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Abstract 11 

 The majority of microbial genomes have yet to be cultured, and most proteins 12 

predicted from microbial genomes or sequenced from the environment cannot be 13 

functionally annotated. As a result, current computational approaches to describe 14 

microbial systems rely on incomplete reference databases that cannot adequately 15 

capture the full functional diversity of the microbial tree of life, limiting our ability to 16 

model high-level features of biological sequences. The scientific community needs a 17 

means to capture the functionally and evolutionarily relevant features underlying 18 

biology, independent of our incomplete reference databases. Such a model can form 19 

the basis for transfer learning tasks, enabling downstream applications in 20 

environmental microbiology, medicine, and bioengineering. Here we present 21 

LookingGlass, a deep learning model capturing a “universal language of life”. 22 

LookingGlass encodes contextually-aware, functionally and evolutionarily relevant 23 

representations of short DNA reads, distinguishing reads of disparate function, 24 

homology, and environmental origin. We demonstrate the ability of LookingGlass to be 25 

fine-tuned to perform a range of diverse tasks: to identify novel oxidoreductases, to 26 

predict enzyme optimal temperature, and to recognize the reading frames of DNA 27 

sequence fragments. LookingGlass is the first contextually-aware, general purpose 28 

pre-trained “biological language” representation model for short-read DNA sequences. 29 

LookingGlass enables functionally relevant representations of otherwise unknown and 30 

unannotated sequences, shedding light on the microbial dark matter that dominates 31 

life on Earth. 32 
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Availability: The pretrained LookingGlass model and the transfer learning-derived 33 

models demonstrated in this paper are available in the LookingGlass release v1.01. 34 

The open source fastBio Github repository and python package provides classes and 35 

functions for training and fine tuning deep learning models with biological data2. Code 36 

for reproducing analyses presented in this paper are available as an open source 37 

Github repository3. 38 

Key words: deep learning, bioinformatics, metagenomics, language modeling, 39 

transfer learning, microbial dark matter 40 

 41 

Introduction 42 

The microbial world is dominated by “microbial dark matter” – the majority of 43 

microbial genomes remain to be sequenced4,5, while the molecular functions of many 44 

genes in microbial genomes are unknown6. In microbial communities (microbiomes), 45 

the combination of these factors compounds this limitation. While the rate of biological 46 

sequencing outpaces Moore’s law7, our traditional experimental means of annotating 47 

these sequences cannot keep pace. Scientists thus typically rely on reference 48 

databases which reflect only a tiny fraction of the biological diversity on Earth. 49 

Our reliance on this incomplete annotation of biological sequences propagates 50 

significant observational bias toward annotated genes and cultured genomes in 51 

describing microbial systems. To break out of this cycle, the scientific community 52 

needs a means of representing biological sequences that captures their functional and 53 

evolutionary relevance and that is independent of our limited references.  54 

Deep learning is particularly good at capturing complex, high dimensional 55 

systems, and is a promising tool for biology8. However, deep learning generally 56 

requires massive amounts of data to perform well. Meanwhile, collection and 57 

experimental annotation of samples is typically time consuming and expensive, and 58 

the creation of massive datasets for one study is rarely feasible. The scientific 59 

community needs a means of building computational models which can capture 60 
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biological complexity while compensating for the low sample size and high 61 

dimensionality that characterize biology. 62 

Transfer learning provides a solution to the high-dimensionality, low-sample-size 63 

conundrum. Transfer learning9,10 leverages domain knowledge learned by a model in 64 

one training setting and applies it to a different but related problem. This approach is 65 

effective because a model trained on a massive amount of data from a particular data 66 

modality of interest (e.g. biological sequences) will learn features general to that 67 

modality in addition to the specific features of its learning task. This general pretrained 68 

model can then be further trained, or “fine-tuned”, to predict a downstream task of 69 

interest more accurately, using less task-specific data, and in shorter training time than 70 

would otherwise be possible. In computer vision, for example, by starting from a 71 

pretrained model trained on many images, a model of interest doesn’t relearn general 72 

image features such as a curve or a corner11, but instead can devote its limited dataset 73 

to refining the specific parameters of the target task. In natural language processing, 74 

a generic language representation model12 has been widely applied to diverse text 75 

classification tasks, including biomedical text classification13,14.  76 

Pretrained models lower the barrier for widespread academic and private sector 77 

applications, which typically have small amounts of data and limited computational 78 

resources to model relatively complex data. Natural language processing for text, and 79 

language modelling in particular, is analogous to biological sequences, in that 80 

nucleotides are not independent or identically distributed15 and the nucleotide context 81 

is important for defining the functional role and evolutionary history of the whole 82 

sequence.  83 

In genomics and metagenomics, there is no analogous contextually-aware 84 

pretrained model that can be generally applied for transfer learning on read-length 85 

biological sequences. Some previous studies have obtained important results using 86 

transfer learning16,17, but were either limited to relatively small training sets for 87 

pretraining a model on a closely related prediction task16, or relied on gene counts from 88 

the relatively well-annotated human genome to compile their training data17. Previous 89 

works in learning continuous representations of biological sequences18,19 and 90 
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genomes20 do not account for the order in which sequences or proteins appear and 91 

are thus not contextually-aware. Recent advances in full-length protein sequence 92 

representation learning21–24 show the potential of a self-supervised learning approach 93 

that accounts for sequence context, but these rely on full length protein sequences (ca. 94 

1,000 amino acids or 3,000 nucleotides). Full-length protein sequences are 95 

computationally difficult (and sometimes impossible) to assemble from metagenomes, 96 

which can produce hundreds of millions of short-read DNA sequences (ca. 60-300 97 

nucleotides) per sample. To capture the full functional diversity of the microbial world, 98 

we need a contextually-relevant means to represent the functional and evolutionary 99 

features of biological sequences from microbial communities, in the short, fragmented 100 

form in which they are sampled from their environment.  101 

A biological ‘universal language of life’ should reflect functionally and 102 

evolutionarily relevant features that underly biology as a whole and facilitate diverse 103 

downstream transfer learning tasks. Here, we present LookingGlass, a biological 104 

language model and sequence encoder, which produces contextually relevant 105 

embeddings for any biological sequence across the microbial tree of life. LookingGlass 106 

is trained and optimized for read-length sequences, such as those produced by the 107 

most widely used sequencing technologies25. For metagenomes in particular, a read-108 

level model avoids the need for assembly, which has a high computational burden and 109 

potential for error. We also focus on Bacterial and Archaeal sequences, although we 110 

include a discussion of the possibility for Eukaryotic and human-specific models below.  111 

