
Signaling interaction link prediction using deep graph neural networks integrating 
protein-protein interactions and omics data 

Jiarui Feng1,2, Amanda Zeng2, Yixin Chen4, Philip Payne1, Fuhai Li1,3# 

 
1Institute for Informatics (I2), 3Department of Pediatrics, Washington University School of 

Medicine, 2Electrical and Systems Engineering Department, 4Computer science, 

Washington University in St. Louis, St. Louis, MO, USA.  
# Email: Fuhai.Li@wustl.edu  

 

Abstract 

Uncovering signaling links or cascades among proteins that potentially regulate tumor 

development and drug response is one of the most critical and challenging tasks in cancer 

molecular biology. Inhibition of the targets on the core signaling cascades can be effective 

as novel cancer treatment regimens. However, signaling cascades inference remains an 

open problem, and there is a lack of effective computational models. The widely used 

gene co-expression network (no-direct signaling cascades) and shortest-path based 

protein-protein interaction (PPI) network analysis (with too many interactions, and did not 

consider the sparsity of signaling cascades) were not specifically designed to predict the 

direct and sparse signaling cascades. To resolve the challenges, we proposed a novel 

deep learning model, deepSignalingLinkNet, to predict signaling cascades by integrating 

transcriptomics data and copy number data of a large set of cancer samples with the 

protein-protein interactions (PPIs) via a novel deep graph neural network model. Different 

from the existing models, the proposed deep learning model was trained using the curated 

KEGG signaling pathways to identify the informative omics and PPI topology features in 

the data-driven manner to predict the potential signaling cascades. The validation results 

indicated the feasibility of signaling cascade prediction using the proposed deep learning 

models. Moreover, the trained model can potentially predict the signaling cascades among 

the new proteins by transferring the learned patterns on the curated signaling pathways. 

The code was available at: https://github.com/fuhaililab/deepSignalingPathwayPrediction.  
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1. Introduction 

A signaling pathway is defined as a set of molecular interactions within a cell that maintain 

or cause the change of specific biological processes of cells, like cell proliferation, 

migration, or differentiation. It is the critical components of the cellular machinery that 

convert the genotype and signals to specific phenotypes. One of the most critical 

objectives in cancer molecular biology is to uncover the causal genes and their signaling 

links or cascades among these candidate target genes that can potentially regulate tumor 

development and drug response [1]. A set of curated signaling pathways that play 

important roles in tumor cell development have been identified. For example, in the KEGG 

signaling pathway database, about 311 curated signaling pathways were collected. 

Moreover, the genetic mutations in differentially expressed genes in 10 cancer hallmark 

signaling pathways, like cell cycle, Hippo, Myc, Notch, NRF2, PI3K, RTK, RAS, MAPK, 

TGFbeta, P53, and beta-caenin[2], were investigated using the comprehensive multi-

omics data of TCGA. The results indicated that 57% of TCGA cancer patients had at least 

one alteration on these signaling pathways. However, we still have a limited understanding 

of the complete picture of signaling pathways that regulate tumor cell development and 

their role in drug resistance. This is one major reason for the lack of effective treatments 

for cancer.  

Signaling pathway or cascade inference is a rather challenging task due to the complex 

signaling pathways among large sets of genes within tumor cells. It remains an open 

problem. Many signaling network inference models are based on correlation, regression 

and Bayesian analysis [3]. For example, the weighted correlation network analysis 

(WGCNA) model was widely used[4]. However, it was designed to investigated the 

correlation, rather than the direct signaling cascade interactions. The correlation based 

models, like the BC3NET algorithm[5] and the SCINGE[6] models were proposed. The 

SCINGE model used kernel-based granger causality regressions predict the signaling 

cascades in pseudo temporally-ordered single-cell expression data. On the other hand, 

the protein-protein interaction (PPI) network was used in network analysis models based 

on the shortest paths of the up- or down-regulated genes. For example, the ARACNE 

model [7] was proposed to identify the master regulators on the activated signaling 

network based the transcription factors and target gene interactions.  

Deep learning models have been reported to analyze the topological structures of PPIs 

mainly for the learning of node representations in the unsupervised learning. For example, 
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DeepWalk[8] used a random walk to learn the latent representation of nodes and also 

applied social representation learning. The node2vec model [9]  was proposed to embed 

the node into vector space. The SDNE[10] model used multi-layer non-linear functions to 

capture the network structure and generate node embedding. Also, the GNE model [11] 

used neural networks to encode gene expression, topological properties and expression 

information into dense vectors, which was similar to the Skip-gram[12] word embedding 

model. The experimental validation showed that GNE outperformed node2vec and 

LINE[13].  

