortical and subcortical gray matter into 82 regions
based on the Desikan—Killiany atlas (Desikan et al., 2006)

5. Compute white matter fiber streamlines to generate a structural con-
nectome using probabilistic tractography. Collate tractography into
an EDI map (e.g. Figure 1).

The original scripts come with several limiting characteristics. Exact
versions of software libraries - FSL (Smith et al., 2004; Jenkinson et al.,
2012), FreeSurfer (Fischl, 2012), and CUDA (NVIDIA et al., 2020) - must
be installed locally. Input and output data must be stored at hard-coded
paths. The user must specify resource allocation and submit batch jobs
to the HPC scheduler manually. And parameters can only be adjusted by
modifying the scripts themselves. Although the scripts are carefully tailored
to run on specific HPC clusters, they are not sufficiently robust for anything
more than experimentation with a handful of patients.

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Connectorme
Matrix

=

o

Fdge Density image

NIfT! Diffusion MRI

Figure 2: Data artifacts from the tractography workflow (both original scripts and MaP-
PeRTrac)

2.2. Subjects

Our new pipeline has been tested extensively on a large cohort of real-
world patients. All participants were enrolled at eighteen Level 1 Trauma
Centers across the USA as part of the prospective Transforming Research
and Clinical Knowledge in Traumatic Brain Injury project (TRACK-TBI)
(Palacios et al., 2020). TRACK-TBI is a National Institutes of Health—funded
multi-center study that began in October 2013. The objective is to create
a large, high-quality database that integrates standardized clinical, imag-
ing, proteomic, genomic, and outcome measures to establish more precise
methods for TBI diagnosis and prognosis.

TRACK-TBI patients were recruited after injury upon meeting the Amer-
ican Congress of Rehabilitation Medicine (ACRM) criteria for TBI. Other
inclusion criteria were having a computed tomography brain scan as part
of clinical care within 24 hours of injury, no significant polytrauma that
would interfere with their assessment, and no MRI contraindications. Exclu-
sion included prior major psychiatric or neurological pathology. Orthopedic
trauma control patients were, like the TRACK-TBI patients, recruited from
the Level 1 Trauma Centers, and presented mainly with lower extremity
fractures. Orthopedic controls were ruled out for suspected head trauma,
loss of consciousness, amnesia, previous TBI, or major psychiatric pathol-
ogy. All eligible patients who voluntarily agreed to participate gave written
informed consent. All study protocols were approved by the Institutional
Review Boards of the enrollment centers.

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Completed Patients (882 total)

Orthopedic Controls

TRACK-TBI Pilot

109 152

TRACK-TBI Multi-Site - 621

Figure 3: Breakdown of patient population

MaPPeRTrac has been successfully run on 882 TRACK-TBI patients
(median 30 yr; SD£15.0 yr; 184 female). This includes 152 patients from
the pilot study (Yuh et al., 2014), 621 patients from the multi-site study
(Palacios et al., 2020), and 109 patients from the orthopedic trauma control
group (Bodien et al., 2018). Besides the orthopedic controls, all patients
have been diagnosed with TBI. Patients were scanned at 1-2 weeks (mean
13.30 days; SD£2.10 days) after injury. The multi-site study and orthopedic
controls were additionally scanned at 6 months (mean 184 days; SD+8.86
days) after injury. All MR imaging has been conducted with 3T scanners to
generate whole-brain diffusion tensor images (DTI) with a variety of acqui-
sition parameters. Further details can be found in the respective reference
for each patient population (Yuh et al., 2014; Palacios et al., 2020; Bodien
et al., 2018).

We henceforth refer to individual scans of patients as subjects. This
results in a total of 1612 subjects processed with MaPPeRTrac. For perfor-
mance testing, we have processed the 152 subjects from the TRACK-TBI
pilot using the original scripts in addition to MaPPeRTrac. We stop at 152
subjects for economic reasons, since running the remaining 1460 subjects
using the original scripts would be prohibitively expensive.

2.8. Compute Hardware

For testing performance of the pipeline, we used a compute cluster of
nodes with Intel Xeon E5-2695 processors. Each compute node has 36 cores
per node and a clock speed of 2.10 GHz (3.30 GHz with boost). All machines
run the Tri-Lab Operating System Stack (LLNL, 2021) operating system and
use Slurm scheduling. They have the following hardware characteristics.

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Table 1: Hardware resources for Testing

System Pipeline Steps RAM/Node GPU
Quartz 2 sl_preprocessing, s2b_freesurfer, s3_probtracx, s4_render 128 GB n/a
Pascal 2 s2a_bedpostx 256 GB NVIDIA Tesla P100

Additionally, the pipeline has been successfully run on the following plat-
forms to demonstrate portability.

Table 2: Additional Tested Platforms

System CPU oS Scheduler RAM/Node GPU
Catalyst 4 Intel Xeon E5-2695 TOSS 3 Slurm 128 GB n/a
Wynton 5 Intel Xeon E5-2640 CentOS 7 Grid Engine 48-512 GB NVIDIA GTX 980 Ti

Blues ¢ Intel Xeon E5-2670 CentOS 7 Slurm 768 GB NVIDIA Tesla K40m
Cooley 7 Intel Xeon E5-2620 Cray Linux Cobalt 384 GB NVIDIA Tesla K80
Amazon & Intel Xeon (Skylake vCPU) Ubuntu AWS 61 GB NVIDIA V100

2https:/ /hpc.llnl.gov/hardware/platforms/quartz

https:/ /hpc.llnl.gov/hardware/platforms/pascal
“https://hpc.linl.gov/hardware/platforms/catalyst
Shttps://wynton.ucsf.edu/hpc/about /specs.html
Shttps://lcrc.anl.gov/systems /resources/blues

"https:/ /alcf.anl.gov/support-center/cooley /cooley-system-overview
Shttps://aws.amazon.com/ec2/instance-types,/p3

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

3. MaPPeRTrac

[Difiusion anisotopy |

l

DICOM input OR
s1_preprocessing
[Heuristic NIfTI conversion |
[Moise and artifact removal] NIfTl input

s2b_freesurfer

s2a_bedpostx

’ Volume parcellation]

Estimate fiber tensors

) l

Volume registration]

’ Termination masking]

s3_probtrackx

[Probabilistic tractography |

[Edge validation |

[Edge densityimaging |

|

s4_render

=

EDI rendering

— Connectome output

— EDI output

Image output

Figure 4: Overview of MaPPeRTrac architecture

MaPPeRTrac accomplishes the goals of the original tractography scripts,
but with a significantly faster, parallel, more portable, and better parameter-
ized implementation. It takes advantage of parallelism at both the subject-
level and task-level coupled with GPU acceleration in order to significantly
speed up connectome generation on HPC clusters.
raw DICOM files from a wide variety of MRI scanners, dynamically handles

10

It also pre-processes

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

resource allocation and parameter configuration, and performs heuristic val-
idation on intermediate data outputs. This level of complexity and robust
execution is managed by a clear functional hierarchy and containerization
of software dependencies, ensuring that users can easily modify and deploy
the tools on any HPC cluster.