We demonstrate the functional and evolutionary relevance of the embeddings 112 

produced by LookingGlass, and its broad utility across multiple transfer learning tasks 113 

relevant to functional metagenomics. LookingGlass produces embeddings that 114 

differentiate sequences with different molecular functions; identifies homologous 115 

sequences, even at low sequence similarities where traditional bioinformatics 116 

approaches fail; and differentiates sequences from disparate environmental contexts. 117 

Using transfer learning, we demonstrate how LookingGlass can be used to illuminate 118 

the “microbial dark matter” that dominates environmental settings by developing an 119 

‘oxidoreductase classifier’ that can identify novel oxidoreductases (enzymes 120 
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responsible for electron transfer, and the basis of all metabolism) with very low 121 

sequence similarity to those seen during training. We also demonstrate LookingGlass’ 122 

ability to predict enzyme optimal temperatures from short-read DNA fragments; and to 123 

recognize the reading frame (and thus “true” amino acid sequence) encoded in short-124 

read DNA sequences with high accuracy.  125 

The transfer learning examples shown here, aside from providing useful models 126 

in and of themselves, are intended to show the broad types of questions that can be 127 

addressed with transfer learning from a single pretrained model. These downstream 128 

models can illuminate the functional role of “microbial dark matter” by leveraging 129 

domain knowledge of the functional and evolutionary features underlying microbial 130 

diversity as a whole. More generally, LookingGlass is intended to serve as the scientific 131 

community’s ‘universal language of life’ that can be used as the starting point for 132 

transfer learning in biological applications, and metagenomics in particular. 133 

 134 

Methods 135 

I. LookingGlass design and optimization 136 

Dataset Generation.  137 

The taxonomic organization of representative Bacterial and Archaeal genomes 138 

was determined from the Genome Taxonomy Database, GTDB26 (release 89.0). The 139 

complete genome sequences were downloaded via the NCBI Genbank ftp27. This 140 

resulted in 24,706 genomes, comprising 23,458 Bacterial and 1,248 Archaeal 141 

genomes. 142 

Each genome was split into read-length chunks. To determine the distribution of 143 

realistic read lengths produced by next-generation short read sequencing machines, 144 

we  obtained the BioSample IDs27 for each genome, where they existed, and 145 

downloaded their sequencing metadata from the MetaSeek28 database using the 146 

MetaSeek API. We excluded samples with average read lengths less than 60 or 147 

greater than 300 base pairs. This procedure resulted in 7,909 BioSample IDs. The 148 

average read lengths for these sequencing samples produced the ‘read-length 149 
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distribution’ (SI Fig 1) with a mean read length of 136bp. Each genome was split into 150 

read-length chunks (with zero overlap in order to maximize information density and 151 

reduce data redundancy in the dataset): a sequence length was randomly selected 152 

with replacement from the read-length distribution and a sequence fragment of that 153 

length was subset from the genome, with a 50% chance that the reverse complement 154 

was used. The next sequence fragment was chosen from the genome starting at the 155 

end point of the previous read-length chunk, using a new randomly selected read 156 

length, and so on. To ensure that genomes in the training, validation, and test sets had 157 

low sequence similarity, the sets were split along taxonomic branches such that 158 

genomes from the Actinomycetales, Rhodobacterales, Thermoplasmata, and 159 

Bathyarchaeia were partitioned into the validation set; genomes from the 160 

Bacteroidales, Rhizobiales, Methanosarcinales, and Nitrososphaerales were 161 

partitioned into the test set; and the remaining genomes remained in the training set. 162 

This resulted in 529,578,444 sequences in the training set, 57,977,217 sequences in 163 

the validation set, and 66,185,518 sequences in the test set. We term this set of reads 164 

the GTDB representative set (Table 1). 165 

The amount of data needed for training was also evaluated (SI Fig 2). 166 

Progressively larger amounts of data were tested by selecting at random 1, 10, 100, 167 

or 500 read-length chunks from each of the GTDB representative genomes in the 168 

GTDB representative training set. Additionally, the performance of smaller but more 169 

carefully selected datasets, representing the diversity of the microbial tree of life, were 170 

tested by selecting for training one genome at random from each taxonomic class or 171 

order in the GTDB taxonomy tree. In general, better accuracy was achieved in fewer 172 

epochs with a greater amount of sequencing data (SI Fig 2); however, a much smaller 173 

amount of data performed better if a representative genome was selected from each 174 

GTDB taxonomy class.  175 

The final LookingGlass model was trained on this class-level partition of the 176 

microbial tree of life. We term this dataset the GTDB class set (Table 1). The training, 177 

validation, and test sets were split such that no classes overlapped across sets: the 178 

validation set included 8 genomes from each of the classes Actinobacteria, 179 
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Alphaproteobacteria, Thermoplasmata, and Bathyarchaeia (32 total genomes); the 180 

test set included 8 genomes from each of the classes Bacteroidia, Clostridia, 181 

Methanosarcinia, and Nitrososphaeria (32 total genomes); and the training set 182 

included 1 genome from each of the remaining classes (32 archaeal genomes and 298 183 

bacterial genomes for a total of 330 genomes). This resulted in a total of 6,641,723 184 

read-length sequences in the training set, 949,511 in the validation set, and 632,388 185 

in the test set (SI Table 1).  186 

Architecture design and training.  187 

 Recurrent Neural Networks (RNNs) are a type of neural network designed to take 188 

advantage of the context dependence of sequential data (such as text, video, audio, 189 

or biological sequences), by passing information from previous items in a sequence to 190 

the current item in a sequence29. Long Short Term Memory networks (LSTMs)30 are 191 

an extension of RNNs, which better learn long-term dependencies by handling the 192 

RNN tendency to “forget” information farther away in a sequence31. LSTMs maintain a 193 

“cell state” which contains the “memory” of the information in the previous items in the 194 

sequence. LSTMs learn additional parameters which decide at each step in the 195 

sequence which information in the “cell state” to “forget” or “update”.  196 

LookingGlass uses a three-layer LSTM encoder model with 1,152 units in each 197 

hidden layer and an embedding size of 104 based on the results of hyperparameter 198 

tuning (see below). It divides the sequence into characters using a kmer size of 1 and 199 

a stride of 1, i.e. is a character-level language model. LookingGlass is trained in a self-200 

supervised manner to predict a masked nucleotide, given the context of the preceding 201 

nucleotides in the sequence. For each read in the training sequence, multiple training 202 

inputs are considered, shifting the nucleotide that is masked along the length of the 203 

sequence from the second position to the final position in the sequence. Because it is 204 

a character-level model, a linear decoder predicts the next nucleotide in the sequence 205 

from the possible vocabulary items ‘A’, ‘C’, ‘G’, and ‘T’, with special tokens for 206 

‘beginning of read’, ’unknown nucleotide’ (for the case of ambiguous sequences), ‘end 207 

of read’ (only ‘beginning of read’ was tokenized during LookingGlass training), and a 208 