Recently, the deep graph neural network (GNN) [14] models have also been employed in 

the network analysis especially for the node representation analysis. For example, 

GraphSAGE[15] proposed an efficient way to learn the graph embedding inductively. 

GAT[16] applied the attention mechanism to actively learn a way to aggregate all the 

information in graphs. The  DGCNN model [17] with sortPooling to efficiently learn graph 

features for graph classification. JKNet[18] adopted dense connection into GNN and used 

multi-hop massaging passing. Zhang et al[19] demonstrated that link information based 

on whole graphs can be approached by local graphs efficiently and proposed a GNN 

model called SEAL to conduct link prediction. Gu et al[20] extended graph attention 

networks in link prediction problems with fixed-sized neighborhood sampling to solve 

memory bottleneck and mini-batch problems during training.  

However, the existing models were not been well designed to predict the sparse signaling 

cascades by integrating the omics data and topological structures of PPIs. For example, 

the directly interaction signaling cascades usually were ignored in the correlation, 

regression and Bayesian models because only a small set of genes have gene expression 

changes between normal and disease samples. Also, the shortest-path based protein-

protein interaction (PPI) network analysis models cannot effectively identify the sparse 

signaling cascades from too candidate PPIs. To resolve these challenges, in this study, 

we proposed a novel deep GNN model, deepSignalingLinkNet, to predict signaling 

cascades between proteins. Specifically, the transcriptomics data and copy number data 

of a large set of cancer samples with the protein-protein interactions (PPIs) were 

integrated to identify the informative omics and PPI topology features in the data-driven 

manner to predict the potential signaling cascades by training the proposed model using 

the curated KEGG signaling pathways. Compared with PPI network, many genes have 

not been included in the curated KEGG signaling pathways. Thus, the trained model can 
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potentially predict the signaling cascades among the new proteins by transferring the 

learned patterns on the curated signaling pathways. 

 

 

2. Methodology 

Figure 1 shows the overview of the proposed model for signaling link prediction. The 

signaling link prediction problem can be formatted to predict if there is an interaction 

between two given genes or proteins. Specifically, the topological information were 

derived from the STRING[21] PPI database. Since the whole STRING PPI network has a 

large set of interactions among >17,000 genes or proteins, the one-hop neighbors of the 

given gene were identified to construct subgraphs: 𝐺(𝑉$, 𝐸$) and 𝐺(𝑉(, 𝐸() for the genes a 

and b, where 𝑉 and 𝐸 represent the nodes and edges in the subgraphs. Then, the two 

subgraphs will be used in the PPIGE module to learn subgraph representations 𝐺$ ∈

	ℝ,-×/ and 𝐺( ∈ 	ℝ,0×/, where 𝑛$ and 𝑛( are the number of nodes in each graph and ℎ is 

the hidden dimension in the model. The gene genomic data, i.e., gene expression and 

copy number variation, will be used in the GGE module to learn the genomic 

representations ℎ$ ∈ 	ℝ/ and ℎ( ∈ 	ℝ/. Next, the GAGA module was proposed to learn a 

genomic aware gene topological representation, which aggregates the subgraph 

 

Figure 1. Overview of the deep signaling link prediction model. 
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representation 𝐺$ and 𝐺( based on genomic representations. The aggregation features 

are denoted as: 𝑒$ ∈ 	ℝ/ and 𝑒( ∈ 	ℝ/ for the two genes respectively. Finally, ℎ$, ℎ(, 𝑒$, 𝑒( 

are combined and used to compute the final prediction through the LED module. The 

detailed methodology was introduced in the following sections.  

2.1 Protein-Protein Interaction Graph Embedding Module (PPIGE) 

To extract the topological information from the STRING PPI network, as proposed in [19], 

a k-hop subgraph was used to approximate the information of the whole graph efficiently. 

Specifically, we proposed the novel PPIGE module, which is a multi-layer graphical neural 

network with residual connections [22]–[24]. Let 𝑋 ∈ 	ℝ,×5 be the initial representation of 

each node in the graph and  𝐴 ∈ 	ℝ,×, be the adjacency matrix of graph. Three versions 

of the PPIGE module were proposed based on the different type of GNN used: the GCN 

version, GAT version and self-attention version.  

