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Abstract 

Trichoplax adhaerens is the simplest multicellular animal with tissue differentiation and somatic 

cell turnover. Like all other multicellular organisms, it should be vulnerable to cancer, yet there 

have been no reports of cancer in T. adhaerens, or any other placozoan. We investigated the 

cancer resistance of T. adhaerens, discovering that they are able to tolerate high levels of 

radiation damage (240 Gy). To investigate how T. adhaerens survive levels of radiation that are 

lethal to other animals, we examined gene expression after the X-ray exposure, finding 

overexpression of genes involved in DNA repair and apoptosis including the MDM2 gene. We 

also discovered that T. adhaerens extrudes clusters of inviable cells after X-ray exposure. T. 

adhaerens is a valuable model organism for studying the molecular, genetic and tissue-level 

mechanisms underlying cancer suppression. 
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Introduction 

Cancer is a problem for all multicellular organisms 1. Generally speaking, somatic cells must 

limit their own proliferation in order for the organism to survive and effectively reproduce. Over 

the course of 2 billion years, multicellular organisms have evolved many mechanisms to 

suppress cancer, including control of cell proliferation. Complex multicellularity has evolved 

independently at least 7 times, and there is evidence of cancer-like phenomena on each of those 7 

branches on the tree of life1. Although virtually every cell in a multicellular body has the 

potential to generate a cancer, and that risk accumulates over time, there is generally no 

association between body size or lifespan and cancer risk, an observation known as Peto’s 

Paradox2–5. This is likely because there has been selective pressure on large, long-lived 

organisms to evolve better mechanisms to prevent cancer than small, short-lived organisms 6. 

This implies that nature has discovered a diversity of cancer suppression mechanisms, which we 

have only begun to explore for their applications to cancer prevention and treatment in 

humans7,8. 

We used Trichoplax adhaerens (Placozoa) as our model organism for the present study. 

T. adhaerens is the simplest multicellular animal organism ever described (Fig.1). They are also 

ancient evolutionarily speaking, having diverged from other animals ~800 million years ago 9. T. 

adhaerens is a disk-shaped, free-living marine organism, 2–3 mm wide and approximately 15 

μm high. It is composed of only five somatic cell types, organized into three layers. T. adhaerens 

lack nervous and muscle tissues as well as a digestive system and specialized immune cells. 

They glide using the cilia of the lower epithelial layer. T. adhaerens feed on diatom algae by 

external digestion. In the laboratory, they reproduce only asexually through fission or budding 10–

13 and they feed cooperatively 14. T. adhaerens can detach from the plate surface when food is 
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depleted and float on the water’s surface. T. adhaerens can be collected from the natural world 

by placing slides in the water column where they are presumably floating 15,16,  suggesting that 

floating is part of the normal behavioral repertoire of T. adhaerens.  

Other invertebrates, such as Caenorhabditis elegans and Drosophila melanogaster have 

been useful in molecular biology and the basic sciences 17,18. However, they are not ideal models 

for cancer research because they do not have sustained somatic cell turnover, and so do not risk 

the mutations due to errors in DNA synthesis. In addition, their lifespans are very short, 

precluding the opportunity to develop cancer. T. adhaerens, on the other hand, have somatic cell 

turnover and very long lifespans - a single organism can reproduce asexually in the lab for 

decades (Petralia et al. 2014). Even with these factors that would typically predispose organisms 

to cancer - cell turnover and long lifespan - there have been no reports of cancer in T. adhaerens. 

In addition, the genome of T. adhaerens has been sequenced 19, which enables us to analyze the 

evolution of cancer genes, detect somatic mutations and quantify gene expression. Despite T. 

adhaerens’ being evolutionarily ancient, most of the known cancer genes in humans have 

homologs in T. adhaerens 19. 

It is an open question whether the lack of reports of cancer in T. adhaerens is due to a 

lack of studies or the ability of the animal to resist cancer. We set out to answer this question 

through exposing T. adhaerens to radiation and observing changes in their phenotypes and gene 

expression. By studying cancer resistance in T. adhaerens, it is possible to gain a window into 

the biological processes and the molecular mechanisms of cancer suppression that likely evolved 

in the earliest animals.  
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Figure 1. Trichoplax adhaerens is the simplest multicellular animal known to science, 

containing only 5 cell types. They have a disk-like appearance, but they can assume different 

shapes and folds. A. Two specimens of T. adhaerens, the animal on the right is folding; B. T. 

adhaerens in close vicinity; C. Magnification of a single T. adhaerens; D. At high magnification 

cells are visible in vivo without staining. 

