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Abstract

The ancestral recombination graph (ARG) contains the full genealogical information of the
sample, and many population genetic inference problems can be solved using inferred or sampled
ARGs. In particular, the waiting distance between tree changes along the genome can be used
to make inference about the distribution and evolution of recombination rates. To this end, we
here derive an analytic expression for the distribution of waiting distances between tree changes
under the sequentially Markovian coalescent model and obtain an accurate approximation to
the distribution of waiting distances for topology changes. We use these results to show that
some of the recently proposed methods for inferring sequences of trees along the genome provide
strongly biased distributions of waiting distances. In addition, we provide a correction to an
undercounting problem facing all available ARG inference methods, thereby facilitating the use
of ARG inference methods to estimate temporal changes in the recombination rate.

1 Introduction

At each position of the genome, the relationship among individuals in a sample can be characterized
by a tree, known as a genealogical or coalescent tree, and it can be regarded as the result of a
generative process called the coalescent (Kingman, 1982a,b). In the presence of recombination, the
genealogies can vary at different positions of the genome, and the ancestral recombination graph
(ARG) — the structure which fully describes the joint distribution of coalescent trees along the
genome — provides all the information about the genealogical history of a sample, including the
locations of recombination events. The full ARG can be also seen as the result of generative process,
the coalescent with recombination (Griffiths, 1981; Hudson, 1983). Although it is straightforward to
simulate under this process (Hudson, 2002; Kelleher et al., 2016), inferring ARGs from population
genetic variation data is a very challenging problem. Indeed, much algorithmic work has been done
on reconstructing parsimonious histories with recombination (Hein, 1993; Gusfield et al., 2003; Song
and Hein, 2003; Wang et al., 2001; Lyngsø et al., 2005; Gusfield, 2014; Ignatieva et al., 2020) and
sampling ARGs under the coalescent with recombination (Griffiths and Marjoram, 1996; Fearnhead
and Donnelly, 2001; Jenkins and Griffiths, 2011; Rasmussen et al., 2014).

The coalescent with recombination (Griffiths, 1981; Hudson, 1983) was originally formulated as a
stochastic process over time, but Wiuf and Hein (1999) later showed that it can also be reformulated

∗E-mail for correspondence: rasmus nielsen@berkeley.edu

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 26, 2020. ; https://doi.org/10.1101/2020.12.24.424361doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.24.424361
http://creativecommons.org/licenses/by-nc-nd/4.0/


as a spatial process along the genome. This spatial process is not Markovian, because of the
long-range dependency caused by coalescence events between distant genomic positions. However,
constraining the spatial process to be Markovian (McVean and Cardin, 2005; Marjoram and Wall,
2006; Hobolth and Jensen, 2014) has led to useful, practical approximations of the full coalescent
with recombination while retaining accuracy in many aspects. The first Markovian approximation is
called the sequentially Markovian coalescent (SMC) (McVean and Cardin, 2005), and a subsequent
improvement (Marjoram and Wall, 2006), known as SMC’, incorporates an additional class of
genealogical events.

The Markovian approximations have successfully been applied in the estimation of changes in
population size (e.g., Li and Durbin (2011); Schiffels and Durbin (2014); Terhorst et al. (2017)),
by representing the genealogy as states of a Hidden Markov Model (HMM), whose transition prob-
abilities then can be calculated under the SMC or SMC’ assumptions. However, these methods
are restrained to at most analyzing a few individuals due to the exploding size of the state space
with increasing sample size. However, recently several different methods for inferring genealogies
in models with recombination have been proposed (e.g., Rasmussen et al. (2014); Kelleher et al.
(2019); Speidel et al. (2019)). ARGweaver by Rasmussen et al. (2014) is capable of full posterior
sampling of ARGs under the SMC or SMC’ approximations using Markov Chain Monte Carlo
(MCMC), but becomes prohibitively slow for large sample sizes (typically > 50). Relate by Speidel
et al. (2019) and tsinfer by Kelleher et al. (2019) are capable of inferences for larger sample sizes,
but do not perform full posterior sampling. Both methods only provide a single estimate of the
tree topology, although Relate also samples coalescent times using MCMC, conditionally on the
estimated local coalescent tree topology.