The specific software commands used by MaPPeRTrac are intended to
be identical to those used by the original scripts. Further details can be
found in (Owen et al., 2015, 2016) or Appendix B. However, we are more
interested in the architectural features that enable these commands to run
at scale and ease usability.

3.1. Pre-processing

One of the limitations of the original scripts is their inability to read
data directly from MRI scanners. Converting raw DICOM files into a diffu-
sion tensor image (DTI) and T1-weighted anatomical volume is a laborious
process, even with automation tools. This is made more challenging by the
wide variety of MRI scanners and file standards from major manufacturers,
specifically GE, Philips and Siemens. MaPPeRTrac overcomes this obstacle
by implementing a novel algorithm to universally pre-process DICOM files.
It converts all DICOM files into NIfTI format and applies a series of statis-
tical heuristics to determine whether to process them into the DTI, anatom-
ical volume, or b-value weighting. This capability, coupled with adoption of
BIDS standards, enables our pipeline to handle inputs regardless of naming
convention or file structure.

At times, pre-processing MRI inputs without human oversight runs the
risk of faulty behavior. Additional heuristics in the pipeline help catch in-
valid data. The pipeline alerts users if data are clearly missing or significant
outliers are found. After manually reviewing a random sample of 200 sub-
jects processed directly from DICOM files, we have found none that are
handled incorrectly by this pre-processing step. Nor do any graph analyses
of the 1612 connectomes we have generated show any indication of faulty
pre-processing.

3.2. Parallelization

The original scripts for generating structural connectomes are a mono-
lithic sequence of commands. We modularized the components of the pipeline
and implemented parallel execution of the modules. In our efforts to mod-
ularize and parallelize the different analysis steps, we leveraged a parallel
scripting language called Parsl (Babuji et al., 2019) that is being developed
at University of Chicago and is designed to process massive batches of data

11

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

on heterogeneous computing resources. Parslis especially designed to work
seamlessly on various DOE computational resources. The modularization of
various analysis steps helped profile various modules where we measured the
computational (CPU, memory, I/O) requirements of individual steps, gain
insights into parallelization possible by virtue of tracking data dependencies
among different stages of the pipeline and helped define and tailor resource
requirements for specific steps. Previous neuroimaging pipelines tend to re-
serve maximum computational resources available which remains unchanged
throughout the execution of the pipeline, so that the most expensive steps
can complete. This strategy results in sub-optimal utilization of computa-
tional resources and typically disallowed shared computational facilities. To
address this challenge, we implemented a dynamic allocation of the compu-
tational resources required at the time of a particular task execution based
on the computational profile of the task and relinquishing resources when
they are no longer required.

12

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

s2a_bedpostx

Node

GPU

s1_dtipreproc

s3_probtrackx

Node
Edge

Edge
Edge

Subject Care

Subject Core

Subject Core

i
i

Core

s2b freesurfer

Figure 5: Example of Parsl allocation with heterogenous resources

Parsl defines the pipeline architecture using the data dependencies among
the steps and dispatches tasks to the underlying schedulers tasks that have
all the input datasets available. This feature enabled MaPPerTrac to exploit
parallelism at pipeline level and at the individual task level. For example,
if there are 1000 MRI input datasets available to process, all of the samples
can be submitted at once and the pipeline will request resources to process
the first step of the pipeline for all the samples in parallel. Subsequent steps
of the pipeline are scheduled appropriately when the inputs of the steps
are generated. In addition to pipeline-level parallelization, we implemented
task level parallelization where tasks in the pipeline that do not have data
dependencies get scheduled and executed in parallel. In MaPPeRTrac, this
is manifested in parallel execution of parcellation and tensor estimation on
the same subject.

13

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

The pipeline also takes advantage of sub-task level parallelization where
we exploit the multiple CPU cores present in a compute node and perform
the computation in parallel. This is achieved by dividing the input data into
smaller chunks and running the analysis on individual CPU cores. Whereas
sub-task level parallelization is implemented in FreeSurfer using OpenMP
(Dagum and Menon, 1998), it is achieved with pre-processing and tractog-
raphy using Parsl’s job allocation system.

3.3. Parameterization

The implementation of the pipeline using Parsl involves creation of a
directed acyclic graph where the edges are data dependencies among the
steps. Since all the steps in the pipeline are run without user intervention,
the execution engine needs to have all the parameters for all the steps be
available. The need for parameterization of individual steps is even greater
when executing a large batch of the MRI datasets as it is impractical to have
a human operator check the outputs of a step and launch the subsequent
step manually. Since the graph of tasks is specified when launching Parsl,
this architecture necessitates parameterization of the elements required to
describe the tasks and sub-tasks. All the pipeline parameters are config-
urable from a single source, which can either be command-line arguments or
a configuration file. When left unspecified, the pipeline will estimate appro-
priate parameters or use default values from the original script collection.
This enables users to easily orchestrate complex jobs across different HPC
clusters.

3.4. Portability

The Parsl framework is implemented in Python, one of the most popular
cross-platform programming languages. The pipeline is implemented as a
Python package so it can be used on any platform that supports Python.
One of the strengths of the Parsl framework is the separation between def-
inition of tasks and the actual execution of the tasks. Once the tasks are
defined in Parsl, its plug-in based architecture enables execution on most of
the modern HPC schedulers.