 

 

Material and methods 
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Lab cultures. We grew T. adhaerens 20 in glass Petri dishes 100 mm diameter x 20 mm high in 

30 ml of artificial seawater (ASW) made in the laboratory by adding 32.5 grams of Instant 

Ocean® sea salt (Prod. n. 77 SS15-10) per liter of distilled water, pH=8, at constant and 

controlled temperature (23°C) and humidity (60%) with a photoperiod of 14 hrs/10 hrs light/dark 

cycle in an environmental chamber (Thermo Fisher Scientific, mod. 3940). We fed T. adhaerens 

with diatom algae (Pyrenomonas helgolandii) ab libitum. Each plate can contain hundreds of 

animals. When their numbers increase and when food is depleted, T. adhaerens detach from the 

plate surface and float on the water’s surface. We gently collected the floating T. adhaerens with 

a loop and transferred them to new plates, along with 3 ml of ASW from the old plate. This step 

is required for the animals to successfully grow in the new plates. The animal and algae cultures 

are assembled in a sterile environment using a biological hood and using sterile materials so that 

the cultures are protected from parasites and other microorganisms that might interfere with the 

maintenance of healthy cultures and experiments.  

 

X-ray exposure. We transferred 50 floating animals in fresh plates with algae 3 days before 

exposure. On the day of exposure, any floating animals were removed from the plates.  We 

exposed the animals to 160 Gy or 240 Gy using a Rad Source Technologies irradiator (mod. RS-

2000 Biological System). Considering X-ray absorbance of the borosilicate glass (Pyrex) plate 

lid (2 mm) and water in the column above the animals (3 mm), we calculated the actual X-ray 

exposure of specimens to be 143.6 Gy and 225.9 Gy respectively. We will refer to the irradiator 

setting values (160 Gy and 240 Gy) hereinafter. To estimate the number of extrusions per animal 

and to monitor the morphological changes overtime, we transferred a single animal per well into 

24 well-plates seeded 7 days before with algae (P. helgolandii) of both control and experimental 
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plates. Dose finding tests suggested that 240 Gy is the maximum single dose tolerance for T. 

adhaerens. After 30 days only a few animals (<5%) survived but they repopulated the culture.  

 

Morphological and morphometric analysis. We observed the animals under a Nikon 

SMZ1270 dissecting microscope and a Nikon Eclipse Ti-U inverted microscope. We recorded 

images and videos by using a Nikon DS-Fi2 camera. We counted the treated (n=1085) and 

control (n=992) T. adhaerens and measured the size of the treated (n=1085) and control (n=992) 

animals present on the 10 plates of control and 10 plates treated replicas using ImageJ software 

21. Images used for morphometric analysis were taken at 20X magnification.   

  

DNA damage evaluation.  We used the silver-stained Comet alkaline assay (Travigen®, 

Cat#4251-050-K) 22,23 to measure the level of DNA fragmentation according to the 

manufacturer's specifications and we used ImageJ software 21 to quantify the DNA 

fragmentation. 

 

Flow cytometry analysis. The human histone H2AX protein is well conserved in T. adhaerens 

(TriadG64252, 82% identity). In particular, serine 139 is present both in human and T. adhaerens 

protein (BLAST, 24). Thus, we used the H2A.X Phosphorylation Assay Kit (Flow cytometry, 

Millipore, Catalog # 17-344) to detect the level of phosphorylated (serine 139) histone H2AX. We 

collected 100 animals immediately after the X-ray exposure for each control and experiment 

replica (3 biological replicas of the experiment) in ASW. We then removed the ASW and we 

dissociated the cells in cold Mg++ and Ca++ free PBS with 20 mM EDTA by gently pipetting the 

collected animals soon after adding the PBS-EDTA buffer. The samples were then kept on ice for 
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5 minutes to ensure complete dissociation. We processed the dissociated cells according to the 

manufacturer's specifications and we quantified the level of phosphorylated histone H2AX using 

an Attune™ NxT Flow Cytometer (Invitrogen™).  

 

Gene expression analysis: RNA-seq. We treated the T. adhaerens with 240 Gy of X-rays. After 

2 hours we extracted the total RNA (RNeasy® mini kit, Qiagen, cat. n. 74104) from 40 animals 

for each of the 3 experimental replicates (total, n=120) and respective controls (total, n=120). 

After verifying the purity and integrity of the RNA using an Agilent 2200 TapeStation, part of 

the extracted RNA was utilized for RNA-seq analysis in order to study the change in genetic 

expression between controls and experimental specimens at the level of the entire transcriptome. 