1.1 Motivation

In the SMC, the SMC’, and the full coalescent process with recombination, the waiting distance d
until the next recombination event along the chromosome is exponentially distributed, conditionally
on the total tree length L(T ) of the current tree T :

pr(d | T ) =
ρ

2
L(T ) exp

[
− ρ

2
L(T )d

]
, (1)

where L(T ) is in coalescent unit and ρ
2 = 2Ner denotes the population-scaled recombination rate

per bp. SMC’ provides a closer approximation to the full coalescent with recombination than does
SMC, as the former allows for events in which a lineage splits off of and coalesces back to the
same branch (type 1 in Figure 1a). This type of event occurs with particularly high probability
when the sample size is small (Wilton et al., 2015). However, it does not change the genealogy
(second tree in Figure 1b) and is therefore not sampled in ARGweaver or reported in the output of
msprime simulations (Kelleher et al., 2016). Therefore, the waiting distance between adjacent trees
in ARGweaver or msprime will not follow the exponential distribution shown in (1) (Figure 2a).
Furthermore, there are two additional types of events (types 2 and 3 in Figure 1a) that may
occur in both SMC and SMC’ approximations where some coalescence times change, but not the
tree topology (Hudson and Kaplan (1985) considered different recombination types along this line
and studied their statistical properties, and Hein et al. (2004) refined this classification). Hence,
the waiting distance distribution until next topology change is even further biased away from (1)
(Figure 2c), and similar problem was explored in the context of incompatibility by Hudson and
Kaplan (1985).

To use the waiting distance distribution between trees inferred by SMC or SMC’ models, or as
reported by common simulation programs such as msprime, for understanding patterns of recombi-
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nation, or for validating the accuracy of inference methods or simulation methods, it is necessary to
understand the distribution of waiting distances between tree topology changes induced by events
of type 1, 2, or 3 in Figure 1a.

In this paper we derive the waiting distance distributions for the SMC’ model and we use these
results to benchmark three common methods for inferring tree topologies along the length of a chro-
mosome: ARGweaver (Rasmussen et al., 2014), Relate (Speidel et al., 2019), and tsinfer (Kelleher
et al., 2019). We also illustrate the utility of the results, when used in combination with methods
for inferring trees, for inferences regarding temporal changes in recombination rate.

(a)

(b)

Figure 1: Difficulties in genealogy inference. (a) Different types of recombination events, in which
type 1 does not change the tree, type 2 and 3 change the tree but not the topology, and type 4
changes the topology; (b) Illustration of tree transition omission in tree inference methods, in which
the shaded trees are harder to detect as they are not produced by topology changes.

2 Theoretical Results

2.1 Notation

Suppose we have a sample of size n from a diploid population with constant effective population
size Ne (all times mentioned henceforth will be in coalescent units of 2Ne generations). We use
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Figure 2: The waiting distance distribution until tree or topology changes. Simulations are done
in msprime using n = 8, Ne = 1× 104, µ = r = 1× 10−8 and the distribution of simulated waiting
distances until tree or topology changes (solid lines) are compared to (1) and (4), (5) (squared lines).
[Green, blue, and red mean the conditioned quantity to be within (3 × 104, 5 × 104), (5 × 104, 7 ×
104), (7 × 104, 9 × 104) respectively.] (a) The waiting distance until tree change differs from the
simple exponential distribution in (1) (conditioning on L(T )); (b) The waiting distance until tree
change matches the corrected exponential distribution of (4) (conditioning on L(T )α(T )); (c) The
waiting distance distribution until topology change is quite different from the simple exponential
distribution in (1) (conditioning on L(T )); (d) The waiting distance distribution until topology
change matches the corrected exponential distribution of (5) (conditioning on L(T )β(T )).
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Ti to denote the length of the epoch when there are i ancestral lineages in the coalescent tree and
introduce the notation

σi = Tn + Tn−1 + · · ·+ Ti, for i = 2, . . . , n,

σn+1 = 0,

to denote the times when coalescence occurs. An(t) will denote the number of lineages at time t
ancestral to the sample. There are 2n − 2 branches in the coalescent tree before the most recent
common ancestor (TMRCA), and we index them arbitrarily by b = 1, . . . , 2n− 2. For each branch
b, we use tlb and tub to denote its lower and upper times, respectively.

(a) (b)

Figure 3: Illutration of our notational convention. (a) An(t), Ti and σj are illustrated for an
example genealogy with sample size n = 5. (b) A recombination event occurs on a branch at time
t, and the corresponding upper and lower times of the branch are tub = σ4 and tlb = σ5.