‘padding’ token (used for classification only).   209 
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Regularization and optimization of LSTMs require special approaches to dropout 210 

and gradient descent for best performance32. The fastai library33 offers default 211 

implementations of these approaches for natural language text, and so we adopt the 212 

fastai library for all training presented in this paper. We provide the open-source fastBio 213 

python package2 which extends the fastai library for use with biological sequences. 214 

LookingGlass was trained on a Pascal P100 GPU with 16GB memory on 215 

Microsoft Azure, using a batch size of 512, a back propagation through time (bptt) 216 

window of 100 base pairs, the Adam optimizer34, and utilizing a Cross Entropy loss 217 

function (SI Table 2). Dropout was applied at variable rates across the model (SI Table 218 

2). LookingGlass was trained for a total of 12 days for 75 epochs, with progressively 219 

decreasing learning rates based on the results of hyperparameter optimization (see 220 

below): for 15 epochs at a learning rate of 1e-2, for 15 epochs at a learning rate of 2e-221 

3, and for 45 epochs at a learning rate of 1e-3.  222 

Hyperparameter optimization.  223 

 Hyperparameters used for the final training of LookingGlass were tuned using a 224 

randomized search of hyperparameter settings. The tuned hyperparameters included 225 

kmer size, stride, number of LSTM layers, number of hidden nodes per layer, dropout 226 

rate, weight decay, momentum, embedding size, bptt size, learning rate, and batch 227 

size. An abbreviated dataset consisting of ten randomly selected read-length chunks 228 

from the GTDB representative set was created for testing many parameter settings 229 

rapidly. A language model was trained for two epochs for each randomly selected 230 

hyperparameter combination, and those conditions with the maximum performance 231 

were accepted. The hyperparameter combinations tested and the selected settings are 232 

described in the associated Github repository3. 233 

 234 

II. LookingGlass validation and analysis of embeddings 235 

Functional relevance 236 

Dataset generation.  237 
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 In order to assess the ability of the LookingGlass embeddings to inform the 238 

molecular function of sequences, metagenomic sequences from a diverse set of 239 

environments were downloaded from the Sequence Read Archive (SRA)35. We used 240 

MetaSeek28 to choose ten metagenomes at random from each of the ‘environmental 241 

packages’ defined by the MIxS metadata standards36: ‘built environment’, ‘host-242 

associated’, ‘human-gut’, ‘microbial mat/biofilm’, ‘miscellaneous’, ‘plant-associated’, 243 

‘sediment’, ‘soil’, ‘wastewater/sludge’, and ‘water’, for a total of 100 metagenomes. The 244 

SRA IDs used are available in (SI Table 3). The raw DNA reads for these 100 245 

metagenomes were downloaded from the SRA with the NCBI e-utilities. These 100 246 

metagenomes were annotated with the mi-faser tool37 with the --read-map option to 247 

generate predicted functional annotation labels (to the fourth digit of the Enzyme 248 

Commission (EC) number), out of 1,247 possible EC labels, for each annotatable read 249 

in each metagenome. These reads were then split 80%/20% into ‘training’/’validation 250 

candidate’ sets of reads. To ensure that there was minimal overlap in sequence 251 

similarity between the training and validation set, we compared the ‘validation 252 

candidate’ sets of each EC annotation to the training set for that EC number with CD-253 

HIT38, and filtered out any reads with >80% DNA sequence similarity to the reads of 254 

that EC number in the training set (the minimum CD-HIT DNA sequence similarity 255 

cutoff). In order to balance EC classes in the training set, overrepresented ECs in the 256 

training set were downsampled to the mean count of read annotations (52,353 reads) 257 

before filtering with CD-HIT. After CD-HIT processing, any underrepresented EC 258 

numbers in the training set were oversampled to the mean count of read annotations 259 

(52,353 reads). The validation set was left unbalanced to retain a distribution more 260 

realistic to environmental settings. The final training set contained 61,378,672 reads, 261 

while the validation set contained 2,706,869 reads. We term this set of reads and their 262 

annotations the mi-faser functional set (Table 1). 263 

As an external test set, we used a smaller number of DNA sequences from genes 264 

with experimentally validated molecular functions. We linked the manually curated 265 

entries of Bacterial or Archaeal proteins from the Swiss-Prot database39 corresponding 266 

to the 1,247 EC labels in the mi-faser functional set with their corresponding genes in 267 
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the EMBL database40. We downloaded the DNA sequences, and selected ten read-268 

length chunks at random per coding sequence. This resulted in 1,414,342 read-length 269 

sequences in the test set. We term this set of reads and their annotations the Swiss-270 

Prot functional set (Table 1). 271 

Fine-tuning procedure. We fine-tuned the LookingGlass language model to 272 

predict the functional annotation of DNA reads, to demonstrate the speed with which 273 

an accurate model can be trained using our pretrained LookingGlass language model. 274 

The architecture of the model retained the 3-layer LSTM encoder and the weights of 275 

the LookingGlass language model encoder, but replaced the language model decoder 276 

with a new multi-class classification layer with pooling (with randomly initialized 277 

weights). This pooling classification layer is a sequential model consisting of the 278 

following layers: a layer concatenating the output of the LookingGlass encoder with 279 

min, max, and average pooling of the outputs (for a total dimension of 104*3 = 312), a 280 

batch normalization41 layer with dropout, a linear layer taking the 312-dimensional 281 

output of the batch norm layer and producing a 50-dimensional output, another batch 282 

normalization layer with dropout, and finally a linear classification layer that outputs the 283 

predicted functional annotation of a read as a probability distribution of the 1,247 284 

possible mi-faser EC annotation labels. We then trained the functional classifier on the 285 

mi-faser functional set described above. Because the >61 million reads in the training 286 

set were too many to fit into memory, training was done in 13 chunks of ~5-million 287 

reads each until one total epoch was completed. Hyperparameter settings for the 288 

functional classifier training are seen in SI Table 2. 289 

Encoder embeddings and MANOVA test. To test whether the LookingGlass 290 

language model embeddings (before fine-tuning, above) are distinct across functional 291 

annotations, a random subset of ten reads per functional annotation was selected from 292 

each of the 100 SRA metagenomes (or the maximum number of reads present in that 293 

metagenome for that annotation, whichever was greater). This also ensured that reads 294 

were evenly distributed across environments. The corresponding fixed-length 295 

embedding vectors for each read was produced by saving the output from the 296 

LookingGlass encoder (before the embedding vector is passed to the language model 297 
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decoder) for the final nucleotide in the sequence. This vector represents a contextually 298 

relevant embedding for the overall sequence. The statistical significance of the 299 

difference between embedding vectors across all functional annotation groups was 300 

tested with a MANOVA test using the R stats package42. 301 

 302 

Evolutionary relevance 303 

Dataset generation.  304 

 The OrthoDB database43 provides orthologous groups (OGs) of proteins at 305 

various levels of taxonomic distance. For instance, the OrthoDB group ‘77at2284’ 306 

corresponds to proteins belonging to ‘Glucan 1,3-alpha-glucosidase at the Sulfolobus 307 

level’, where ‘2284’ is the NCBI taxonomy ID for the genus Sulfolobus.  308 

We tested whether embedding similarity of homologous sequences (sequences 309 

within the same OG) is higher than that of nonhomologous sequences (sequences 310 

from different OGs). We tested this in OGs at multiple levels of taxonomic distance – 311 

genus, family, order, class, and phylum. At each taxonomic level, ten individual taxa at 312 

that level were chosen from across the prokaryotic tree of life (e.g. for the genus level, 313 