Parsl supports execution on computational clouds, supercomputers and
HPC clusters seamlessly using plugins for various computational elements.
Each provider implementation may allow users to specify additional param-
eters for further configuration. Parameters are generally mapped to resource
manager submission script or cloud API options. Examples of local resource-
manager-specific options are partition, wall clock time, scheduler options.
This can include scheduling headers such as #SBATCH for Slurm (Yoo

14

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

et al., 2003) or worker initialization commands (e.g., loading a Conda envi-
ronment). Cloud parameters include access keys, instance type, and spot bid
price. At the time of writing this manuscript, Parsl supports 12 providers
that include the gamut of frameworks that deliver computational resources.
To overcome the differences in these compute elements, and present a sin-
gle uniform interface, Parsl implements a simple provider abstraction. This
abstraction is key to its ability to enable scripts to be moved between re-
sources. The provider interface exposes three core actions: submit a job for
execution (e.g., sbatch for the Slurm resource manager), retrieve the sta-
tus of an allocation (e.g., squeue), and cancel a running job (e.g., scancel).
Parsl implements providers for local execution (fork), for various cloud plat-
forms using cloud-specific APIs, and for clusters and supercomputers that
use a Local Resource Manager (LRM) to manage access to resources, such
as Slurm (Yoo et al., 2003), HTCondor (Thain et al., 2005), and Cobalt
(Desai, 2005). By leveraging Parsl to define our pipeline, we have been able
to achieve portability of execution.

After achieving execution portability using Parsl, we have examined dif-
ferent ways in which we can create portable bundles of applications that can
be packaged and used in conjunction of the pipeline. Examining past work in
reproducible neuroscience such as (Theaud et al., 2020), we have concluded
that containerization technologies are key to ensure portability. Software
containers are portable execution elements that provide an abstraction over
underlying operating system and hardware to to improve the portability of
applications. Containerization technologies are supported by computational
clouds, DOE supercomputers, and campus HPC providers. Two popular
containerization technologies exist with important technical differences. In
order to support extensive portability, we generated containers using both
Singularity (Kurtzer et al., 2017) and Docker (Boettiger, 2015) and made
these containers publicly available. In addition to increasing the portability
of the pipelines, the containerization technologies also enable versioning of
various analysis tools that make up the pipeline. New versions of the anal-
ysis tools, for example, a new version of FreeSurfer, can easily be tested by
updating the 'recipe’ for generation of the container to point to the location
of the updated version of FreeSurfer. Our recipes for Docker and Singu-
larity containers contain all the tools and their dependencies for successful
execution of the analysis. Users can either download an existing pre-built
container or use the recipes to build it themselves. This is particularly im-
portant since a major hurdle to scientific software development is the onerous
installation of tools and their dependencies.

The addition of numerous features and performance improvements to

15

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

the pipeline reflects commensurate growth in the complexity of its software
and output data. To mitigate complexity, we strictly adhere to the Brain
Imaging Data Structure (BIDS) (Gorgolewski et al., 2016), a protocol for
standardizing neuroimaging data. The DICOM and NIfTT inputs are orga-
nized and shared along with tractography outputs, ensuring datasets across
the entire pipeline remain transparent. Adoption of the BIDS data format
addresses another key portability challenge of how the inputs are described
and where the outputs of various steps of the pipeline are available.

8.5. Performance enhancements and other improvements

In addition to the performance improvements resulting from node-level
and core-level parallelization of the pipeline, we have made significant im-
provements in specific tools.

8.5.1. Dynamic memory management of PROBTRACKX2

We use PROBTRACKX2 for performing probabilistic tractography, which
is very memory-intensive. Though Parsl has a wide range of features to
manage resource allocation, the configuration and optimization of individ-
ual tasks has to be done using the computational profiling of the tool using
different inputs. This has been challenging as the computational (especially
memory) requirements vary across different datasets.

Because we generate the inputs to PROBTRACKX2 at run-time, it is
difficult to predict just how much memory each task will need. Overestimat-
ing memory usage prevents parallelization entirely, because the worst-case
tasks can consume an entire node’s memory. But if we underestimate mem-
ory usage, parallel tasks will request out-of-bounds addresses and invariably
crash (even with strict paging on the computing hardware). This appears
to be the result of PROBTRACKZX2’s original design, which is not intended
to run in parallel on the same node. In order to run it safely in parallel,
we estimate each task’s memory usage at run-time and record the total es-
timate for each node in a thread-safe file. New tasks attempting to launch
PROBTRACKX2 will wait until their node’s estimated memory usage falls
below a safe threshold, found in testing to be between 50 to 70 percent of
the node’s total memory. After completing a PROBTRACKX2 run, each
task updates the record to free up memory and allow other tasks to proceed.

16

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Node Memary PROBTRACKX2
Record Tractography

1= =

_. O L > J
—

@ e
O_ e

Sub-tasks for each edge wait until
sufficient memory available

oja

Figure 6: Memory management for tractography on a single subject

3.5.2. Performance tracking code

We enhanced the pipeline by computational profiling code that measures
core-time and wall-time of each step for each subject. The pipeline saves
performance data and logs to the file system after each task is completed.
Since each parallel process records data independently, we were able to col-
late performance data into a global timing log. This log, which contains
resource usage and wall-clock time for each processing step, enables users to
make informed estimates in future computations.

3.5.8. Automatic visualization

The final step of the pipeline is to render EDI generated by the pipeline.
Image rendering is even possible on headless nodes as we included the VTK
library (Schroeder et al., 2004) with the container thus increasing the us-
ability of the pipeline out of the box. However, this step is disabled by
default. This is because it adds complexity that may discourage users, espe-
cially as most researchers analyze neuroimaging data using interactive tools
such as FSLeyes instead (Jenkinson et al., 2012). For additional details see
Appendix B.

Enhancements that did not sufficiently improve performance or usability
are outlined in Appendix D.

17

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

4. Results and Evaluation

Average Wall Time for a Single Connectome

N
&

a
S

w
@

w
=3

E 25
g m Original
5 20 = MaPPeRTrac
2
15
10
5
A Il |
Image Correction Fiber Orientation Segmentation Tractography Total
Figure 7: Average time for a single connectome
Table 3: Detailed Wall Time (hours)
Original Scripts MaPPeRTrac
Step Avg Median | Std Dev Avg Median | Std Dev
Image Correction (sl_dtipreproc) 0.745 0.752 0.081 0.094 0.099 0.055
Fiber Orientation (s2a_bedpostx) est. 16-24 hours 0.232 0.201 0.152
Segmentation (s2b_freesurfer) est. 8-12 hours 4.899 4.771 0.737
Tractography (s3_probtrackx) | 11920 | 12.317 | 2.055 | 0313 | 098 | 0.269
Total est. 40-45 hours 5.538 5.270 1.213

18

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Average Core-Hours for a Single Connectome
1600