2.2 Waiting distance distribution until next tree change

The waiting distance until next tree change can be modeled as a waiting distance in a thinned
Poisson process, where we color the events differently depending on whether they produce identical
trees. Since the intensity of the un-thinned process is just the product of the tree length and the
recombination rate, the only thing which needs to be identified is the thinning parameter, the
probability of a recombination leading to a tree change. A simpler version of the problem was
previously solved using the same idea for the waiting distance distribution until a TMRCA change
for n = 2 (Carmi et al., 2014).

Now suppose the current tree is T , and the recombination happened on branch b at time t,
we have the following result regarding the probability of this recombination not changing the tree
under the SMC’ model (a type 1 event):

Proposition 1. Under the SMC’, the probability of a recombination not to change the tree, given
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its breakpoint on branch b at time t on tree T is:

P(tree unchanged | b, t, T ) =
1

i
+ eit

[
i∑

j=An(tub )+1

Pij

]
, (2)

where

i = An(t),

Pii = −1

i
e−iσi ,

Pij = exp

(
− iσi −

i−1∑
k=j+1

kTk

)
1

j
[1− e−jTj ].

By a change in tree, we here mean a change in at least one coalescence time, but the topology
may stay the same. This result, which is proved in the Appendix, shows that the probability of
a recombination event being detected depends on where it occurs in the tree. We will also later
show that this result facilitates inferences of temporal changes in recombination rates using inferred
ARGs. We also note that under the SMC model P(tree unchanged | b, t, T ) = 0.

The unconditional probability of type 1 event on a branch b under the SMC’ can then be found
by integrating over the breakpoint time, t, with respect to its conditionally uniform distribution on
the branch:

Proposition 2. Under the SMC’, the probability of a recombination happening on branch b not to
change the tree is:

P(tree unchanged | b, T ) =
1

tub − tlb

An(tlb)∑
i=An(tub )+1

p
(i)
b , (3)

where

p
(i)
b =

1

i

[
Ti + (eiσi − eiσi+1)

i∑
j=An(tub )

Pij

]
.

Now, the probability of a recombination event not changing the tree can simply be given by
a weighted sum of the probabilities in (3) over all branches in the tree, weighting by the branch
lengths:

Theorem 1. (tree-unchanging probability)Under the SMC’, the probability of a recombination
event not changing the tree is:

P(tree unchanged | T ) =

2n−2∑
b=1

[
tub − tlb
L(T )

]
P(tree unchanged | b, T )

=
1

L(T )

2n−2∑
b=1

An(tlb)∑
i=An(tub )+1

p
(i)
b .

The waiting distance between tree changes under the SMC’ is then determined as follows.
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Theorem 2. (waiting distance distribution until next tree change) Under the SMC’, the
distribution of waiting distance until next tree change given the current tree T is given by:

pr(d | T ) =
ρ

2
α(T )L(T ) exp

[
− ρ

2
α(T )L(T )d

]
, (4)

where

α(T ) = 1− P(tree unchanged | T ).

Note that the waiting distance until next tree change is still exponential, but the intensity is
reduced by a factor of α(T ). In Figure 2b we show that this expression indeed accurately describes
the waiting distance distribution observed in msprime simulations.

2.3 Waiting distance distribution until next topology change

Although inferring every tree change would be desirable for ARG inference, it is notoriously hard,
especially when scaling to hundreds, or thousands of genomes. Two of the most recent genealogy
inference programs, Relate and tsinfer, use efficient approximations to infer genomic series of trees.
However, inferences of tree changes are mostly guided by information regarding topologies, and
neither method is designed to detect changes in the tree that does not involve a change in topol-
ogy. For benchmarking and comparing these, and other programs, is therefore also important to
understand the distribution of waiting distances between changes in topology.

To derive the waiting distance distribution between topology changes, we will again use the idea
of a thinned process. The quantity of interest is the probability that a recombination event will
change the tree topology. This probability can be calculated in very similar manner to that in
Theorem 2, except that there are two more types of events of recombination and coalescent to
consider (type 2 and 3) so some extra bookkeeping is needed. In Appendix A.2, we prove the
following result:

Theorem 3. (topology-unchanging probability) For a given branch b in tree T , let b′ denote
the branch that b coalesces with and let c denote their parental branch. Then, under the SMC’,
the conditional probability that a recombination event will not change the tree topology given the
current tree T is

P(topology unchanged | T ) =
1

L(T )