Acinetobacter, Enterococcus, Methanosarcina, Pseudomonas, Sulfolobus, Bacillus, 314 

Lactobacillus, Mycobacterium, Streptomyces, and Thermococcus were chosen). For 315 

each taxon, 1,000 randomly selected OGs corresponding to that taxon were chosen; 316 

for each of these OGs, five randomly chosen genes within this OG were chosen.  317 

OrthoDB cross-references OGs to UniProt39 IDs of the corresponding proteins. 318 

We mapped these to the corresponding EMBL coding sequence (CDS) IDs40 via the 319 

UniProt database API39; DNA sequences of these EMBL CDSs were downloaded via 320 

the EMBL database API. For each of these sequences, we generated LookingGlass 321 

embedding vectors.  322 

Homologous and nonhomologous sequence pairs.  323 

To create a balanced dataset of homologous and nonhomologous sequence 324 

pairs, we compared all homologous pairs of the five sequences in an OG (total of ten 325 
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homologous pairs) to an equal number of randomly-selected out-of-OG comparisons 326 

for the same sequences; i.e., each of the five OG sequences was compared to 2 other 327 

randomly-selected sequences from any other randomly-selected OG (total of ten 328 

nonhomologous pairs). We term this set of sequences, and their corresponding 329 

LookingGlass embeddings, the OG homolog set (Table 1).  330 

Embedding and sequence similarity. For each sequence pair, the sequence 331 

and embedding similarity were determined. The embedding similarity was calculated 332 

as the cosine similarity between embedding vectors. The sequence similarity was 333 

calculated as the Smith-Waterman alignment score using the BioPython44 pairwise2 334 

package, with a gap open penalty of -10 and a gap extension penalty of -1. The IDs of 335 

chosen OGs, the cosine similarities of the embedding vectors, and sequence 336 

similarities of the DNA sequences are available in the associated Github repository3. 337 

 338 

Environmental Relevance 339 

Encoder embeddings and MANOVA test . 340 

 The LookingGlass embeddings and the environment of origin for each read in the 341 

mi-faser functional set were used to test the significance of the difference between the 342 

embedding vectors across environmental contexts. The statistical significance of this 343 

difference was evaluated with a MANOVA test using the R stats package42. 344 

 345 

III. Oxidoreductase classifier 346 

Dataset generation.  347 

The manually curated, reviewed entries of the Swiss-Prot database39 were 348 

downloaded (June 2, 2020). Of these, 23,653 entries were oxidoreductases (EC 349 

number 1.-.-.-) of Archaeal or Bacterial origin (988 unique ECs). We mapped their 350 

UniProt IDs to both their EMBL CDS IDs and their UniRef50 IDs via the UniProt 351 

database mapper API. Uniref50 IDs identify clusters of sequences with >50% amino 352 

acid identity. This cross-reference identified 28,149 EMBL CDS IDs corresponding to 353 
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prokaryotic oxidoreductases, belonging to 5,451 unique UniRef50 clusters. We split 354 

this data into training, validation, and test sets such that each UniRef50 cluster was 355 

contained in only one of the sets, i.e. there was no overlap in EMBL CDS IDs 356 

corresponding to the same UniRef50 cluster across sets. This ensures that the 357 

oxidoreductase sequences in the validation and test sets are dissimilar to those seen 358 

during training. The DNA sequences for each EMBL CDS ID were downloaded via the 359 

EMBL database API. This data generation process was repeated for a random 360 

selection of non-oxidoreductase UniRef50 clusters, which resulted in 28,149 non-361 

oxidoreductase EMBL CDS IDs from 13,248 unique UniRef50 clusters.  362 

~50 read-length chunks (selected from the representative read-length 363 

distribution, as above) were selected from each EMBL CDS DNA sequence, with 364 

randomly selected start positions on the gene and a 50% chance of selecting the 365 

reverse complement, such that an even number of read-length sequences with 366 

‘oxidoreductase’ and ‘non-oxidoreductase’ labels were generated for the final dataset. 367 

This procedure produced a balanced dataset with 2,372,200 read-length sequences in 368 

the training set, 279,200 sequences in the validation set, and 141,801 sequences in 369 

the test set. We term this set of reads and their annotations the oxidoreductase model 370 

set (Table 1). 371 

Fine-tuning procedure.  372 

Since our functional annotation classifier addresses a closer classification task to 373 

the oxidoreductase classifier than LookingGlass itself, the architecture of the 374 

oxidoreductase classifier was fine-tuned starting from the functional annotation 375 

classifier, replacing the decoder with a new pooling classification layer (as described 376 

above for the functional annotation classifier) and with a final output size of 2 to predict 377 

‘oxidoreductase’ or ‘not oxidoreductase’. Fine tuning of the oxidoreductase classifier 378 

layers was done successively, training later layers in isolation and then progressively 379 

including earlier layers into training, using discriminative learning rates ranging from 380 

1e-2 to 5e-4, as previously described45. 381 

 382 
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Model performance in metagenomes.  383 

16 marine metagenomes from the surface (SRF, ~5 meters) and mesopelagic 384 

(MES, 175-800 meters) from eight stations sampled as part of the TARA expedition46 385 

were downloaded from the SRA35 (SI Table 4, SRA accession numbers ERR598981, 386 

ERR599063, ERR599115, ERR599052, ERR599020, ERR599039, ERR599076, 387 

ERR598989, ERR599048, ERR599105, ERR598964, ERR598963, ERR599125, 388 

ERR599176, ERR3589593, and ERR3589586). Metagenomes were chosen from a 389 

latitudinal gradient spanning polar, temperate, and tropical regions and ranging from -390 