PPIGE-GCN version. The GCN version uses graph convolution networks [25] in each 

layer. If the input in each layer is 𝑋7, the representation of 𝑋789 is computed by: 

𝑋789=ReLU(𝐷@
9
A𝐴B𝐷@

9
A𝑋7𝑊7)	

Where 𝐴B = (𝐴 + 𝐼), 𝐼 is identity matrix. 𝐷 is the degree matrix on  𝐴B and 𝑊 is the learnable 

parameters matrix. In PPIGE-GCN, the number of GCN layers is 3. The first layer is 𝑊 ∈

	ℝ5×/ and the other two layers are 𝑊 ∈	ℝ/×/. Figure 2 illustrates the structure of the 

PPIGE-GCN version. 

 

 

 

Figure 2. Structure of GCN version of PPIGE module. 
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PPIGE-GAT version. A limitation of GCN layers is that it sets the same weights of 

neighbors in convolution. To address this limitation, graph attention network(GAT)[16] was 

used to learn an attention weight for each node in graph. Let the input in each GAT layer 

be 𝑋7. The representation of 𝑋789 is computed by: 

𝑋789 = ReLU(||GH9I 	(𝛼G7 𝑋7𝑊G
7)) 

Where ||GH9I 	denotes the concatenation over 𝑘 heads, 𝑘 is the number of heads in multi-

head attention,	𝑊G
7 ∈ 	ℝ/×L is the learnable parameters matrix. The attention score 𝛼G7  is 

computed by: 

𝛼G7 MN =
OPQ	(RO$GSTORU(VW

XYZ
X||V[

XYZ
X$Z
X ))

∑ OPQ	(RO$GSTORU(VW
XYZ

X||V]XYZ
X$Z
X )]∈^W )

, 

where 𝑎G7 ∈ 	ℝAL×9  represents the learnable parameters and	𝜘M  is the neighbors set for 

node 𝑖,	𝛼G7 MN is the attention weight of neighbor node 𝑗 to the node 𝑖 in head 𝑘 at layer 𝑙. To 

make the dimensions in each layer consistent, we set 𝑠 = ℎ/𝑘. In PPIGE-GAT, there are 

two GAT layers. A linear projection layer is first used to convert the input dimension m to 

hidden size h. The architecture of the PPIGE-GAT version is shown in Figure 3. 

 

2.2 Gene Genomic Embedding Module (GGE) 

For gene genomic data representation learning, the GGE module was introduced. GGE is 

a multi-layer neural network. For the gene genomic feature 𝑥	 ∈ 	ℝg, the computation in 

GGE is the following: 

ℎ = 𝑅𝑒𝐿𝑈(𝑅𝑒𝐿𝑈(𝑥𝑊kkl
9 + 𝑏kkl9 )𝑊kkl

A + 𝑏kklA ) 

 

Figure 3. Structure of GAT version of PPIGE module 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 24, 2020. ; https://doi.org/10.1101/2020.12.23.424230doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.23.424230
http://creativecommons.org/licenses/by-nc-nd/4.0/


Where 𝑊kkl
9 ∈ ℝg×n , 𝑊kkl

A ∈ ℝn×/ , 𝑏kkl9 ∈ ℝn , 𝑏kklA ∈ ℝ/  are learnable parameters 

matrixes. In the GGE model, we set 𝑜 = 128,  and ℎ ∈ ℝ/  is the final genomic 

representation of the gene. 

2.3 Gene Aware Graph Aggregation module (GAGA) 

Problem specific aggregation functions, e.g., the mean aggregator or max aggregator, are 

important to learn the node representation. Herein, we proposed the GAGA module as 

follows. Let the i-th node in subgraph representation outputted by the PPIGEN module be 

𝑔M ∈ 	ℝ/ , the gene genomic representation be  ℎ ∈ 	ℝ/ . The GAGA aggregates the 

subgraph representation by: 

𝑒 =t𝛼M𝑔M

,

MH9

 

where 𝛼M is the attention score for i-th node, which is computed by: 

𝛼M =
𝑒𝑥𝑝(ℎv𝐺M)

∑ 𝑒𝑥𝑝(ℎv𝐺w),
wH9

 

𝛼M  characterizes how important a specific node in the subgraph for the node 

representation. The result 𝑒  will be further used to predict the probability of the link 

between the source and target genes. 

2.4 Link Existence Detector (LED)  

With the genomic aware graph representation and the genomic representation, the 

probability of interaction link between two given genes is calculated using the LED module. 