2n−2∑
b=1

[ An(tlb)∑
i=An(tlb′ )+1

p
(i)
b,1 +

An(tlb′ )∑
i=An(tub′ )+1

p
(i)
b,2

]
,

where

p
(i)
b,1 =

1

i

[
Ti + (eiσi − eiσi+1)

( An(tlb′ )∑
j=An(tub′ )+1

Qij +

i∑
j=An(tuc )+1

Qij

)]
,

p
(i)
b,2 =

1

i

[
2Ti + (eiσi − eiσi+1)

(
2

i∑
j=An(tuc )+1

Qij −
An(tlc)∑

j=An(tuc )+1

Qij

)]
,

Qij = e−iσi
1

j
(1− e−jTj ) exp

(
−

i−1∑
k=j+1

kTk

)
,

Qii = −1

i
e−iσi .
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(a) (b)

Figure 4: Concentration of L(T )β(T ) after a topology-unchanging recombination. Simulations are
done using msprime under n = 20 and n = 50, in which the fold change of L(T ), β(T ) and L(T )β(T )
after recombination-unchanging recombinations are calculated. Although neither L(T ) nor β(T )
remains stable after a topology-unchanging recombination, their product remains approximately
same with high probability. This relation is shown here rather empirically with simulation results
using sample size n = 20 (a) and n = 50 (b).

Unlike the result for the distribution of waiting distance until next tree change, the waiting
distance to the next topology changing event is not exponentially distributed because of the possi-
bility of recombination events that change the tree but do not change the topology. Such events will
change the intensity of the process so that it is no longer time-homogenous. Arriving at an exact
formula is, therefore, difficult. However, we notice that there is a rather accurate approximation
method based on the following empirical observation:

Concentration phenomenon: The product of total tree length and the topology-changing prob-
ability remains approximately the same after a topology-unchanging recombination.

Notice in Figure 4 that while both the tree length, L(T ), and the probability of a topology chang-
ing recombination event, β(T ), after a topology-unchanging event, has relatively high variance, the
variance of their product is much smaller. In other words, a recombination+coalescent event that
increases the total tree length will decrease the probability that the next event is topology changing
and vice versa. The net effect is that the product of the two, L(T )β(T ), is much more stable than
either are individually. Using this concentration relation we can build an approximation for the
distribution of waiting distances until next topology change:

Observation. (Waiting distance distribution until next topology change) The distribu-
tion of waiting distance until next topology change can be approximated by:

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 26, 2020. ; https://doi.org/10.1101/2020.12.24.424361doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.24.424361
http://creativecommons.org/licenses/by-nc-nd/4.0/


pr(d | T ) =
ρ

2
β(T )L(T ) exp

[
− ρ

2
β(T )L(T )d

]
, (5)

where

β(T ) = 1− P(topology unchanged | T ).

3 Applications

3.1 Benchmark of tree inference methods

One application of the theory introduced in this article is the use for benchmarking of some ARG/-
genealogy inference methods. If the method detects every tree/topology change, or if it samples
from a correct posterior distribution of waiting distances, then the waiting distance between adja-
cent trees should be described by (4) or (5).

To investigate this, we did simulations with realistic choices of parameters (µ = r = 1 × 10−8,
Ne = 1× 104 with 8 haplotypes) and used ARGweaver, Relate, and tsinfer to infer the genealogy.
Then we compared the distribution of waiting distance between adjacent trees in the output with
our theoretical prediction (4) or (5).

Although ARGweaver does not report some tree transitions caused by type 1 recombination
(Figure 5a), causing the waiting distance distribution to be different from the exponential distribu-
tion in (1), it is indeed capable of doing approximately posterior sampling of tree changes following
(4) (Figure 5d). However, we observe a very small bias which might be due to the discretization in
ARGweaver.

However, both Relate and tsinfer are undersampling trees. Under realistic choices of mutation
and recombination rate of µ = r = 1 × 10−8 with 8 haplotypes, the waiting distance distribution
in tsinfer is quite different from (5), suggesting that tsinfer undersamples toplogy changes and
overestimates waiting distances (Figure 5e). Relate has an even stronger tendency to undersample
topology changes and to overestimate waiting distances (Figure 5f).