62 to 76 degrees latitude. Mesopelagic depths from four out of the eight stations were 391 

sampled from oxygen minimum zones (OMZs, where oxygen <20 µmol/kg). Each 392 

metagenome was rarefied to twenty million randomly selected sequences. We term 393 

this set of reads the oxidoreductase metagenome set (Table 1, SI Table 4). Predictions 394 

of “oxidoreductase” or “not oxidoreductase” were made for these sequences with the 395 

oxidoreductase classifier. To compare model predictions to alternative functional 396 

annotation methods, reads in the oxidoreductase metagenome set were annotated 397 

with mi-faser37 with the --read-map option, and with the MG-RAST functional 398 

annotation pipeline47 using default settings. 399 

 400 

IV. Reading Frame classifier 401 

Dataset generation.  402 

 For each taxonomic order, the coding sequence (CDS) files of one of the genome 403 

IDs in the GTDB representative set were downloaded from NCBI27. These were split 404 

into read-length chunks as described above. Note that because each sequence is a 405 

coding sequence, the true frame of translation for each read-length chunk was known; 406 

this translation frame label of (1, 2, 3, -1, -2, or -3) was recorded for each read-length 407 

input3. We term this set of reads the reading frame set (Table 1). 408 

Fine-tuning procedure.  409 

 The translation frame classifier was adjusted with a pooling classification layer 410 

with an output size of six for the six possible translation frame labels. Fine tuning was 411 
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performed over successive layers with discriminative learning rates ranging from 1e-3 412 

to 5e-5 as described for the oxidoreductase classifier. 413 

 414 

V. Optimal temperature classifier 415 

Dataset generation.  416 

The optimal growth temperature for 19,474 microorganisms was manually 417 

curated from multiple sources: BacDive48, DSMZ49, Pasteur Institute (PI), the National 418 

Institute for Environmental Studies (NIES)50, and a curated list from a previous  work51. 419 

BacDive data is available through their API, which contains calls to retrieve the species 420 

list and to get all data about a specific species. For DSMZ, PI, and NIES databases we 421 

used previously published52 data files (for DSMZ and PI) or scripts and method (NIES) 422 

to query optimal growth temperature information (accessed July 2020). We finally 423 

cross-referenced optimal growth temperature of these organisms to their NCBI 424 

taxonomy ID53. 425 

Previous studies have shown a strong correlation between enzyme optimal 426 

temperature and organism optimal growth temperature52. We assumed that core 427 

housekeeping enzymes, such as those involved in transcription and translation, would 428 

have the same optimal functional temperature as the organism itself. Thus, we cross-429 

referenced the 19,474 microorganisms identified above to the UniProt IDs belonging 430 

to those taxa for the housekeeping genes: RNA polymerase (EC 2.7.7.6), RNA 431 

helicase (EC 3.6.4.13), DNA polymerase (EC 2.7.7.7), DNA primase (EC 2.7.7.101 for 432 

Bacteria, EC 2.7.7.102 for Archaea), DNA helicase (EC 3.6.4.12), DNA ligase (ECs 433 

6.5.1.1, 6.5.1.2, 6.5.1.6, and 6.5.1.7), and topoisomerase (ECs 5.6.2.1 and 5.6.2.2). 434 

Finally, we linked these UniProt IDs to the corresponding EMBL CDS IDs, downloaded 435 

the gene sequences, and split them into read-length chunks as described above.  436 

The optimal temperature label for each read was derived from the optimal growth 437 

temperature from its source organism; range [4-104.5] Cº. The optimal temperature 438 

labels were converted to categorical labels of ‘psychrophilic’ for optimal temperatures 439 

<15 Cº, ‘mesophilic’ for [20-40] Cº, and ‘thermophilic’ for >50 Cº. The training, 440 
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validation, and test sets were split by EC number such that only sequences from EC 441 

3.6.4.13 were in the validation set, only sequences from EC 6.5.1.2 were in the test 442 

set, and all other EC numbers were in the training set. Finally, the inputs from each 443 

label category were either downsampled or upsampled (as described above for the mi-444 

faser functional set) to a balanced number of inputs for each class. This resulted in 445 

5,971,152 inputs in the training set with ~2,000,000 reads per label; 597,136 inputs in 446 

the validation set with ~200,000 reads per label; and 296,346 inputs to the test set with 447 

~100,000 reads per label. We term this set of reads and their annotations the optimal 448 

temp set (Table 1). 449 

Fine-tuning procedure.  450 

The optimal temperature classifier was adjusted with a pooling classification layer 451 

with an output size of three for the three possible optimal temperature labels, as 452 

described above. Fine tuning was performed over successive layers with 453 

discriminative learning rates ranging from 5e-2 to 5e-4 as described for the 454 

oxidoreductase classifier. 455 

 456 

VI. Metrics 457 

 Model performance metrics for accuracy (all classifiers), precision, recall, and F1 458 

score (binary classifiers only) are defined as below: 459 

Accuracy:   
𝑻𝑷#𝑻𝑵

𝑻𝑷#𝑭𝑷#𝑻𝑵#𝑭𝑵
      (1) 460 

 461 

Precision:    
𝑻𝑷

𝑻𝑷	#	𝑭𝑷
      (2) 462 

 463 

Recall:    
𝑻𝑷

𝑻𝑷	#	𝑭𝑵
      (3) 464 

 465 
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F1 score:   𝟐	 ∙ 	𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏	∙	𝑹𝒆𝒄𝒂𝒍𝒍𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍     (4) 466 

 467 

where TP is a true positive (correct positive label prediction), FP is a false positive 468 

(incorrect prediction of the positive label), TN is a true negative (correct negative label 469 

prediction), and FN is a false negative (incorrect prediction of the negative label).  470 

 471 

VII. Software, model deployment and reproducibility 472 

 The LookingGlass pretrained model, as well as the pretrained functional 473 

classifier, oxidoreductase classifier, optimal temperature classifier, and reading frame 474 

classifier models, are provided in the LookingGlass release v1.01. We also provide the 475 

fastBio python package that extends the fastai33 library for custom data loading and 476 

processing functions designed for use with biological sequences2. The scripts used for 477 

data gathering, training of the LookingGlass model, training of models using transfer 478 

learning, and analysis of the results presented in this paper are available in the 479 

associated Github repository3.  480 

 481 

Results 482 

I. LookingGlass – a “universal language of life” 483 

The LookingGlass model was trained as a 3-layer LSTM encoder chained to a 484 

decoder predicting the next (masked) nucleotide in a DNA sequence fragment, on a 485 

set of more than 6.6 million read-length sequences selected from microbial genomes 486 

spanning each taxonomic class in the microbial tree of life (Methods).  487 

 488 

LookingGlass captures functionally relevant features of sequences.  489 

The LookingGlass encoder produces a fixed-length vector embedding of each 490 

sequence input. In the mi-faser functional validation set containing metagenomic reads 491 

with functional annotation labels (Methods), these sequence embeddings were distinct 492 
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across functional annotations (MANOVA P<10-16) without any additional fine-tuning. 493 

Moreover, a model was fine-tuned on the mi-faser functional set to predict mi-faser 494 

functional annotations to the 4th EC number and achieved 81.5% accuracy (Eqn 1) on 495 

the validation set in only one epoch. At coarser resolution accuracy was improved: to 496 