First, the node representations are concatenated as follows: 

𝑐$ = ℎ$||𝑒$ 

𝑐( = ℎ(||𝑒( 

where	|| denotes concatenation operation,  𝑐$	, 𝑐( ∈ 	ℝA/. Then the convolutional neural 

network (CNN) module was employed as: 

𝑢9v = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐶𝑁𝑁(𝑐$v||𝑐(v)) 

𝑢A = 𝑐$ − 𝑐( 

where 𝑐$v||𝑐(v ∈ ℝA×A/. Then the signaling link prediction is calculated as: 
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𝑝7M,G = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥((𝑢9||𝑢A𝑊Rl�
9 + 𝑏Rl�9 )𝑊Rl�

A + 𝑏Rl�A ) 

where the 𝑊Rl�
9 ∈ ℝ�/×/ , 𝑊Rl�

A ∈ ℝ/×A , 𝑏Rl�9 ∈ ℝ/ , 𝑏Rl�A ∈ ℝA  are the learnable 

parameters.  

 

2.5 The Objective Function 

To train the model, the focal loss[26] objective function was employed: 

𝐿 = −𝛼�(1 − 𝑝�)�𝑙𝑜𝑔𝑝� 

where 𝑝� is the prediction of model for class 𝑡.  𝑡 = 0 or 1 means that there is no signaling 

and there is a signaling link of two given genes respectively.  

 

3. Results 

In this section, we evaluated the performance of the deepSignalingLinkNet model, and 

showed that the proposed model outperformed other models in inferring KEGG signaling 

pathways. 

3.1 Datasets 

TCGA omics data and subtyping analysis. The Cancer Genome Atlas (TCGA) is a 

database that collected genomic data from 38 different types of cancer. The normalized 

gene expression data and copy number of TCGA samples were downloaded from the 

UCSC Xena data sever. Only the cancer types that had at least 10% normal samples or 

at least 20 normal samples were selected. In total, 13 different cancer types were kept.  

The cancer samples were then clustered into 5 subgroups using the using the GMM 

algorithm on the dimensionally reduced gene expression dataset. The dimensions of the 

cancer samples to was reduced to 64 using the principle component analysis (PCA). Then, 

the dimension was further reduced to 2 using T-SNE[27] analysis. The subgrouping 

analysis was used to identify subtype-specific features, which might be missed by pooling 

all samples together. Then, the mean copy number and log2 fold change of the gene 

expression (between each subgroup and normal samples) of each group was 

constructedas the genomics features of each gene. This resulted in 130 features = 2(mean 

copy number and log2 fold change of gene expression) * 5 (subgroups of each cancer 
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type) *13 (cancer types), for each of 18377 genes. The detailed number of samples in the 

selected TCGA cancer samples was listed in Table 1. 

 

Table 1. # of selected TCGA samples from 13 cancer types. 

 
# Control 
sample 

# Normal 
sample 

# G1 # G2 # G3 # G4 # G5 

BRCA 1104 114 196 187 305 112 304 

COAD 288 41 60 50 53 76 49 

COADREAD 383 51 73 103 64 77 66 

HNSC 522 44 127 116 100 106 73 

KICH 66 25 14 9 4 23 16 

KIRC 534 72 130 81 150 113 60 

KIRP 291 32 71 44 90 20 66 

LIHC 373 50 65 58 98 102 50 

LUAD 517 59 105 125 69 144 74 

LUNG 1019 110 220 72 204 273 250 

PRAD 498 52 111 103 42 77 165 

STAD 415 35 106 80 34 98 97 

THCA 513 59 76 123 123 105 86 

 

Hallmark Gene sets as features [28]. Hallmark gene sets are a well curated gene sets 

that summarize specific, well-defined biological states or processes. In this study, the 

Hallmark gene sets were used as the initial gene features in the STRING database. The 

Hallmark Gene sets contain 50 different sets, which means that the dimension of gene 

feature is 50, and with 0 or 1 indicating if the gene belongs to that set. For genes that were 

not included in the Hallmark gene sets, their features were set as 0.  

STRING PPI network. The STRING PPI network was collected from STRING 

database[29]. The 800 score threshold was used to filter out the low-confident PPIs, and 

then 17,179 genes and 841,027 signaling interaction links were obtained. 

KEGG pathways. The training labels are obtained from the KEGG pathway database. 