1400
1200
1000

800 m Original

Core-Hours

m MaPPeRTrac

600

- I I I
0 I —

Image Correction Fiber Orientation Segmentation Tractography Total

Figure 8: Average resource consumption for a single connectome

Table 4: Detailed Core-Hours

Original Scripts MaPPeRTrac
Step Avg Median | Std Dev Avg Median | Std Dev
Image Correction (sl_dtipreproc) 13.410 7.886 3.406 0.895 0.360 0.685
Fiber Orientation (s2a_bedpostx) est. 720 core-hours 9.283 7.793 3.443
Segmentation (s2b_freesurfer) est. 360 core-hours 191.294 | 199.336 8.306
Tractography (s3_probtrackx) 429.120 ‘ 339.853 ‘ 158.012 30.962 31.734 1.322
Total est. 1500 core-hours 5.538 5.270 1.213

4.1. Performance

Compared to the original tractography scripts, we have achieved enor-
mous speedups at all stages of tractography. Figure 7 shows improvements
to the average time to compute a single connectome by MaPPeRTrac versus
the original scripts, broken down by each step. In the most dramatic case,
fiber orientation runs 8600% faster, thanks to GPU acceleration. Image cor-
rection and tractography also see significant speedup by spreading sub-tasks
across nodes. Segmentation has a more modest speedup, since it can only
distribute processes across cores on a single node. The average total speedup
for a single subject is 735%, from 40 to 5.5 hours.

For resource-constrained users, a more practical metric is average core-
hours. This measures the average compute time for a single connectome

19

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

multiplied by the number of utilized computational cores. Since much of
our performance gains are derived from parallelization, it is necessary to
compare how much of this improvement derives from resource availability
alone. In particular, tractography consumes a vast amount of core-hours
that can only be mitigated by parallelization across many nodes. Neverthe-
less, MaPPeRTrac on average consumes a total of 625% fewer core-hours.

As explained in 2.2, we have used a subset of 152 subjects from TBI
patients for performance testing. However, even on this subset, processing
the original scripts’ implementation of fiber orientation and segmentation
would be prohibitively expensive. Therefore, those particular values (e.g.,
est. 16-24 hours) reflect in-depth interviews with neuroscientists who use
the original scripts extensively. Since our primary goal is to produce an
efficient tractography pipeline, we have chosen not to waste vast resources
on redundant computation and instead rely on expert testimony.

4.2. Parameterization

As described in 4.2, we have implemented a powerful parameterization
framework that can use either command-line arguments or a JSON config-
uration file. We include several examples of configuration files for parame-
terized execution on various computational platforms in Appendix A.

4.8. Portability

The pipeline has been running at two supercomputing resources and a
university computing cluster with minimal site-specific changes that were
made to a single configuration file. The site-specific changes include the
location of input files and the bespoke user options that Parsl needs to
interact with job schedulers. When executing on a cloud, the configuration
options also include account information and location of security credentials.
These configuration elements do require a certain technical know-how, which
may be a barrier to entry.

Another limitation is maintaining the latest software packages in the
Singularity container. Although MaPPeRTrac has been designed to be as
self-encapsulated as possible, hardware and driver support may fall out of
date. Support for different versions of NVIDIA CUDA is especially challeng-
ing, since newer hardware tends to break compatibility with older drivers.
Updates to Parsl may also break compatibility since MaPPeRTrac’s Python
scripts are not containerized.

Nevertheless, our collaborators at multiple institutions have validated
the portability and ease-of-use of our pipeline by running it with growing

20

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

independence. For instance, the pipeline has run successfully on the Wyn-
ton HPC platform at the University of California, San Francisco for a test
set of TRACK-TBI data, and produced expected outputs from all steps of
the pipeline that were consistent with outputs from LLNL and ANL plat-
forms. The Parsl framework and our pipeline were robust to accommodate
computing environments, such as Wynton, that use the Sun Grid Engine
scheduler (Gentzsch, 2001), which is less commonly supported compare to
Slurm or HT-Condor (Tannenbaum et al., 2001). Additional configuration
details for Wynton and Sun Grid Engine are detailed in Appendix C.

4.4. Enabling FAIRness

In line with our objectives, the pipeline embodies and enables the FAIR
principles. To ensure the pipeline’s artifacts remain Findable and Accessible,
we published the source code to GitHub with a permissive BSD license. We
also uploaded the container recipe to Singularity Hub, the official registry
for the Singularity software library. Furthermore, the pipeline accepts input
identifiers from sources such as OpenNeuro. It generates similar identifiers
along with the output artifacts. None of the input, output, or intermediate
files are proprietary — the pipeline uses BIDS-compliant open source formats
such as NIfTT. We standardized inputs and outputs of the pipeline according
to the BIDS format. DICOM sources, NIfTI images, and pipeline derivatives
are kept in separate folders, organized according to their patient and session.
This makes it easy to compare different timepoints and retests, since they
are always located together.As a result, the pipeline can provide a clear
provenance to all of its digital outputs.

4.5. Conclusions and Future Work

Progress in connectomics has been limited by steep computational cost
of probabilistic white matter fiber tractography, complexity in installing
applications and dependencies, and challenges in scaling while adhering to
best practices for reproducible research. We have developed MaPPeRTrac to
enable high performance, parallel, parameterized, and portable generation of
connectomes that is well-tested, robust and easy to use for the community.
To lower the barrier to entry for users, we ultimately plan to make the
pipeline available as a service on public cloud computing resources so that
researchers can upload data and generate connectomes using the state-of-
the-art tools without becoming a computational expert.

21

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

References

Babuji, Y., Woodard, A., Li, Z., Katz, D.S., Clifford, B., Kumar, R., Lacin-
ski, L., Chard, R., Wozniak, J.M., Foster, 1., Wilde, M., Chard, K., 2019.
Parsl: Pervasive Parallel Programming in Python, in: 28th ACM Inter-
national Symposium on High-Performance Parallel and Distributed Com-
puting (HPDC). URL: https://doi.org/10.1145/3307681.3325400,
doi:10.1145/3307681.3325400. babujil9parsl.pdf.

Basser, P.J., Mattiello, J., LeBihan, D., 1994. MR diffusion tensor spec-
troscopy and imaging. Biophysical journal 66, 259-267.

Behrens, T., Woolrich, M., Jenkinson, M., Johansen-Berg, H., Nunes, R.,
Clare, S., Matthews, P., Brady, J., Smith, S., 2003. Characterization and
propagation of uncertainty in diffusion-weighted MR imaging. Magnetic
Resonance in Medicine 50, 1077-1088. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1002/mrm. 10609, do0i:10.1002/mrm. 10609,
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrm.10609.