We sequenced the samples using an Illumina NextSeq 500 instrument. We checked the quality of 

the RNA-seq reads for each sample using FastQC v0.10.1 and we aligned the reads with the 

reference genome using STAR v2.5.1b (22.68 million reads uniquely mapped on average per 

sample). Cufflinks v2.2.1 was used to report FPKM values (Fragments Per Kilobase of 

transcripts per Million mapped reads) and read counts. TPM (Transcripts Per Million) was 

calculated using R software25. We performed the differential expression analysis using the 

EdgeR package from Bioconductor v3.2 in R 3.2.3. For each pairwise comparison, genes with 

false discovery rate (FDR) <0.05 were considered significant and log2-fold changes of 

expression between conditions were reported after Bonferroni correction. We analyzed the 

differentially expressed genes using Ensembl 26 and PANTHER 27 software. 

 

Gene expression analysis: real-time PCR. We used the same RNA extracted for the RNA-seq 

analysis to validate the transcriptome analysis and we extracted the RNA (RNeasy® mini kit, 
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Qiagen, Cat. No. 74104) at different times after being exposed to X-rays (2, 6, 12, 24, 48 hours) 

to study the expression of TriadG64021 (homolog of the human TP53 gene) and TriadG54791 

(homolog of the human MDM2 gene). We extracted the RNA from 50 animals coming from 4 

different plates exposed to 160 Gy X-rays and 4 control plates. Each experiment was repeated 

thrice. We assessed the RNA integrity through an Agilent 2200 TapeStation system. We 

retrotranscribed 400 ng of RNA of each specimen using the SuperScript®Vilo™ cDNA synthesis 

kit (Invitrogen) according to the manufacturer's protocol. We used the SYBR green fluorescent 

dye (Power SYBR® Green, PCR master mix, Applied Biosystems) to monitor DNA synthesis. 

We reported the relative expression values for each gene as a ratio of the gene expression level to 

TriadT64020 (homolog of the human GAPDH gene) expression level in the same sample and 

normalized for the controls level of expression 28,29.  

         We designed the primers using the software Primer3 30,31 (Tab.1S).  

 

Whole genome sequencing (WGS). We collected 2 groups of specimens: Group 1 is composed 

by a specimen (parental), a small animal derived from an asymmetric fission of the parental 

animal and an extrusion derived from the parental specimen. Group 2 is composed by a specimen 

(parental) and an extrusion derived from the same animal. We collected the samples after 82 and 

72 days, respectively from the X-ray treatment. We extracted the DNA using the NucleoSpin® 

Tissue XS kit (Takara, cat.n.740901.50) according to the manufacturer's specifications.  

We generated Illumina compatible Genomic DNA libraries on Agilent’s BRAVO NGS 

liquid handler using Kapa Biosystem’s Hyper plus library preparation kit (KK8514). We 

enzymatically sheared the DNA to approximately 300bp fragments, end repaired and A-tailed as 

described in the Kapa protocol. We ligated Illumina-compatible adapters with unique indexes 
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(IDT #00989130v2) on each sample individually. The adapter ligated molecules were cleaned 

using Kapa pure beads (Kapa Biosciences, KK8002), and amplified with Kapa’s HIFI enzyme 

(KK2502). Each library was then analyzed for fragment size on an Agilent’s Tapestation, and 

quantified by qPCR (KAPA Library Quantification Kit, KK4835) on Thermo Fisher Scientific’s 

Quantstudio 5 before multiplex pooling and sequencing a 2x100 flow cell on the NovaSeq 

platform (Illumina) at the Collaborative Sequencing Center. 

We loaded 1500pM of the library pool with 1% PhiX for error tracking onto a NovaSeq 

SP flowcell for 101x8x8x101bp reads. Sequencing was performed using the Illumina NovaSeq 

6000 SP Reagent Kit (200 cycles; cat#20040326) on an Illumina NovaSeq 6000.  

We checked the quality of WGS reads for each sample using FastQC v0.10.132 and 

aligned them to the T.adhaerens assembly deposited in DDBJ/EMBL/GenBank as accession 

number ABGP00000000 using Burrows–Wheeler short-read alignment tool, BWA-MEM 

version 0.7.1533. After alignment, we discovered SNPs and indels following the GATK Best 

Practices workflow of germline short variant discovery 34. We pre-processed raw mapped reads 

by adding read groups, indexing, marking duplicates, sorting, and recalibrating base quality 

scores. We called the variants using HaplotypeCaller 35. We discarded according to their quality 

score (Q score <30) and coverage (<10X). After discarding those regions, we obtained coverage 

of 10.1% (parental animal 1), 9.3% (small asymmetric fission from parent 1), 2.7% (extrusion 1), 

28.7% (parental animal 2), and 7.6% (extrusion 2). We annotated the variants by SnpEff (version 

4.3i)36.  