83.8% at the 3rd EC number (SI Fig 3); 84.4% at the 2nd EC number (Fig 1b); and 497 

87.1% at the 1st EC number (Fig 1a). In testing on an experimentally-validated set of 498 

functional annotations (Swiss-Prot functional set; Methods), this classifier had a lower 499 

accuracy (50.8%) that was still substantially better than random (0.08%). Thus, 500 

LookingGlass captures functionally relevant features of biological sequences, (1) 501 

distinguishing between functional classes without being expressly trained to do so and 502 

(2) enabling rapid convergence on an explicit high-dimensional functional classification 503 

task at the read level. 504 

 505 

LookingGlass captures evolutionarily-relevant features of sequences.  506 

The embedding similarity of homologous sequence pairs in the OG homolog set 507 

was significantly higher (unpaired t-test P<10-16) than that of nonhomologous pairs, 508 

with no additional fine-tuning, for fine to broad levels of phylogenetic distances, i.e. 509 

genus, family, order, class, and phylum (Fig 2a). LookingGlass embeddings 510 

differentiate homology with ~66-79% accuracy which varied by taxonomic level (SI Fig 511 

4, SI Table 5). This variation is due to variable sequence similarity across taxa, i.e. 512 

sequences from species-level homologs have higher sequence similarity than 513 

homologs at the phylum level. Our model attained 66.4% accuracy at the phylum level 514 

(Fig 2b), 68.3% at the class level, 73.2% at the order level, 76.6% at the family level, 515 

and 78.9% at the genus level. This performance is a substantial improvement over 516 

random (50% accuracy), and was obtained from LookingGlass embeddings alone 517 

which were not expressly trained on this task.  518 

LookingGlass embeddings differentiate between homologous and 519 

nonhomologous sequences independent of their sequence similarity (Smith-Waterman 520 

alignments, Methods). This is particularly useful since many (e.g. 44% at the phylum 521 
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level, SI Table 5) homologs have very low sequence similarity (alignment score < 50; 522 

Fig 2c, SI Table 5). For these, LookingGlass embedding similarity is still high, indicating 523 

that our model captures evolutionary relationships between sequences, even where 524 

traditional algorithmic approaches do not. In fact, embedding similarity between 525 

sequences is poorly correlated with the sequence similarity alignment score (Pearson 526 

R2=0.28-0.44). The high accuracy with which LookingGlass identifies homologs 527 

indicates that it captures high-level features reflecting evolutionary relationships 528 

between sequences. 529 

 530 

LookingGlass differentiates sequences from disparate environmental contexts.  531 

The sequences in the mi-faser functional set have distinct embedding fingerprints 532 

across different environments – embedding similarity between environments is 533 

generally lower than embedding similarity within an environment (Fig 3, MANOVA 534 

P<10-16), even though the LookingGlass embeddings were not explicitly trained to 535 

recognize environmental labels. While there is some overlap of embeddings across 536 

environmental contexts, those with the most overlap are between similar environments 537 

– for example, the colocalization of ‘wastewater/sludge’ with ‘human-gut’ and ‘built 538 

environment’ (Fig. 3b).  539 

 540 

II. LookingGlass enables diverse downstream transfer learning tasks 541 

 542 

Mining environmental settings for functional descriptions of “microbial dark 543 

matter”. 544 

Using LookingGlass and transfer learning to identify novel functional groups.  545 

By using LookingGlass as a starting point, we can converge more quickly and 546 

with less data on a more accurate model for assigning molecular functions at the read 547 

level. Additionally, downstream models addressing similar tasks can in turn be used 548 

as pretrained models for further fine-tuning. To demonstrate this, we fine-tuned the 549 
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LookingGlass functional classifier (described above) to predict whether a read-length 550 

DNA sequence likely comes from an oxidoreductase-encoding gene (EC number 1.-.-551 

.-). Our fine-tuned model was able to correctly classify previously unseen (<50% amino 552 

acid sequence-identical) oxidoreductases with 82.3% accuracy at the default 553 

prediction threshold of 0.5 (Fig 4). Oxidoreductases are a deeply branched, highly 554 

diverse class of enzymes, such that sequence similarity within a single functional 555 

annotation (EC number) is often very low; the DNA sequence identity of 556 

oxidoreductase gene sequences within a single EC number in the oxidoreductase 557 

model validation set was a median of 59%, and was as low as 17%. As such, 558 

oxidoreductases can be difficult to identify via sequence similarity-based homology 559 

searches in environmental samples (e.g. box in Fig 2c). The oxidoreductase classifier, 560 

in contrast, achieves high model performance even in such cases where sequence 561 

similarity within EC annotations is low. Notably, the average model performance for a 562 

given EC number was independent of the sequence similarity of genes within that EC 563 

(R2=0.004, SI Fig 5). 564 

Mining novel, unannotated oxidoreductases from metagenomes along a 565 

latitudinal and depth gradient in the global ocean.  566 

The majority of sequencing reads from environmental metagenomes are routinely 567 

unable to be functionally annotated54. To demonstrate the advantage of the 568 

oxidoreductase classifier over traditional homology-based approaches, we evaluated 569 

our model on twenty million randomly-selected reads from each of 16 marine 570 

metagenomes in the oxidoreductase metagenome set spanning broad ranges in 571 

latitude (from -62 to 76 degrees), depth (from the surface, ~5 meters, to mesopelagic, 572 

~200-1,000 meters), and oxygen concentrations (including four mesopelagic samples 573 

from oxygen minimum zones).  574 

The percentage of reads predicted to be oxidoreductases ranged from 16.4% - 575 

20.6%, and followed trends with depth and latitude (Fig 5). The relative abundance of 576 

oxidoreductases was significantly higher in mesopelagic depths than in surface waters 577 

(Fig 5a, ANOVA P=0.02), with marginally higher (albeit not statistically significant) 578 

proportions of oxidoreductases in the oxygen minimum zones relative to oxygen-579 
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replete mesopelagic samples (P=0.13). There was also a significant trend in the 580 

relative abundance of oxidoreductases along latitudinal gradients in surface waters 581 

(Fig 5b, R2=0.79, P=0.04), with higher proportions of oxidoreductases in higher 582 

latitudes. This latitudinal trend was reflected in a similar, but weaker, temperature-583 

driven trend (R2= -0.66, P=0.11, SI Fig 6). 584 

Two alternative functional annotation tools, mi-faser37 and MG-RAST47, were only 585 

able to annotate a much smaller proportion of sequences in these metagenomes (Fig 586 

5c, SI Table 6), with even smaller proportions of oxidoreductases identified. MG-RAST 587 

annotated 26.7-50.3% of the reads across metagenomes, with 0.01-4.0% of reads 588 

identified as oxidoreductases. Mi-faser annotated 0.17-2.9% of the reads, of which 589 