Bodien, Y.G., McCrea, M., Dikmen, S., Temkin, N., Boase, K., Machamer,
J., Taylor, S.R., Sherer, M., Levin, H., Kramer, J.H., Corrigan, J.D.,
McAllister, T.W., Whyte, J., Manley, G.T., Giacino, J.T., Investiga-
tors, T.R.A.C.K.T.B.I., 2018. Optimizing outcome assessment in mul-
ticenter tbi trials: Perspectives from track-tbi and the tbi endpoints
development initiative. The Journal of head trauma rehabilitation 33,
147-157. URL: https://pubmed.ncbi.nlm.nih.gov/29385010, doi:10.
1097/HTR.0000000000000367. 29385010[pmid].

Boettiger, C., 2015. An introduction to Docker for reproducible research.
ACM SIGOPS Operating Systems Review 49, 71-79.

Cui, Z., Zhong, S., Xu, P., Gong, G., He, Y., 2013. Panda: a pipeline toolbox
for analyzing brain diffusion images. Frontiers in Human Neuroscience
7, 42. URL: https://www.frontiersin.org/article/10.3389/fnhum.
2013.00042, doi:10.3389/fnhum.2013.00042.

Coté, M.A., Girard, G., Boré, A., Garyfallidis, E., Houde, J.C., De-
scoteaux, M., 2013. Tractometer: Towards validation of tractography
pipelines. Medical Image Analysis 17, 844-857. URL: https://
www.sciencedirect.com/science/article/pii/S1361841513000479,
doi:https://doi.org/10.1016/j.media.2013.03.009. special Issue
on the 2012 Conference on Medical Image Computing and Computer
Assisted Intervention.

22

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Dagum, L., Menon, R., 1998. OpenMP: an industry standard API for
shared-memory programming. IEEE computational science and engineer-
ing 5, 46-55.

Desai, N., 2005. Cobalt: an open source platform for hpc system software
research, in: Edinburgh BG/L System Software Workshop, pp. 803-820.

Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C.,
Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T.,
et al., 2006. An automated labeling system for subdividing the human
cerebral cortex on MRI scans into gyral based regions of interest. Neu-
rolmage 31, 968-980.

Fischl, B., 2012. FreeSurfer. Neurolmage 62, 774-781.

Gentzsch, W., 2001. Sun grid engine: Towards creating a compute power
grid, in: Proceedings First IEEE/ACM International Symposium on Clus-
ter Computing and the Grid, IEEE. pp. 35-36.

Gorgolewski, K.J., Auer, T., Calhoun, V.D., Craddock, R.C., Das, S., Duff,
E.P., Flandin, G., Ghosh, S.S., Glatard, T., Halchenko, Y.O., et al., 2016.
The brain imaging data structure, a format for organizing and describing
outputs of neuroimaging experiments. Scientific data 3, 1-9.

Hernandez-Fernandez, M., Reguly, 1., Jbabdi, S., Giles, M., Smith,
S., Sotiropoulos, S.N., 2019. Using GPUs to accelerate computa-
tional diffusion MRI: From microstructure estimation to tractography
and connectomes. Neurolmage 188, 598 — 615. URL: http://www.
sciencedirect.com/science/article/pii/S1053811918321591,
doi:https://doi.org/10.1016/j .neuroimage.2018.12.015.

Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith,
S.M., 2012. FSL. Neurolmage 62, 782-790.

Kiar, G., Bridgeford, E.W., Chandrashekhar, V., Mhembere, D., Burns,
R., Gray Roncal, W.R., Vogelstein, J.T., 2017. A comprehensive
cloud framework for accurate and reliable human connectome es-
timation and meganalysis. bioRxiv URL: https://www.biorxiv.
org/content/early/2017/09/16/188706, doi:10.1101/1887086,
arXiv:https://www.biorxiv.org/content/early/2017/09/16/188706.full.pdf.

Kurtzer, G.M., Sochat, V., Bauer, M.W., 2017. Singularity: Scientific con-
tainers for mobility of compute. PloS one 12, e0177459.

23

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

LLNL, 2021. TOSS description. URL: https://computing.llnl.gov/
projects/toss-speeding-commodity-cluster-computing.

Madhyastha, T.M., Koh, N., Day, T.K.M., Hernandez-Fernandez, M., Kel-
ley, A., Peterson, D.J., Rajan, S., Woelfer, K.A., Wolf, J., Grabowski,
T.J., 2017. Running neuroimaging applications on amazon web ser-
vices: How, when, and at what cost? Frontiers in Neuroinformat-
ics 11, 63-63. URL: https://pubmed.ncbi.nlm.nih.gov/29163119,
doi:10.3389/fninf.2017.00063. 29163119[pmid].

Maximov, LI., Alnees, D., Westlye, L.T., 2019. Towards an opti-
mised processing pipeline for diffusion magnetic resonance imag-
ing data: Effects of artefact corrections on diffusion metrics and
their age associations in uk biobank. Human Brain Mapping 40,
4146-4162. URL: https://onlinelibrary.wiley.com/doi/abs/
10.1002/hbm. 24691, doi:https://doi.org/10.1002/hbm.24691
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.24691.

NVIDIA, Vingelmann, P., Fitzek, F.H., 2020. CUDA, release: 10.2.89. URL:
https://developer.nvidia.com/cuda-toolkit.

Owen, J.P., Chang, Y.S., Mukherjee, P., 2015. Edge density
imaging: Mapping the anatomic embedding of the structural con-
nectome within the white matter of the human brain. Neu-
rolmage 109, 402 — 417. URL: http://www.sciencedirect.com/
science/article/pii/S1053811915000105, doi:https://doi.org/10.
1016/j .neuroimage.2015.01.007.

Owen, J.P., Wang, M.B., Mukherjee, P., 2016. Periventricu-
lar white matter is a nexus for network connectivity in the hu-
man brain. Brain Connectivity 6, 548-557. URL: https:
//doi.org/10.1089/brain.2016.0431, doi:10.1089/brain.2016.0431,
arXiv:https://doi.org/10.1089/brain.2016.0431. pMID: 27345586.