 

 

Results 
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We found that T. adhaerens are able to tolerate high levels of radiation and are resilient to DNA 

damage. Exposure to X-rays triggered the extrusion of clusters of cells which subsequently died. 

We also found that radiation exposure induced the overexpression of genes involved in DNA 

repair and apoptosis.  

 

T. adherens are radiation tolerant. T. adhaerens can tolerate 240 Gy maximum single dose X-

ray exposure. No T. adhaerens survived exposure to 280 Gy of X-rays. At 240 Gy, less than 5% 

of the T. adhaerens survived (measuring the exact percentage is challenging because T. 

adhaerens divide and extrude cells during the experiment). These surviving T. adhaerens were 

able to repopulate the culture after 30 days of exposure to 240 Gy. We observed morphological 

and behavioral changes after X-ray exposure, including blisters, changes in the shape of the 

animals, darker cellular aggregates and extrusion of clusters of cells (Fig. 2). These 

morphological changes were reversible in the animals that survived. T. adhaerens that survived 

also appeared to fully recover. 
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Figure 2. Radiation exposure causes morphological changes in T. adhaerens. A. Sections of the 

animals can become elongated (arrows), 20 days after 240 Gy exposure; B. Dark tissue mass 

projecting from the dorsal epitelium (arrow) of a T. adhaerens, 82 days after 160 Gy exposure; 

C. Dark tissue mass (asterisk) in the middle of what is either a small animal or extrusion, 70 days 

after 160 Gy exposure; D. A folded T. adhaerens that is not moving, 36 days after 80 Gy 

exposure; this animal eventually recovered. 

 

We found that the total number of discrete T. adhaerens entities (including both parents 

and extruded cells) rapidly increased through budding and fission immediately after X-ray 

irradiation (Repeated measurement ANOVA, P<0.01, Fig. 3) and their size significantly 
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decreased (Repeated measurement ANOVA, P<0.0001, Fig. 4), suggesting that the animals 

budded or divided without adequate physiological cell proliferation to regenerate their original 

size. After day 7, the total number of T. adhaerens in the treated group began to decrease (Fig. 

3).  

    

 

 

 

Figure 3. Number of T. adhaerens in control (green) and X-ray exposed experimental plates 

(red) before (0h) exposure, and then 24, 48, 72 hours, and 7 days after exposure to 160 Gy of X-

rays. T. adhaerens were counted under the microscope and the reported number is a combination 

of the organisms of all sizes including extrusions. 
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Figure 4. Size of T. adhaerens in T. adhaerens in control (green) and X-ray exposed 

experimental plates (red) before (0h), after 24, 48 and 72 hours 160 Gy of X-ray exposure. T. 

adhaerens were counted under the microscope, including extrusions. Histograms represent the 

mean ± s.e.m. (error bars). 

 

 

T. adhaerens extrude clusters of cells. The extruded bodies (Fig. 5) initially are flat and 

attached to the plates bottom but before dying they acquired a spherical shape (Fig. 2S). A week 

after X-ray exposure the dead extruded buds (65 out of 83 buds) from the experimental animals 

exceeded the number of dead buds (5 out of 71 buds) in the control (Fisher exact text, 

P<0.00001). In addition to regular buds, we observed extruded disk-shaped or spherical micro-

buds (n=16, ⌀=182.01μm ± 23.40 s.e.m.) in the experimental plates, but not in the control plates. 
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These micro-buds are only visible at higher magnification and we did not include them in the 

number and size measurements of organisms presented in Figure 3 and 4.  

 

 

 

Figure 5. A. Extrusion (arrows) of brownish putative cancer-like cells; insert, magnification of 

the same extrusion. B. The cancer-like cells and the normal cells detached from the main body 

formed a new animal. The extrusion was observed and isolated 37 days after X-ray exposure. C. 

Over time the clear, apparently normal cells of the extruded body reduce in number, leaving only 

the apparently damaged cells which eventually died. This specimen was exposed to 160 Gy X-

rays. A: bright field, insert, B and C: differential interference contrast (DIC), scale bars=50μm.  

 

T. adhaerens survive with extensive DNA damage 

We tested the animals with a Comet assay and found a catastrophic level of DNA fragmentation 

soon after a submaximal (160Gy) X-ray exposure (DNA fragmentation: treated= 94.46% ± 0.54 
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S.D. (n=77 cells), controls=13.83 ± 8.15 S.D. (n=81 cells), Mann-Whitney U Test, P<0.00001, 

Fig. 5). The H2AX assay confirmed DNA damage after X-ray exposure (γ-H2AX positive cells: 

treated= 43.70% ± 13.36 S.D., controls=21.37% ± 4.86 S.D., -test, P=0.26, Fig. 1S). 