0.04-0.59% were oxidoreductases. In both cases, a majority of reads remained 590 

unannotated, a condition typical of homology-based functional annotation 591 

approaches54. As a result, a large proportion of enzymes in the environment are 592 

unlikely to be recovered using these approaches, which may also skew the observed 593 

trends across samples. Notably, the depth and latitudinal trends identified with the 594 

oxidoreductase classifier were not reported by either MG-RAST or mi-faser (SI Fig 7). 595 

There was no significant difference in the proportion of oxidoreductases predicted in 596 

the surface vs. mesopelagic waters for either MG-RAST (P=0.73) or mi-faser (P=0.60) 597 

and no significant correlation with latitude in surface waters for either mi-faser 598 

(R2=0.58, P=0.17) or MG-RAST (R2= -0.49, P=0.27); note that MG-RAST in fact 599 

observed an anticorrelation trend for the latter (although still insignificant). This 600 

highlights the potential importance of unannotatable reads in driving functional patterns 601 

in the environment, which can be captured by the approach and models described 602 

here and would otherwise be missed using traditional approaches.  603 

 604 

Reference-free translation of read-length DNA sequences to peptides. 605 

While the amino acid sequence encoded in short DNA reads is difficult to infer 606 

directly using traditional bioinformatic approaches, it is also a product of the non-607 

random organization of DNA sequences. We fine-tuned the LookingGlass encoder to 608 
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predict the translation frame start position (1, 2, 3, -1, -2, or -3) directly from read-length 609 

DNA coding sequences. This reading frame classifier attained 97.8% accuracy, a 610 

major improvement over random (16.7% accuracy). Note this classifier was trained 611 

only on coding sequences and is currently intended only for prokaryotic sources with 612 

low amounts of noncoding DNA55.  613 

 614 

Prediction of enzyme optimal temperature from DNA sequence fragments 615 

The optimal temperature of an enzyme is in part dependent on DNA sequence 616 

features56,57, but is difficult to predict, particularly from short reads. We fine-tuned 617 

LookingGlass to predict whether a read-length DNA sequence originates from an 618 

enzyme with an optimal temperature that is psychrophilic (<15 Cº), mesophilic (20-40 619 

Cº), or thermophilic (>50 Cº). The optimal temperature classifier was able to predict 620 

the optimal temperature category correctly with 70.1% accuracy (random accuracy 621 

=33.3%). 622 

 623 

Discussion 624 

Microbes perform a vast diversity of functional roles in natural environments as 625 

well as in industrial and biomedical settings. They play a central role in regulating 626 

Earth’s biogeochemical cycles58, and have a tremendous impact on the health of their 627 

human hosts59, but the complex functional networks that drive their activities are poorly 628 

understood. Microbial genomes record a partial history of the evolution of life on 629 

Earth60, but much of this information is inadequately captured by homology-based 630 

inference. Microbial communities are a subject of great interest for developing natural61 631 

and synthetic62 products for bioengineering applications, but our ability to describe, 632 

model, and manipulate the systems-level functions of these microbiomes is limited.  633 

The LookingGlass ‘universal language of life’ creates representations of DNA 634 

sequences that capture their functional and evolutionary relevance, independent of 635 

whether the sequence is contained in reference databases. The vast majority of 636 

microbial diversity is uncultured and unannotated4–6. LookingGlass opens the door to 637 
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harnessing the potential of this “microbial dark matter” to improve our understanding 638 

of, and ability to manipulate, microbial systems. It is a broadly useful, ‘universal’ model 639 

for downstream transfer learning tasks, enabling a wide diversity of functional 640 

predictions relevant to environmental metagenomics, bioengineering, and biomedical 641 

applications.  642 

We demonstrate here the ability of LookingGlass to be fine-tuned to identify novel 643 

oxidoreductases, even those with low sequence similarity to currently known 644 

oxidoreductases. Applying the oxidoreductase classifier to 16 marine metagenomes 645 

identified patterns in the relative abundance of oxidoreductases that follow global 646 

gradients in latitude and depth. These observations are in line with previous studies 647 

that have identified greater overall functional and taxonomic richness46,63, as well as a 648 

greater diversity of oxidoreductases specifically64, in deep marine waters relative to 649 

shallow depths. Studies conflict, however, about whether taxonomic and functional 650 

diversity increases63,65–67 or decreases68–70 with absolute latitude. Notably, neither the 651 

latitudinal nor depth trends in oxidoreductase relative abundance observed by the 652 

oxidoreductase classifier were captured by traditional homology-based functional 653 

annotation tools. The inconsistent results produced by traditional annotation tools in 654 

this study and others further demonstrates the importance of unannotated functional 655 

diversity for cross-sample comparisons, and the potential of the approach described in 656 

this study.  657 

There may be multiple ecological mechanisms driving the observed latitudinal 658 

and depth patterns in oxidoreductase relative abundance; for example, the 659 

streamlining of genomes71 that preserves oxidoreductases relative to less essential 660 

genes under resource limitation or temperature stress, or a reflection of a higher 661 

abundance of anaerobic respiration genes in mesopelagic waters relative to surface 662 

waters72. Future efforts to capture and compare the full functional diversity of 663 

environmental settings using the approaches described here can further illuminate and 664 

differentiate between these mechanisms. 665 

The reads predicted to be from novel oxidoreductases are candidates for further 666 

functional characterization, and for targeted assembly of novel oxidoreductase genes. 667 
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Shining light on these “dark matter” oxidoreductases can enable more complete 668 

comparisons of oxidoreductase composition and diversity across environmental 669 

gradients. Future efforts to fine tune LookingGlass for additional functional targets can 670 

expand the classes of enzymes identified and create a fuller picture of microbial 671 

functional diversity in environmental settings. By definition, poorly-studied 672 

environments contain the greatest amount of unknown functional diversity, and a tool 673 

such as LookingGlass provides a novel and important way to evaluate this functional 674 

diversity. 675 

LookingGlass was also fine-tuned to correctly identify the reading frame, and thus 676 

the amino acid translation, of short-read DNA coding sequences. Translated amino 677 

acid sequences are used for a variety of bioinformatics applications, most notably for 678 

molecular function annotation. There are two categories of function annotation tools – 679 

those that annotate from short sequencing reads directly37,47,73,74 and those that 680 

annotate from assembled genes/contigs47,75. In both cases, DNA reads must first be 681 

converted to amino acid sequences. For short-read annotation tools, six-frame 682 

translation of each DNA sequence produces all six possible amino acid sequences for 683 

alignment to reference databases, which increases the computational burden of 684 

alignment six-fold. For tools that annotate from assemblies, datasets are first 685 