Palacios, E.M., Owen, J.P., Yuh, E.L., Wang, M.B., Vassar, M.J., Ferguson,
A.R., Diaz-Arrastia, R., Giacino, J.T., Okonkwo, D.O., Robertson, C.S.,
Stein, M.B., Temkin, N., Jain, S., McCrea, M., MacDonald, C.L., Levin,
H.S., Manley, G.T., Mukherjee, P., Investigators, T.R.A.C.K.T.B.I., 2020.
The evolution of white matter microstructural changes after mild trau-
matic brain injury: A longitudinal dti and noddi study. Science ad-
vances 6, eaaz6892-eaaz6892. URL: https://pubmed.ncbi.nlm.nih.
gov/32821816, doi:10.1126/sciadv.aaz6892. 32821816[pmid].

24

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Qi, X., Arfanakis, K., 2021. Regionconnect: Rapidly extracting stan-
dardized brain connectivity information in voxel-wise neuroimaging stud-
ies. Neurolmage 225, 117462. URL: https://www.sciencedirect.com/
science/article/pii/S1053811920309472, doi:https://doi.org/10.
1016/j.neuroimage.2020.117462.

Raji, C.A., Wang, M.B., Nguyen, N., Owen, J.P., Palacios, E.M., Yuh,
E.L., Mukherjee, P., 2020. Connectome mapping with edge density imag-
ing differentiates pediatric mild traumatic brain injury from typically
developing controls: proof of concept. Pediatric Radiology 50, 1594—
1601. URL: https://doi.org/10.1007/s00247-020-04743-9, doi:10.
1007/s00247-020-04743-9.

Reber, J., Hwang, K., Bowren, M., Bruss, J., Mukherjee, P., Tranel, D.,
Boes, A.D., 2021. Cognitive impairment after focal brain lesions is better
predicted by damage to structural than functional network hubs. Proceed-
ings of the National Academy of Sciences 118. URL: https://www.pnas.
org/content/118/19/e2018784118, doi:10.1073/pnas.2018784118,
arXiv:https://www.pnas.org/content/118/19/e2018784118.full.pdf.

Rex, D.E., Ma, J.Q., Toga, A.W., 2003. The LONI pipeline pro-
cessing environment. Neurolmage 19, 1033 — 1048. URL: http://
www.sciencedirect.com/science/article/pii/S1056381190300185X,
doi:https://doi.org/10.1016/51053-8119(03)00185-X.

Roine, T., Jeurissen, B., Perrone, D., Aelterman, J., Philips, W., Sijbers,
J., Leemans, A., 2019. Reproducibility and intercorrelation of graph
theoretical measures in structural brain connectivity networks. Medical
Image Analysis 52, 56 — 67. URL: http://www.sciencedirect.com/
science/article/pii/S1361841518308569, doihttps://doi.org/10.
1016/j.media.2018.10.009.

Schirner, M., Rothmeier, S., Jirsa, V.K., Meclntosh, A.R., Rit-
ter, P., 2015. An automated pipeline for constructing person-
alized virtual brains from multimodal neuroimaging data. Neu-
rolmage 117, 343 — 357. URL: http://www.sciencedirect.com/
science/article/pii/S1053811915002505, doihttps://doi.org/10.
1016/j .neuroimage.2015.03.055.

Schroeder, W.J., Lorensen, B., Martin, K., 2004. The visualization toolkit:
an object-oriented approach to 3D graphics. Kitware.

25

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens,
T.E., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I.,
Flitney, D.E., et al., 2004. Advances in functional and structural MR
image analysis and implementation as FSL. Neurolmage 23, S208-5219.

Sporns, O., 2013. The human connectome: origins and challenges. Neu-
rolmage 80, 53-61.

Sporns, O., Tononi, G., Kotter, R., 2005. The human connectome: a struc-
tural description of the human brain. PLoS Comput Biol 1, e42.

Tannenbaum, T., Wright, D., Miller, K., Livny, M., 2001. Condor — a dis-
tributed job scheduler, in: Sterling, T. (Ed.), Beowulf Cluster Computing
with Linux. MIT Press.

Thain, D., Tannenbaum, T., Livany, M., 2005. Distributed computing in
practice: the Condor experience. Concurrency - Practice and Experience
17, 323-356.

Theaud, G., Houde, J.C., Boré, A., Rheault, F., Morency, F., De-
scoteaux, M., 2020. Tractoflow: A robust, efficient and repro-
ducible diffusion MRI pipeline leveraging Nextflow & Singularity.
Neurolmage 218, 116889. URL: http://www.sciencedirect.com/
science/article/pii/S105381192030375X, doihttps://doi.org/10.
1016/j .neuroimage.2020.116889.

Topb00, 2020. Top 500 supercomputer sites. https://www.top500.org/.

Wilkinson, M.D., Dumontier, M., Aalbersberg, 1.J., Appleton, G., Axton,
M., Baak, A., Blomberg, N., Boiten, J.W., da Silva Santos, L..B., Bourne,
P.E., Bouwman, J., Brookes, A.J., Clark, T., Crosas, M., Dillo, I., Dumon,
O., Edmunds, S., Evelo, C.T., Finkers, R., Gonzalez-Beltran, A., Gray,
A.J., Groth, P., Goble, C., Grethe, J.S., Heringa, J., 't Hoen, P.A., Hooft,
R., Kuhn, T., Kok, R., Kok, J., Lusher, S.J., Martone, M.E., Mons,
A., Packer, A.L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik,
R., Sansone, S.A., Schultes, E., Sengstag, T., Slater, T., Strawn, G.,
Swertz, M.A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop,
J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., Mons,
B., 2016. The FAIR guiding principles for scientific data management
and stewardship. Scientific Data 3, 160018. URL: https://doi.org/10.
1038/sdata.2016.18, doi:10.1038/sdata.2016.18.

26

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Yoo, A.B., Jette, M.A., Grondona, M., 2003. Slurm: Simple linux utility
for resource management, in: Workshop on job scheduling strategies for
parallel processing, Springer. pp. 44—60.

Yuh, E.L., Cooper, S.R., Mukherjee, P., Yue, J.K., Lingsma, H.F.,
Gordon, W.A., Valadka, A.B., Okonkwo, D.O., Schnyer, D.M., Vas-
sar, M.J., Maas, A.l., Manley, G.T., , Casey, S.S., Cheong, M.,
Dams-O’Connor, K., Hricik, A.J., Inoue, T., Menon, D.K., Mora-
bito, D.J., Pacheco, J.L., Puccio, A.M., Sinha, T.K., 2014. Diffu-
sion tensor imaging for outcome prediction in mild traumatic brain
injury: A track-tbi study. Journal of Neurotrauma 31, 1457-1477.
URL: https://doi.org/10.1089/neu.2013.3171, doi:10.1089/neu.
2013.3171, arXiv:https://doi.org/10.1089/neu.2013.3171. pMID:
24742275.