KEGG (Kyoto Encyclopedia of Genes and Genomes) [30] is a database for the systematic 
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understanding of gene functions. The KEGG signaling pathways provide knowledge of 

signaling transduction and cellular processes. There are a total 311 pathways. We 

collected links and the corresponding genes in all 311 pathways using the R package 

graphite. This resulted in a total of 8,002 genes and 116,820 links. Then, genes that did 

not have TCGA data or were not in STRING PPI network will be filtered out. Finally, 4347 

genes and 70,431 signaling interaction links among 4,347 genes from 223 KEGG 

pathways. The details of all datasets are reported in Table 2.  

 

Table 2. Statistics of Datasets 

 # gene # Link # Feature 

STRING 17390 841027 0 

KEGG pathway 8002 116820 0 

Hallmark gene set 4383 0 50 

TCGA 18377 0 130 

Selected signaling interaction links  4347 70431 130 

 

3.2 Model performance evaluation on KEGG signaling interaction links. 

In this evaluation test, 50% of the selected KEGG signaling interaction links were used as 

the training and testing positive data respectively. Then the same number of negative 

signaling interaction links (no interaction link) among the KEGG genes were selected 

randomly. 

Model Setting. For the PPIGE models, the hidden output dimension h was set to 32. We 

also tested the GAT_large with h = 64. We added a dropout mechanism after each layer 

in the PPIGE and GGE module. The dropout rate was set to 0.1. The optimizer was Adam 

with 𝛽9 = 0.8, 𝛽A = 0.999 and 𝜀 = 10@�. The learning rate for the three versions was 0.001. 

For each model, the weight decay was added with λ = 3 × 10@�. The epoch number was 

30 for each model. The batch size was 64 for each model. Since the dataset is balanced, 

we set 𝛼� = 1 and 𝛾� = 1 in focal loss, which make it equal to negative log likelihood loss. 

The gradient of the model was clipped with a threshold of 5.0 before each back-

propagation step. The exponential moving average (EMA) was applied to all trainable 

variables with a decay rate of µ = 0.999. Let the model weights after the back-propagation 
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step 𝑡 be 𝑊� , and the model weights after the EMA in step 𝑡 be 𝐸�. After back-propagation 

step 𝑡 + 1, the new EMA model weights were updated with the function 𝐸�89 = (1 − µ)𝐸� +

𝑊�89.  The model with highest accuracy in the test dataset was saved. The STRING 

subgraph knowledge is retrieved during training and testing. Due to computational and 

memory limitations, we randomly retrieved at most 200 neighboring nodes in the GCN 

modules. For GAT and GAT_large, at most 100 neighboring nodes were selected. The 

models were implemented by pytorch and trained on an MSI GeForce RTX 2070 GPU 

Super with 8Gb memory on a local machine. To compare the model performance using 

STRING PPI data alone and with the genomics data, the models without genomics data 

were named GCN_nonGeno and GAT_nonGeno. For each non-geno versions, the PPIGE 

module was the same as in the corresponding normal version, and only graph 

representation was used in the LED module to predict the distribution of link. Since the 

genomic data was removed, GAGA module was not be applied. The max aggregator [15] 

was applied to learn the final subgraph representation.  

Model comparison. The multi-layer DNN, random forest, and kernel support vector 

machine (SVM) were selected for the comparison. For the multi-layer DNN, we used 4 

layers and set the hidden sizes in each layer to be 128, 64, 32, 2 empirically. The activation 

function was ReLU for each layer except the final layer, which used the SoftMax function. 

The dropout mechanism was added after the first three layers. The dropout rate was 0.1. 

The optimizer was Adam with 𝛽9 = 0.8, 𝛽A = 0.999 and 𝜀 = 10@� and the learning rate was 

set to 0.001. For random forest and kernel-SVM, the input was the concatenation of the 

genomic data of two genes. For random forest, n_estimators and max_depth parameters 

were set to 80 and 7 respectively. For kernel-SVM, the radial basis function (RBF) kernel 

was used. The random forest and kernel-SVM were implemented using the scikit-learn 

package in python. 