 

 

 Figure 6. Representative images of the comet assay measuring DNA strand breaks. A. The 

controls have few nuclei showing DNA fragmentation. B. In contrast, animals exposed to 160Gy 

of X-rays have many more nuclei with extensive fragmentation of their DNA (Mann-Whitney U 
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Test, P<0.0001). The arrows indicate examples of a “comet” with the nucleus containing 

unfragmented DNA and the electrophoretic migration of fragmented DNA (tail, shown in the 

inset of panel B). 

 

Gene expression changes. We focused on the overexpressed genes because X-ray exposure can 

generally reduce gene expression. We found 74 genes significantly overexpressed (logFC>2, 

FDR<0.05) after 2 hours from X-ray exposure (Tab. 1, Tab. 2S). Among these, 5 genes with a 

human ortholog (given in parentheses) are involved in DNA double-strand break repair 

mechanisms: TriadG28563 (RAD52), TriadG50031 (LIG4), TriadG53902 (DCLRE1C), 

TriadG25695 (RECQL5), TriadG61626 (XRCC6). Other genes such as TriadG55661, 

TriadG51590, TriadG50243 (POLB), TriadG51591, TriadG28268 (POLL), and TriadG57566 

(LIG3) are involved in different mechanisms of DNA repair. Interestingly, the TriadG28470 

(EIF41B) radioresistant gene 37 is overexpressed after treatment. In addition, we identified up-

regulated genes involved in signaling, microtubules activity, transporters, stress response, and 

other functions. There is marginal or no functional information for 20 of the overexpressed genes 

(Tab. 2S).  

We focused on two genes: TP53 (TriadG64021) and MDM2 (TriadG54791), the main 

negative regulator of TP53, whose functions in the processes of apoptosis and oncogenesis is 

well known. MDM2 and TP53 genes are well conserved in T. adhaerens 38. RNA-seq analysis  

 

Gene name logFC P value FDR Gene name logFC P value FDR 

TriadG62277 24.89 2.9E-09 3.3E-05 TriadG18263 7.92 1.5E-04 3.2E-02 

TriadG6927 13.48 4.0E-04 4.4E-02 TriadG58306 7.89 1.2E-04 3.0E-02 
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TriadG51932 13.47 5.6E-05 2.3E-02 TriadG56741 7.86 4.6E-04 4.7E-02 