Appendix A. Examples of MaPPeRTrac Parametrization
1. Quartz (LLNL)

{
"subjects_json": "example_subjects.json",
"output_dir": "output",
"scheduler_name": "slurm",
"scheduler_bank": "ccp",
"scheduler_partition": "pbatch",
"steps": "s1",
"force": "true"

b

2. Cooley (ANL)

{
"subject_list": "/home/madduri/connectome/2week.txt",
"output_dir": "/home/madduri/connectome/output/",
"slurm_bank": "genomics-dl",
"slurm_partition": "haswell",
"force": "true",

"gpu_steps": "s2a s2b",

"gpu_options": "#SBATCH --gres=gpu:1l",
"s2a_nodes": "3",

"s2a_cores": "16",

"s2b_nodes": "3",

27

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

"s2b_cores": "16",
"s3_nodes": "4",
"s3_cores": "16",
"s3_nodes": "4",
"s3_cores": "16",
"s4_nodes": "4",
"s4_cores": "16",
"steps": "s1 s2a s2b s3 s4 sb"

}

3. Blues (ANL)

{
"subject_list": "/home/madduri/connectome/GO.txt",
"output_dir": "/blues/gpfs/globalscratch/madduri/G0/output/",
"slurm_bank": "genomics-dl",
"slurm_partition": "biggpu",
"force": "true",
"gpu_steps": "s2a",
"gpu_options": "#SBATCH --gres=gpu:2",
"s2a_nodes": "1",
"s2a_cores": "16",
"s2b_nodes": "1",
"s2b_cores": "16",
"s3_nodes": "4",
"s3_cores": "16",
"s3_nodes": "4",
"s3_cores": "16",
"s4_nodes": "4",
"s4_cores": "16",
"steps": "s1 s2a s2b s3 s4 sb"

}

4. Amazon Web Services

{
"subjects_json": "subjects_new.json",
"output_dir": "output",
"scheduler_name": "aws",
"scheduler_bank": "ccp",
"scheduler_partition": "pbatch",
"steps": "s2a",

28

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

"gpu_steps":"s2a",
"container_path":"/home/ubuntu/MaPPeRTrac/container/image_old.simg",
"force": "true",
"worker_init": "apt-get update; apt-get install -y nfs-common;
mkdir -p /home/ubuntu/MaPPeRTrac; \

echo ’192.168.167.0:/home/ubuntu/MaPPeRTrac
/home/ubuntu/MaPPeRTrac nfs4 auto 0 0’ >> /etc/fstab;
mkdir -p /home/ubuntu/subjects; echo ’192.168.167.0:
/home/ubuntu/subjects /home/ubuntu/subjects nfs4 auto 0 0’
>> /etc/fstab;mount -a;
echo ’192.168.167.0 ip-192-168-167-0.ec2.internal \

headnode’ >> /etc/hosts"

Appendix B. Neuroimaging Software Details

The pipeline and instructions to the run are available from GitHub
(https://github.com/LLNL/MaPPeRTrac). The pipeline divided into steps,
which can be run individually or sequentially

1. si_dti_preproc.py — this step corrects motion, eddy current, and noise.
The Brain Extraction Tool (BET) is used to isolate the brain from
surrounding tissue. Images are corrected for motion and eddy currents
using the FMRIB linear-image registration tool (FLIRT) with a 12-
parameter linear image registration using the b = 0 s/mm?2 image as
the reference. Using FLIRT, the FA map of every patient and session
is registered to the T1 in order to obtain a diffusion to structural
transform.

2. s2a_bedpostx.py - estimates the fiber orientation at every voxel using
BEDPOSTX with default settings.

3. $2b_freesurfer.py - performs cortical parcellation using FreeSurfer with
the Desikan—Killiany atlas, resulting in 68 cortical regions and 14
subcortical regions. The 68 cortical regions are transformed to the
gray—white matter boundary (GWB). These 82 regions represent the
nodes of the connectome. Additionally, we register the FA volume to
the T1 volume. Each of the cortical GWB volumes and the subcortical
volumes are registered to the diffusion space to be used as seeds for
the tractography. Steps s2a and s2b can be run in parallel.

4. s3_probtrackz.py — runs probabilistic diffusion tractography, generat-
ing connectomes and EDI. We use PROBTRACKX2 to generate 1000

29

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

streamlines from each seed voxel. The target region is used as a way-
point mask and all other regions excluded. Given 82 regions in the
D-K atlas, this results in 82*82 - 82 = 6642 tractography runs per
subject. Tractography results are binarized to create a mask of white
matter voxels needed to connect each pair of cortical/subcortical re-
gions. This uses a consensus connectome based on (Raji et al., 2020)
to generate the final connectome and EDI.

5. s4_render.py — runs the VITK render suite on EDI outputs using a
copy of vtkpython bundled in the Singularity container. We render
a scaled average of edge density as well as slices along the horizontal
and sagittal planes. In order to make all renders visible, we normalize
the edge density between 0 and 1. The minimum and maximum edges
per voxel are written at the bottom of the image, so that users can
understand the actual density presented.

Scaled Average

min 0, max 32

Figure B.9: Example of visualization generated by s4_render

30

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Appendix C. Configuration of MaPPeRTrac on the “Wynton”
cluster using Sun Grid Engine

In our efforts to test portability of the pipeline across multiple HPC
schedulers, we discovered some gaps in the support for the soon-to-be-
deprecated Sun Grid Engine. We worked with the Parsl team to close these
gaps and improved the overall portability of the pipeline and aided develop-
ment of Parsl’s support for SGE scheduler. We configured SGE as a Parsl
provider in the following way:

if args.scheduler_name == ’grid_engine’:
executors.append (HighThroughputExecutor(

label=step,

worker_debug=True,

address=address_by_hostname (),

max_workers=int (cores_per_node [step]),

provider = GridEngineProvider(
channel=channel,
nodes_per_block=node_count,
init_blocks=1,
max_blocks=1,
parallelism=1,
walltime=walltimes [step],
scheduler_options=options,
worker_init=worker_init,
queue=sge_queue,
launcher=SingleNodeLauncher(),

)

)

Specifically, “queue” was added to the latest version of Parsl upon our re-
quest. This parameter enabled us to specify the name of the queue on
Wynton to which MaPPeRTrac submits the parsl.sge jobs resulting from
execution of the various pipeline steps. The job queue specification was
necessary for steps intended to run on GPU nodes (scheduled via gpu.q),
otherwise parsl.sge jobs would be defaultly assigned to CPU nodes (sched-
uled via member.q, short.q, or long.q). The queue specification parameter
for other schedulers has been supported by Parsl since its earlier versions
but wasn’t available for SGE until Parsl approved our recent modifications
to the Parsl source code repository.