Evaluation results. Five evaluation metrics, accuracy, AUC, recall, precision and 

specificity, were used. Table 3 showed the evaluation results. As seen, the proposed 

deepSignalingLinkNet outperformed other models. In addition, the integration of omics 

data with the PPI topological data improved the prediction accuracy. Moreover, the GAT 

(attention mechanism) version outperformed all other models. As seen in Fig. 4, the GAT 

had the similar performance compared with the GAT_large model, which were 

outperformed the GCN model significantly.  
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Table 3. Model comparison result 

    Accuracy AUC Recall Precision Specificity  

Only 
genomic 

data 

RandomForest 0.714 0.798 0.721 0.714 0.708 

Kernel-SVM 0.612 0.658 0.531 0.631 0.692 

DNN 0.721 0.797 0.725 0.721 0.717 

Only 
topological 

data 

GCN_nonGeno 0.752 0.807 0.561 0.911 0.945 

GAT_nonGeno 0.834 0.925 0.762 0.892 0.907 

The 
Proposed 

Model 

GCN 0.782 0.847 0.725 0.820 0.839 

GAT 0.888 0.954 0.876 0.898 0.900 

GAT_large 0.886 0.953 0.865 0.904 0.907 

 

 

 

 

 

 

Figure 4. Trends of AUC, Accuracy, Recall and Loss of the GCN, GAT and 

AGT_large models. 
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3.3 Model performance evaluation on whole KEGG signaling pathways. 

In section 3.2, the models were evaluated by using randomly selected signaling interaction 

links from all the KEGG signaling pathways. In this section, the models were evaluated by 

using the whole signaling pathways, which can evaluate the transferability of the models 

to predict the signaling interaction links among a set of new genes or proteins.    

Dataset Setting. All the signaling interactions of 10 pathways were selected as testing 

data. Then, 180 pathways were selected as training data. The remaining 33 pathways 

were used as validation data. For each signaling pathway in the testing and validation 

datasets, the signaling interactions were used as the true positive, and the rest gene pairs 

(without signaling interaction links) were used as true negative. For the training dataset, 

the signaling interactions were used as true positive, and 4 times number of true negative 

interactions were randomly selected.  

Model Setting. Since had the best performance in the aforementioned validation, the 

GAT_large model was selected for this validation. All the configurations were the same as 

the above experiment except the epoch number was 10. We also set 𝛾� = 3 in focal loss 

considering the unbalanced training dataset. The four-fold cross-validation was employed 

to evaluate the models.  

Evaluation results. Table 4 showed the performance of the GAT_large version of the 

proposed model in test pathways. As seen, the average AUC of was ~0.75, which was 

expected to be much lower than the AUC values in the above validation. One challenge 

is because that there were much more negatives than the true positive signaling 

interaction links. In another word, the curated signaling interaction links are much sparser 

compared with the STRING PPI interactions.  

 

Table 4. Signaling pathway inference result 

    Accuracy AUC Recall Specificity  

GAT_large 

CV1 0.745 0.758 0.615 0.748 
CV2 0.695 0.828 0.806 0.691 
CV3 0.747 0.716 0.559 0.753 
CV4 0.695 0.704 0.588 0.698 
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Average 0.720 0.752 0.642 0.722 
 

 

4. Discussion and conclusion 

Understanding the signaling cascades among a set of proteins that potentially regulate 

tumor development and drug response is one of the most critical and challenging tasks in 

cancer molecular biology. To date, there is a lack of effective computational models for 

the signaling interaction link prediction. Herein, we proposed a novel deep learning model, 

deepSignalingLinkNet, to predict signaling interaction links by integrating transcriptomics 

data and copy number data and PPIs. The advantages of the proposed deep learning 

model, compared with the gene co-expression and shortest path-based models, are that 

the model was trained using the curated KEGG signaling pathways to identify the 

informative omics and PPI topology features in the data-driven manner. The validation 

results indicated the feasibility of signaling cascade prediction using the proposed deep 

learning models. Also, it can potentially predict the novel signaling cascades among the 

new proteins by transferring the learned patterns on the curated signaling pathways.  

This is a novel and exploratory study for signaling interaction link prediction. There are 

some limitations and challenges. For example, in the curated KEGG signaling pathways, 

there were only ~4,000 proteins with the TCGA genomics data, whereas there were 

17,000 genes in STRING PPI data. It is challenging to predict the new signaling interaction 

links of a large set new proteins that were not included in KEGG signaling pathways. 

Therefore, the integration of KEGG signaling pathways with other signaling pathway 

database, like wikiPathways[31], might be helpful to include more curate signaling 

pathways to train the model. Second, in addition to the Hallmark features of the genes, 

the Gene ontologies (GO) terms[32], and molecular gene set signatures[28] could also be 
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helpful to annotate the functions of genes. Thirdly, the proposed model used the genomics 

data of 13 cancer types, which was developed for the general signaling interaction link 

prediction. It is interesting to expand the model to infer the patient-specific or disease 

subtype-specific activated signaling pathways like the gene co-expression and shortest-

path based signaling network analysis models.  We will investigate these challenges and 

limitations in the future work.  
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