TriadG28805 12.71 1.1E-05 2.1E-02 TriadG54493 7.80 2.0E-04 3.2E-02 

TriadG61077 12.23 1.3E-05 2.1E-02 TriadG56088 7.80 1.2E-04 3.0E-02 

TriadG30313 11.83 2.2E-05 2.1E-02 TriadG57189 7.78 1.7E-04 3.2E-02 

TriadG28548 11.08 1.9E-04 3.2E-02 TriadG28470 7.77 4.9E-04 4.9E-02 

TriadG2616 10.88 2.5E-05 2.1E-02 TriadG52445 7.72 1.6E-04 3.2E-02 

TriadG9891 10.50 5.4E-05 2.3E-02 TriadG31423 7.67 1.8E-04 3.2E-02 

TriadG51843 10.38 4.2E-05 2.3E-02 TriadG51870 7.66 1.7E-04 3.2E-02 

TriadG61611 10.17 5.2E-05 2.3E-02 TriadG50031 7.66 4.9E-04 4.9E-02 

TriadG49741 10.12 6.1E-05 2.3E-02 TriadG58144 7.62 2.4E-04 3.5E-02 

TriadG60751 10.08 1.2E-04 3.0E-02 TriadG28044 7.56 3.0E-04 3.9E-02 

TriadG57566 9.80 5.7E-05 2.3E-02 TriadG49816 7.51 2.7E-04 3.8E-02 

TriadG62635 9.60 2.4E-05 2.1E-02 TriadG19828 7.49 1.9E-04 3.2E-02 

TriadG53566 9.59 2.3E-04 3.4E-02 TriadG60167 7.39 3.7E-04 4.4E-02 

TriadG8412 9.26 4.5E-05 2.3E-02 TriadG58120 7.37 2.4E-04 3.5E-02 

TriadG50911 9.25 7.8E-05 2.6E-02 TriadG27148 7.30 2.7E-04 3.8E-02 

TriadG53185 9.24 3.0E-04 3.9E-02 TriadG53902 7.30 1.6E-04 3.2E-02 

TriadG56959 9.22 1.0E-04 3.0E-02 TriadG62514 7.27 3.7E-04 4.4E-02 

TriadG63511 9.16 4.3E-05 2.3E-02 TriadG51797 7.25 2.8E-04 3.8E-02 

TriadG62773 8.99 6.0E-05 2.3E-02 TriadG25695 7.24 2.0E-04 3.2E-02 

TriadG55476 8.98 5.2E-04 5.0E-02 TriadG20735 7.19 2.6E-04 3.7E-02 

TriadG28268 8.91 1.9E-05 2.1E-02 TriadG30401 7.16 3.9E-04 4.4E-02 

TriadG56020 8.48 5.4E-04 5.0E-02 TriadG56259 7.14 1.4E-04 3.1E-02 

TriadG55798 8.38 7.4E-05 2.6E-02 TriadG52125 7.05 1.4E-04 3.1E-02 

TriadG28563 8.37 5.3E-05 2.3E-02 TriadG55661 7.04 3.5E-04 4.3E-02 
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TriadG23897 8.35 2.1E-04 3.3E-02 TriadG52757 6.96 3.7E-04 4.4E-02 

TriadG57629 8.33 1.1E-04 3.0E-02 TriadG30441 6.91 2.9E-04 3.9E-02 

TriadG4311 8.27 1.2E-04 3.0E-02 TriadG63052 6.88 3.9E-04 4.4E-02 

TriadG60371 8.22 4.0E-04 4.4E-02 TriadG51590 6.88 2.1E-04 3.3E-02 

TriadG33759 8.19 3.7E-04 4.4E-02 TriadG28067 6.87 2.6E-04 3.7E-02 

TriadG63557 8.13 2.0E-04 3.2E-02 TriadG52074 6.61 5.3E-04 5.0E-02 

TriadG58689 8.10 1.8E-04 3.2E-02 TriadG56514 6.46 5.3E-04 5.0E-02 

TriadG61626 8.05 4.1E-04 4.4E-02 TriadG50243 6.41 3.8E-04 4.4E-02 

TriadG59637 8.03 1.3E-04 3.0E-02 TriadG51591 6.37 5.2E-04 5.0E-02 

TriadG60882 7.98 1.3E-04 3.0E-02 TriadG53288 6.32 4.9E-04 4.9E-02 

 

Table 1. Genes overexpressed after 2 hours following X-ray exposure. Seventeen Five genes are 

overexpressed in relation to the expression in the control samples, logFC= log2 relative fold 

change. We used the false discovery rate (FDR) correction for multiple comparisons. 

 

suggests that MDM2 is overexpressed (20-fold), while the expression of TP53 is similar to its 

expression in controls. Thus, we conducted additional experiments to investigate MDM2 and 

TP53 genes’ expression, exposing the animals to 240 Gy of X-rays. The RNA was extracted at 

different times after being exposed to X-rays (2, 6, 12, 24, 48 hours). MDM2 and TP53 genes’ 

expression was analyzed by real-time PCR. We found that the expression of MDM2 was higher 

(12-fold) after two hours from the beginning of the experiment and decreased over time. On the 

other hand, the expression of TP53 was lower and indistinguishable from the controls across all 

time points (Mann-Whitney test, MDM2 vs control, p<0.05; TP53 vs control, p=NS, Fig. 7). 
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Figure 7. Change in TP53 and MDM2 gene expression in T. adhaerens after X-ray exposure. 

Each experiment was repeated thrice (Mann-Whitney test, MDM2 vs control, p<0.05; TP53 vs 

control, p=NS; TP53 vs MDM2, paired t-test, P<0.05). Histograms represent the mean (log10 

fold) ± s.e.m. (error bars). 

 

DNA sequencing of T. adhaerens and extruded buds. We sequenced the genomes of two pairs 

of parental animals and their extruded bodies (as well as a viable, smaller T. adhaerens derived 

from an asymmetric fission of the first parental animal). We found an average of 930 mutations 

per Mb. In regions of the genome where both parent samples had at least 10X converge, 24.5% 

of the detected mutations were shared, suggesting that the majority of detected mutations were 
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caused by the X-ray exposure. The coverage was not sufficient to compare parental genomes and 

the extrusions. However, we did find a statistically significant enrichment of mutations in the 

apoptosis pathway, FE=1.88, FDR=0.017 for the pooled 5 samples. 