31

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Another parameter specific to SGE was the max_workers for the High-
ThroughputFExecutor configuration. HighThroughputEzrecutor sets mazx_workers
to infinity by default. We configured this parameter to be consistent with
the allowance of computing resources on Wynton. The decision on the exact
value of max_workers comes from a trade-off between job priority and re-
quested computing resource. Requesting too many workers (a.k.a. threads)
for one job can significantly impact the waiting time before the job gets
running, but requesting too few cores limits the running speed. We have
been using up to 72 max_workers for our testing jobs.

The testing set of data at University of California, San Francisco con-
sists of diffusion MRI scans in anonymized NIfTT format from three sub-
jects in the patient group of the TRACK-TBI study. For a single sub-
ject, sl_preprocessing took 4 minutes on 1 CPU node with 72 threads;
s2a_bedpostx took 18 minutes on one GPU; s2b_freesurfer took 4 hours 16
minutes on 1 CPU node with 16 threads; and s3_probtrackx took 1.5 hours
for a collection of 930 edges that was split into 10 lists and submitted to 10
GPUs, respectively. The FSL probtrackx2_gpu computation for each edge
took an average of 36 seconds on a GPU. Taking into account that s2a and
s2b have no data dependency and are capable to run simultaneously, the
total run time for one subject is approximately 6 hours. This run time per-
formance is closely comparable to the performance on Quartz at LLNL (5.5
hours).

1. Configuration for s1_preprocessing.py

{
"subjects_json": "subjects.json",
"output_dir": ".../mappertrac/steps_output/",
"scheduler_name": "grid_engine",
"steps": "s1",
"container_path":".../mappertrac/MaPPeRTrac/image.simg",
"force": "true",
"sl_cores": 72

}

2. Configuration for s2a_bedpostx.py

{
"subjects_json": "subjects.json",
"output_dir": ".../mappertrac/steps_output/",
"scheduler_name": "grid_engine",

32

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

"steps": "s2a",

"gpu_options": "module load cuda/8.0;",

"gpu_steps": "s2a",

"scheduler_partition": "gpu.q",

"container_path": ".../mappertrac/MaPPeRTrac/image.simg",
"force" : "true",

"s2a_cores": 1

3. Configuration for s2b_freesurfer.py

{
"subjects_json": "subjects.json",
"output_dir": ".../mappertrac/steps_output/",
"scheduler_name": "grid_engine",
"steps": "s2b",
"container_path": ".../mappertrac/MaPPeRTrac/image.simg",
"force" : "true",
"s2b_cores": 16
}

4. Configuration for s3_probtrackx.py

{
"subjects_json": "subjects.json",
"output_dir": ".../mappertrac/steps_output/",
"scheduler_name": "grid_engine",
"StepS" 3 "53",

"gpu_options": "module load cuda/8.0;"

"gpu_steps": "s3",

"container_path": ".../mappertrac/MaPPeRTrac/image.simg",
"force" : "true",

"pbtx_sample_count": 1,

"pbtx_edge_list": "lists/list_edges_1.txt",

"s3_cores": 1

33

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Appendix D. Additional computational experiments

We experimented with many different approaches to speed-up file han-
dling and tractography. The following experiments did not achieve sufficient
speed-up for inclusion in the final software package.

1. NVRAM disk to accelerate file I0 - we ran the pipeline using NVRAM
memory on the Catalyst HPC cluster. This resulted in negligible per-
formance improvement.

2. Simplify tractography - rather than run tractography between every
single pair of regions, we attempted to run tractography a single time
for each region and calculate connectivity post-hoc. However, this
failed to capture sufficient edges and proved to be poorly supported
by the PROBTRACKX2 software.

3. Dynamic job times - we tried to dynamically configure job times to
help gain priority on computing queues. This proved unwieldy in prac-
tice.

4. FreeSurfer GPU acceleration - the slowest remaining part of the pipeline
is FreeSurfer segmentation. We used pre-compiled binaries developed
by (Hernandez-Fernandez et al., 2019) to use GPU acceleration for
FreeSurfer. However, this crashed on all Linux systems we tested in
more than 90% of cases. Even when it ran successfully, speedup was
only a modest 10-20%.

Appendix E. Acknowledgements

The research is funded by the United States Department of Energy un-
der the DOE Office of Science, Advanced Scientific Computing Research.
Support is organized under The Co-Design for Artificial Intelligence and
Computing at Scale for Extremely Large, Complex Datasets projects (Grant
#KJ040301).

Geoffrey Manley and Pratik Mukherjee disclose grants from the United
States Department of Defense — TBI Endpoints Development Initiative (Grant
#W81XWH-14-2-0176), TRACK-TBI Precision Medicine (Grant #W81XWH-
18-2-0042), and TRACK-TBI NETWORK (Grant #W81XWH-15-9-0001);
NIH-NINDS — TRACK-TBI (Grant #U01NS086090); and the National
Football League (NFL) Scientific Advisory Board - TRACK-TBI LONGI-
TUDINAL.

The United States Department of Energy supports Dr. Manley for a pre-
cision medicine collaboration. One Mind has provided funding for TRACK-

34

https://doi.org/10.1101/2020.12.23.424191

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424191, this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

TBI patients stipends and support to clinical sites. He has received an un-
restricted gift from the NFL to the UCSF Foundation to support research
efforts of the TRACK-TBI NETWORK. Dr. Manley has also received fund-
ing from NeuroTruama Sciences LLC to support TRACK-TBI data curation
efforts. Additionally, Abbott Laboratories has provided funding for add-in
TRACK-TBI clinical studies.

Amy Markowitz receives funding from the Department of Defense TBI
Endpoints Development Initiative (Grant #W81XWH-14-2-0176) and TRACK-
TBI NETWORK (Grant #W81XWH-15-9-0001). Ms. Markowitz also re-
ceives salary support from the United States Department of Energy precision
medicine collaboration and the philanthropic organization, One Mind.

35

https://doi.org/10.1101/2020.12.23.424191