3.2 Inference of temporal variation of recombination rate

It is generally hard to study the evolution of recombination rate through time without specific
reference to ARGs. After sampling the ARG of a region using a program that accurately samples
tree changes, such as ARGweaver, a naive way of estimating time-specific recombination rates is
to count the number of recombination happening within each time interval, divided by the total
branch length appearing in the interval. In order to test this procedure, we simulated data under
a mutation rate of µ = 1× 10−8 and a constant recombination rate r = 1× 10−8 with 8 haplotypes
of 1Mb. However, the naive estimation procedure provides biased estimates in at least two aspects
(Figure 6): first, the inferred rates are significantly lower than the true values; second, the inferred
trajectory is not constant, leading to a false conclusion of temporal changes in the recombination
rate.

The bias mainly comes from the fact that type 1 recombinations do not result in tree change at
all and are unreported by ARGweaver, which instead reports recombination events according to (2).
As the probability of a type 1 event depends on the number of lineages, this induces the appearance
of temporal recombination rate changes. The way to correct this is to introduce “effective counts”
instead of naive counts of the recombination events in each time interval. For a recombination
happening on branch b at time t on tree T , instead of counting it as one, we assign it the following
weights:
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Figure 5: The waiting distance distribution in ARGweaver, tsinfer and Relate. Simulations
are done in msprime using n = 8, Ne = 1 × 104, µ = r = 1 × 10−8 and the distribution
of waiting distances between adjacent trees in the outputs (solid lines) are compared to (1)
and (4)/(5) (squared lines). Green, blue, and red mean the conditioned quantity to be within
(3× 104, 5× 104), (5× 104, 7× 104), (7× 104, 9× 104). The conditioned quantities are L(T ) in (a),
(b) and (c), L(T )α(T ) in (d), and L(T )β(T ) in (e) and (f). (a) The waiting distance distribution
in ARGweaver is not well-characterized by the simple exponential distribution (1); (b) The wait-
ing distance distribution in tsinfer is biasing away from the exponential distribution even more;
(c) The waiting distance distribution in Relate is significantly biasing away from the exponential
distribution; (d) The correction (4) provides a much better fit to the waiting distance distribution
in ARGweaver ; (e) The correction (5) is closer to the empirical distribution in tsinfer, but the
correction doesn’t completely solve the problem; (f) The correction (5) on Relate helps little.
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Figure 6: The time specific recombination estimation before and after correction using (2). The
naive estimation without correction (blue line) is biased significantly from the true values (green
line) and falsely indicates a decrease in recombination rates the past, whereas the correction leads to
a much more reasonable estimate (red line) which is only slightly underestimating the recombination
rate. 500 ARGs of 8 haplotypes are sampled from ARGweaver and divided into 5 groups, and each
estimate is obtained as the average over 100 ARGs from each group. The error bars represent 1
SE among the five estimates.
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1

P(tree changed | b, t, T )
=

1

1− P(tree unchanged | b, t, T )

After applying this correction, we observe that the estimate are significantly closer to the true
values (Figure 6) and no false evidence of temporal changes in the recombination rate are observed.
In real data analyses it is, therefore, possible to infer changes in recombination rates using a
combination of ARGweaver inferred trees and the correction derived here. We note that we did
not test this procedure on simulated data with time-varying recombination rates because there is
no available program to efficiently do such simulations.

4 Discussion

In this paper, we derived analytical formulae for the distribution of waiting distance to the next
tree change and close approximations for the waiting distance to the next topology change under
the SMC’ model. We use these results to show that tree transition omission in ARG/genealogy
inference methods is a common problem, causing biases away from the SMC/SMC’ assumption
that the waiting distance is exponentially distributed with intensity equal to the product of recom-
bination rate and tree length. This challenges the use of such methods for making inferences about
recombination rates and recombination rate evolution. The waiting distance between adjacent trees
reported by ARGweaver is close to what is predicted by theory, and matches that expected for a
valid Bayesian ARG sample. However, neither Relate nor tsinfer provide easily interpretable wait-
ing distances between trees, and under realistic setting in humans, undercount topology changes
and overestimate waiting distances.