 

Discussion 

We found that T. adhaerens are particularly resilient to DNA damage, which may explain why 

there have been no reports of cancer in placozoans. Mice die when exposed to 10 Gray of 

radiation39,40. 3–7 Gy of X-rays induces severe DNA damage in mammalian cells 41 and 6 Gy is 

almost always fatal for humans42. In contrast, cancer cell cultures exposed to a cumulative dose 

of 60 Gy develop radioresistance 43. What is fascinating about T. adhaerens is that despite 

extensive DNA damage, they survive and fully recover, and in the process, they extrude 

apparently damaged clusters of cells that eventually die. 

 

T. adhaerens appear to be highly resistant to radiation. We found that some placozoa were 

able to survive extremely high levels (240 Gy) of radiation exposure. There are several possible 

mechanisms that might underlie this radiation resistance. Tardigrades are radioresistant due to 

mechanisms that prevent DNA damage in the first place 44,45, which seems to be an adaptation to 

dehydration 46. Dehydration is unlikely to have been an issue for sea creatures like T. adhaerens 

and their radiation resistance appears not to be due to preventing the DNA damage. In fact, T. 

adhaerens suffer extensive DNA damage from the X-rays, but rely on mechanisms to repair 

DNA and maintain tissues homeostasis. Also, it is possible that their asexual reproductive 

strategy of budding reproduction might allow them to make use of many of the same 

mechanisms to extrude mutated cells in response to radiation exposure. 
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Expression of DNA repair genes and apoptotic pathways increases after radiation 

exposure. T. adhaerens up-regulate genes involved in DNA repair, apoptosis, signaling, 

microtubules activity, transporters, stress response and radioresistance (Tab.1). In particular, our 

detection of increased expression of the radioresistance gene TriadG28470 (EIF41B) is a nice 

(positive control) validation of our experimental approach. Interestingly, TriadG53566 

(SMARCE1), a gene associated with chromatin remodeling complexes SWI/SNF, is also 

overexpressed. SWI/SNF complexes are involved in a variety of biological processes, including 

DNA repair. There is also evidence that SMARCE1 has a tumor suppressor function 47. The other 

genes that were overexpressed after X-ray exposure, with unknown or poorly-known functions 

may be related to DNA repair, tissue homeostasis or apoptosis. For instance, Triad28044 is a 

homolog of the human gene EMC2. The function of EMC2 is not well known in humans but our 

results suggest that at least one of its functions may be X-ray damage response. 

We also found that, after radiation exposure, MDM2, the negative regulator of TP53, is 

overexpressed in T. adhaerens but TP53 expression does not increase. This may be an adaptation 

to prevent catastrophic levels of TP53-induced cell death after X-ray exposure, while the animal 

activates mechanisms of DNA and tissue repair. A possible interpretation of these results is that 

MDM2 represses TP53 activity soon after X-ray exposure. It is also possible that MDM2 has 

additional functions related to DNA repair 48. Although MDM2 is well conserved in evolution, 

neither Caenorhabditis elegans nor Drosophila melanogaster have MDM2 38, suggesting that T. 

adhaerens may be a particularly good model for studying apoptosis. 

T. adhaerens extrudes apparently damaged cells that subsequently die. One striking 

mechanism we observed for dealing with potentially damaged and mutated cells is extrusion of 
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those cells. With the small number of samples and the large number of mutations, we did not 

have enough statistical power to identify systematic differences in parental and extruded cells. 

We did detect an over-abundance of mutations in apoptotic pathways, as well as over-expression 

of MDM2. This may be due to natural selection at the cell level – cells with those mutations and 

responses would tend to survive, while cells that lacked those mutations and responses probably 

died.  

In T. adhaerens, X-ray exposure triggers cell extrusion but the resulting buds are not a 

form of asexual reproduction. Initially, it is difficult to distinguish extrusion of inviable cells 

from asexual budding, and so the number of animals seems to increase soon after X-ray 

exposure. But, as we followed those buds, we found that they almost always die (Fig. 4). This 

extrusion may be a tissue or organismal strategy to remove damaged cells from the main animal 

body. We hypothesize that this is a cancer suppression mechanism, extruding pre-malignant cells 

before they can threaten the organism. This capacity for extrusion of cells might be responsible 

for the absence of evidence of cancer in T. adhaerens.  

While the use of extrusion to prevent cancer may seem only relevant to simple 

organisms, the majority of human cancers arise in epithelial tissues, where extrusion and 

shedding of damaged cells could be a strategy for eliminating cancerous growths (such as the 

tissues of the skin and gut). There are hints that similar processes of extrusion of oncogenic cells 

may be at work in human cancer resistance 49–52. Apoptotic cells and over-proliferating cells can 

trigger extrusion 49–52. The Sphingosine 1-Phosphate pathway contributes to its regulation and is 

accomplished through cytoskeleton remodeling 53.  