assembled and open reading frames (ORFs) predicted before amino acid sequences 686 

can be inferred. This procedure is computationally intensive, error-prone, and throws 687 

away reads that can’t be assembled or for which coding regions can’t be identified, 688 

particularly for members of the rare biosphere or in highly diverse environments. Direct 689 

translation from DNA reads thus could enable much more efficient computation for any 690 

bioinformatics application that uses read-derived amino acid sequences. Note that the 691 

reading frame classifier described here focuses on prokaryotic genomes, which 692 

generally have only ~12-14% noncoding DNA55. For eukaryotes, a classifier will need 693 

to be created to distinguish between coding and noncoding DNA and predict reading 694 

frames for only the coding sequences. 695 

Finally, we demonstrated the ability of LookingGlass to be fine tuned to predict 696 

optimal enzyme temperatures from DNA sequences. Importantly, this was possible 697 
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from short reads alone, although a classifier trained on assembled genes would likely 698 

yield even better results. This result demonstrates that LookingGlass can be used to 699 

discover environmentally relevant features, as well as evolutionary and functional 700 

ones. Our optimal temperature classifier may be useful across both academic and 701 

commercial applications – for instance, to compare the optimal temperatures of 702 

microbial communities across environmental gradients in temperature or 703 

geochemistry, or to identify candidate proteins of a particular function and optimal 704 

temperature of interest for industrial applications. In addition, it may also be possible 705 

to adapt the optimal temperature classifier presented here as a generative model to 706 

guide protein design of a desired function and optimal temperature. 707 

The LookingGlass model, and the framework for transfer learning presented 708 

here, provides a framework for future efforts toward modelling of complex biological 709 

systems. LookingGlass captures the complexity of biology and its interactions with the 710 

environment, leveraging the full potential of the functional information contained in the 711 

massive amount of sequencing data being generated by the scientific community. The 712 

LookingGlass model presented here focuses on Bacterial and Archaeal DNA 713 

sequences, but low hanging fruit may include a specialized Eukaryotic DNA model, a 714 

model specific to the human genome, or a model specialized to a particular 715 

environment such as the human gut or soil microbiome. As the scientific community 716 

continues to grapple with new approaches to represent and model biological systems 717 

in ways that harness the full potential of our expanding data resources, we hope that 718 

LookingGlass can provide a foundation for transfer learning-based exploration of life 719 

on Earth.  720 
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Figures 927 

 928 

Fig. 1: Functional annotation prediction multiclass confusion matrix. Confusion between true (y 929 
axis) and predicted (x axis) functional annotations, shown as normalized percentages of predictions 930 
for each label including correct predictions (left) and showing errors only (right), for (a) predictions to 931 
the 1st EC number and (b) predictions to the 2nd EC number. 932 
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Fig. 2: LookingGlass identifies homologous sequence pairs at the phylum level. (a) Distribution 933 
of embedding similarities for homologous (blue) and nonhomologous (red) sequence pairs are 934 
significantly different (P < 10-16). (b) Accuracy, precision, recall, and F1 metrics (Eqns 1-4) for 935 
homologous/ nonhomologous predictions across embedding similarity thresholds. Default threshold of 936 
maximum accuracy (0.62) shown in vertical dashed line.  (c) Distribution of embedding and 937 
sequencing similarities for homologous (blue) and nonhomologous (red) sequence pairs. 44% of 938 
homologous sequence pairs have sequence similarity alignment scores below the threshold of 50 939 
(horizontal line). Embedding similarity threshold (0.62, vertical line) separates homologous and 940 
nonhomologous sequence pairs with maximum accuracy. Bold black box in the lower right indicates 941 
homologous sequences correctly identified by LookingGlass that are missed using alignments. 942 
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Fig. 3: Distributions of LookingGlass embeddings across environmental packages. (a) Pairwise 943 
cosine similarity among the average embeddings of 20,000 randomly selected sequences from each 944 
environmental package. (b) t-SNE visualization of the embedding space for 20,000 randomly selected 945 
sequences from each of ten distinct environmental contexts in the mi-faser functional validation set. 946 
Sequences from the same environmental context generally cluster together. Colors indicate 947 
environmental package. Embeddings are significantly differentiated by environmental package (P < 948 
10-16). 949 

 950 

Fig. 4: Performance of the oxidoreductase classifier. Accuracy, precision, recall, and F1 score 951 
metrics (Eqns 1-4) of the oxidoreductase classifier across prediction probability thresholds. Default 952 
threshold of 0.5 shown in vertical dashed line. 953 
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Fig. 5: Oxidoreductase identification in marine metagenomes. (a) Proportion of oxidoreductase 954 
sequences (y axis) predicted by the oxidoreductase classifier in surface, mesopelagic, and oxygen 955 
minimum zone (OMZ) depths. (b) Correlation between the proportion of oxidoreductases and absolute 956 
degrees latitude in surface metagenomes of the oxidoreductase metagenome set (R2=0.79, P=0.04). 957 
(c) Proportion of sequences predicted as oxidoreductases, not oxidoreductases, or left unannotated 958 
across the oxidoreductase classifier, MG-RAST, and mi-faser tools. 959 

 960 

 961 
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Tables 965 

 966 

Dataset Name Dataset Description 

GTDB representative set Read-length DNA sequences from each of the 24,706 Bacterial and 
Archaeal representative genomes in the GTDB26 

GTDB class set Reduced set of read-length sequences from a representative genome 
of each class in the GTDB26 taxonomy 

mi-faser functional set Functionally annotated reads from 100 metagenomes from evenly 
distributed environmental packages   

Swiss-Prot functional set DNA read-length sequences of genes with experimentally validated 
functions from the Swiss-Prot database 

OG homolog set Homologous and nonhomologous sequence pairs of gene sequences 
from 1,000 orthologous groups from the OrthoDB database defined at 
multiple taxonomic levels: genus, family, order, class, and phylum 

Oxidoreductase model set Read-length DNA sequences from genes corresponding to Bacterial 
and Archaeal oxidoreductases from the manually reviewed entries of 
the Swiss-Prot database 

Oxidoreductase metagenome set Sequencing reads from 16 marine metagenomes, rarefied to 20 million 
sequences each, from latitudes spanning -62 to 76 degrees and two 
depths – surface and mesopelagic. Mesopelagic depths at 4 stations 
corresponded to an oxygen minimum zone (OMZ) 

Reading frame set Read-length sequences, and labels corresponding to their true frame 
of translation, for gene coding sequences from one genome selected 
from each order in the GTDB taxonomy 

Optimal temp set Read-length sequences from core genes associated with transcription 
and translation, and labels corresponding to their optimal enzyme 
temperature, inferred from the manually curated optimal growth 
temperature of 19,474 genomes. 

Table 1 – Summary table of datasets used. 967 
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