We also highlight the use of ARG inference in understanding the temporal variation of recom-
bination rates, by estimating the time-specific recombination rates using the correction proposed
here, which can serve as a tool for understanding the evolution of recombination rates. However,
we note that the constant population size demography model may not apply to most scenarios for
real data, which will affect the calculation of the probability in (2). We argue that this problem
can still be solved by re-calculating the probability given a demography model, and the extension is
straightforward when the demographic model only involves a single population with changing size.
Also, ARGs could be sampled using ARGweaver-D (Hubisz et al., 2020) instead of ARGweaver
under a non-standard demography model. Finally, we note that importance sampling aproaches
could be used to adjust for model misspecifications.
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Appendices

A Proofs

A.1 Proof of Preposition 1 and Preposition 2

Proof. To simplify the notation we define i = An(t) so that t ∈ [σi+1, σi], which gives us the
following decomposition of the integral:

P(tree unchanged | b, t, T )

=

∫ tub

t

1

An(τ)
p(τ | t)dτ

=

∫ tub

t
exp

[
−
∫ τ

t
An(s)ds

]
dτ

=

∫ σi

t
exp

[
−
∫ τ

t
An(s)ds

]
dτ +

i−1∑
j=An(tub )+1

∫ σj

σj+1

exp

[
−
∫ τ

t
An(s)ds

]
dτ,

where p(τ | t) stands for the probability distribution of the rejoining time τ given the recombination
time t. We can simplify the first term and summands of the second term as follows:∫ σi

t
exp

(
−
∫ τ

t
An(s)ds

)
dτ =

∫ σi

t
exp

(
− i(τ − t)

)
dτ

=
1

i
− 1

i
e−iσieit

=
1

i
+ Piie

it,

and ∫ σj

σj+1

exp

(
−
∫ τ

t
An(s)ds

)
dτ

= exp

(
−
∫ σj+1

t
An(s)ds

)[∫ σj

σj+1

exp

(
−
∫ τ

σj+1

An(s)ds

)
dτ

]

= exp

(
− i(σi − t)−

i−1∑
k=j+1

kTk

)∫ σj

σj+1

exp

(
− j(τ − σj+1)

)
dτ

= eit exp

(
− iσi −

i−1∑
k=j+1

kTk

)
1

j
(1− e−jTj )

= Pije
it.

Proof. The probability of type 1 event on a branch b, which is the probability that a recombination
not to change the tree conditioning on it happening on branch b, can be found by integrating over
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the breakpoint time, t, with respect to its conditionally uniform distribution on the branch.

P(tree unchanged | b, T ) =
1

tub − tlb

∫ tub

tlb

P(tree unchanged | b, t, T )dt

=
1

tub − tlb

An(tlb)∑
i=An(tub )+1

∫ σi

σi+1

P(tree unchanged | b, t, T )dt.

As for the summands, we apply our previous result to get:∫ σi

σi+1

P(tree unchanged | b, t, T )dt =
1

i

[
ti + (eiσi+1 − eiσi)

i∑
j=An(tub )

Pij

]

= p
(i)
b

A.2 The proof of Theorem 3

For each branch b in the tree T we call the lineage which coalesces with it b′. And we denote the
parental lineage of b and b′ by c.

Proof. We note that the steps are basically the same with the proof of Theorem 1, which is to
approach P(topology unchanged | b, T ) by integrating P(topology unchanged | b, t, T ), and then use
the law of total probability to get P(topology unchanged | T ).

P(topology unchanged | b, T )

=
1

tub − tlb

∫ tub

tlb

P(topology unchanged | b, t, T )dt

=
1

tub − tlb

[(∫ tl
b′

tlb

+

∫ tu
b′

tl
b′

)
P(topology unchanged | b, t, T )dt

]

=
1

tub − tlb

[( An(tlb)∑
i=An(tlb′ )+1

+

An(tlb′ )∑
i=An(tub′ )+1

)∫ σi

σi+1

P(topology unchanged | b, t, T )dt

]
. (6)

We need to break cases by whether [σi+1, σi] is a time period which is shared by both branch b
and b′ or not.
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First case: t ∈ [σi+1, σi] ⊂ [tlb, t
l
b′ ], :

P(topology unchanged | b, t, T )

=

∫ tl
b′

t

1

An(τ)
p(τ | t)dτ +

∫ tu
b′

tl
b′

2

An(τ)
p(τ | t)dτ +

∫ tuc

tlc

1

An(τ)
p(τ | t)dτ

=

∫ tl
b′

t
exp

(
−
∫ τ

t
An(s)ds

)
dτ︸ ︷︷ ︸

P1

+ 2

∫ tu
b′

tl
b′

exp

(
−
∫ τ

t
An(s)ds

)
dτ︸ ︷︷ ︸

P2

+

∫ tuc

tlc

exp

(
−
∫ τ

t
An(s)ds

)
dτ︸ ︷︷ ︸

P3

and we can simply the summands as follows:

P1 =

∫ σi

t
exp

(
−
∫ τ

t
An(s)ds

)
dτ +

i−1∑
j=An(tlb′ )+1

∫ σj

σj+1

exp

(
−
∫ τ

t
An(s)ds

)
dτ

=
1

i
+Qiie

it +
i−1∑

j=An(tlb′ )+1

Qije
it,

P2 = 2

An(tlb′ )∑
j=An(tub′ )+1

∫ σj

σj+1

exp

(
−
∫ τ

t
An(s)ds

)
dτ

= 2

An(tlb′ )∑
j=An(tub′ )+1

Qije
it

P3 =

An(tlc)∑
j=An(tuc )+1

∫ σj

σj+1

exp

(
−
∫ τ

t
An(s)ds

)
dτ

=

An(tlc)∑
j=An(tuc )+1

Qije
it.

Plugging these terms back in, we obtain

P(topology unchanged | b, t, T )

=
1

i
+Aiie

it +

i−1∑
j=An(tlb′ )+1

Qije
it + 2

An(tlb′ )∑
j=An(tub′ )+1

Qije
it +

An(tlc)∑
j=An(tuc )+1

Qije
it

=
1

i
+

i∑
j=An(tuc )+1

Qije
it +

An(tlb′ )∑
j=An(tub′ )+1

Qije
it,
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and ∫ σi

σi+1

P(topology unchanged | b, t, T )dt

=
1

i

[
ti +

(
Aii +

i−1∑
j=An(tlb′ )+1

Qij + 2

An(tlb′ )∑
j=An(tub′ )+1

Qij +

An(tlc)∑
j=An(tuc )+1

Qij

)
(eiσi − eiσi+1)

]

=
1

i

[
ti +

( An(tlb′ )∑
j=An(tub′ )+1

Qij +
i∑

j=An(tuc )+1

Qij

)
(eiσi − eiσi+1)

]

= p
(i)
b,1.

Second case: t ∈ [σi+1, σi] ⊂ [tlb′ , t
u
b′ ]

By similar arguments as above, we obtain

P(topology unchanged | b, t, T )

=

∫ tu
b′

t

2

An(τ)
p(τ | t)dτ +

∫ tuc

tlc

1

An(τ)
p(τ | t)dτ

= 2

∫ tu
b′

t
exp

(
−
∫ τ

t
An(s)ds

)
dτ +

∫ tuc

tlc

exp

(
−
∫ τ

t
An(s)ds

)
dτ

= 2

[∫ σi

t
exp

(
−
∫ τ

t
An(s)ds

)
dτ +

i−1∑
j=An(tub′ )+1

∫ σj

σj+1

exp

(
−
∫ τ

t
An(s)ds

)
dτ

]

+

An(tlc)∑
j=An(tuc )+1

∫ σj

σj+1

exp

(
−
∫ τ

t
An(s)ds

)
dτ

= 2

(
1

i
+Qiie

it +

i−1∑
j=An(tub′ )+1

Qije
it

)
+

An(tlc)∑
j=An(tuc )+1

Qije
it

= 2

(
1

i
+

i∑
j=An(tub′ )+1

Qije
it

)
+

An(tlc)∑
j=An(tuc )+1

Qije
it,

and ∫ σi

σi+1

P(topology unchanged | b, t, T )dt

=
1

i

[
2ti +

(
2Aii + 2

i−1∑
j=An(tub′ )+1

Qij +

An(tlc)∑
j=An(tuc )+1

Qij

)
(eiσi − eiσi+1)

]

=
1

i

[
2ti +

(
2

i∑
j=An(tuc )+1

Qij −
An(tlc)∑

j=An(tuc )+1

Qij

)
(eiσi − eiσi+1)

]

=: p
(i)
b,2.
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Now, we can plug these results into (6) to get

P(topology unchanged | b, T ) =
1

tub − tlb

[ An(tlb)∑
i=An(tlb′ )+1

p
(i)
b,1 +

An(tlb′ )∑
i=An(tub′ )+1

p
(i)
b,2

]
,

which leads to,

P(topology unchanged | T ) =
2n−2∑
b=1

tub − tlb
L(T )

P(topology unchanged | b, T )

=
1

L(T )

2n−2∑
b=1

[ An(tlb)∑
i=An(tlb′ )+1

p
(i)
b,1 +

An(tlb′ )∑
i=An(tub′ )+1

p
(i)
b,2

]
.
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