The extrusion process is highly conserved in evolution 49–52. Extrusion is involved in 

development, initiating cell differentiation, and epithelial-mesenchymal transitions in different 
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organisms ranging from invertebrates to vertebrates 54. Bacterial infection stimulates shedding, 

suggesting that cell extrusion is also a defensive mechanism against pathogens; in fact, bacteria 

can hijack the extrusion molecular mechanisms to invade underlying tissues 54. 

Cell cooperation (signaling) and competition are two important factors in extrusion54. 

Cell competition is a cell-elimination process through which cells can eliminate defective (e.g. 

growth rate, metabolic capacity) adjacent cells. The aberrant activation of signaling pathways in 

emergent cancer cells can be recognized by normal cells and triggers the elimination of the 

defective cells. 

Cell competition could have a key role in Placozoa because these simple animals have 

not evolved a complex tissue organization. The extrusion of damaged cells may be a 

manifestation of cell-cell policing, a process that involves both cell competition and the 

regulation of cellular cooperation. 

 Extrusion of damaged cells is an understudied cancer suppression mechanism. At the 

moment, this process is only partially understood as it can only be studied in vivo in intact 

organisms. The opportunity to study cell extrusion in a simple animal model like T. adhaerens 

allows us to analyze the molecular mechanisms at the base of this process in detail. More 

broadly, extrusion may allow tissues to defend themselves against neoplastic cells; however, 

extrusion might also, in some cases, enable the spread of tumoral cellular aggregates in 

surrounding tissues and in the bloodstream, facilitating the formation of metastasis in advanced 

tumors. In fact, the metastatic efficiency of tumor cells increases when cells aggregate in 

multicellular clusters 55. In this case, it is possible that what as originally a defense mechanism 

may be subverted by neoplasms in order to metastasize. Understanding this could potentially 
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lead to interventions help shed pre-cancer cells, to prevent cancer, or alternatively, even suppress 

this extrusion process to help prevent metastasis. 

 

 Both T. adhaerens and extruded buds have high levels of mutation. The extremely high 

levels of DNA fragmentation and mutations caused by X-ray radiation suggests that T. 

adhaerens is either very good at repairing DNA or is simply able to tolerate high rates of 

mutations. The low number of samples sequenced do not allow us to draw conclusions pertaining 

to differences between the parental and extruded samples, but the impairment of apoptosis 

mechanisms alongside the activation of anti-apoptotic genes (e.g. MDM2) may prevent damaged 

cells from dying. T. adhaerens may avoid a massive loss of cells due to the extensive damage 

induced by X-rays by repairing or eliminating the damaged cells over the long term. Importantly, 

these pathways are well known to be impaired in cancer cells, suggesting that T. adhaerens could 

be a good model to study the mechanisms of carcinogenesis and cancer radioresistance. 

 

Future work and alternative explanations for cell extrusion after radiation exposure. We 

have suggested that cell extrusion is likely a cancer resistance mechanism in T. adhaerens, 

however, it is possible that extrusion of cells does not have to do with cancer suppression. One 

alternative hypothesis that could be tested in future work is that cell extrusion may be a 

byproduct of T. adhaerens asexual fissioning reproductive biology, or even an adaptation to 

separate into fragments in response to stressors. The reduction of animal size could reduce 

metabolic demand, mitigating physicochemical stressors56 and allowing the organism to use 

more energy to repair cellular damage. Future work could explore these possibilities by deeper 

sequencing of the parental and extrusion DNA as well as mRNA. RNA expression should reveal 
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if the extrusions are dying cells, neoplastic cells, or (damaged) juvenile organisms, which could 

be compared to T. adhaerens at different stages of reproduction, development and response to 

physicochemical stressors. Single-cell DNA sequencing could also reveal if the extrusions are a 

clonal or a heterogeneous collection of damaged cells. 

 

Conclusion 

Our experiments show that T. adhaerens is highly radiation resistant and that radiation 

exposure causes changes in the expression of genes associated with DNA repair and apoptosis. 

As a model system, it can potentially be used to identify new genes involved in fundamental 

processes associated with DNA repair, apoptosis regulation and tissue level cancer protection in 

vivo. Further, T. adhaerens is capable of extruding non-viable cells after radiation exposure, 

suggesting that the process of extrusion might be an important and understudied mechanism of 

cancer suppression. Together these results show promise for T. adhaerens as a model system for 

studying resilience to radiation exposure as well as the genetic and molecular mechanisms 

underlying DNA repair and apoptosis. 
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