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Abstract 12 

New small-scale, low-cost bioreactors provide researchers with exquisite control of environmental 13 

parameters of microbial cultures over long durations, allowing them to perform sophisticated, high-quality 14 

quantitative experiments that are particularly useful in systems biology, synthetic biology and 15 

bioengineering. However, existing setups are limited in their automated measurement capabilities, 16 

primarily because sensitive and specific measurements require bulky, expensive, stand-alone instruments. 17 

Here, we present ReacSight, a generic and flexible strategy to enhance bioreactor arrays for automated 18 

measurements and reactive experiment control. On the hardware side, ReacSight leverages a pipetting 19 

robot for sample collection, handling and loading. On the software side, ReacSight provides a versatile 20 

instrument control architecture and a generic event system for reactive experiment control. ReacSight is 21 

ideally suited to integrate open-source, open-hardware components but can also accommodate closed-22 

source, GUI-only components (e.g. cytometers). We use ReacSight to assemble a platform for cytometry-23 

based characterization and reactive optogenetic control of parallel yeast continuous cultures. Using a 24 

dedicated bioreactor array, we showcase its capabilities on three applications. First, we achieve parallel 25 

real-time control of gene expression with light in different bioreactors. Second, we explore the impact of 26 

nutrient scarcity on fitness and cellular stress using well-controlled, high-information content competition 27 

assays. Third, we exploit nutrient scarcity to achieve dynamic control over the composition of a two-strain 28 

consortium. To illustrate the genericity of ReacSight, we also assemble an equivalent platform using the 29 

optogenetic-ready, open-hardware and commercially available Chi.Bio bioreactors. 30 

Introduction 31 

Small-scale, low-cost bioreactors are emerging as powerful tools for microbial systems and synthetic 32 

biology research1–4. They allow tight control of cell culture parameters (e.g. temperature, cell density, 33 

media renewal rate) over long durations (several days). These unique features enable researchers to 34 

perform sophisticated experiments and to achieve high experimental reproducibility. Examples include 35 

characterization of antibiotic resistance when drug selection pressures increases as resistance evolves1, 36 

cell-density controlled characterization of cell-cell communication synthetic circuits2, and genome-wide 37 

characterization of yeast fitness under dynamically changing temperature using a pooled knockout 38 

library3. 39 
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A weakness of existing small-scale, low-cost bioreactors is their limited automated measurement 40 

capabilities: in situ optical density measurements only inform about overall biomass concentration and its 41 

growth rate, and, when available2,4, fluorescence measurements suffer from low sensitivity and high 42 

background. It is often essential to also measure and follow over time key characteristics of the cultured 43 

cell population, such as gene expression levels, cellular stress levels, cell size and morphology, cell cycle 44 

progression, proportions of different genotypes or phenotypes. Researchers usually need to manually 45 

extract, process and measure culture samples to run them through more sensitive and specialized 46 

instruments (e.g. a cytometer, a microscope, a sequencer). Manual interventions are usually tedious, 47 

error-prone and strongly constrains the available temporal resolution and scope (i.e. no time-points during 48 

night-time). It also impedes the dynamic adaptation of culture conditions in response to such 49 

measurements. Such reactive experiment control is currently gaining interest in systems and synthetic 50 

biology. It can be used to either maintain a certain state of the population (external feedback control) or 51 

to maximize the value of the experiment (reactive experiment design). For example, external feedback 52 

control can be used to disentangle complex cellular couplings and signaling pathway regulations5–8, to 53 

steer the composition of microbial consortia9 or to optimize industrial bioproduction10. Reactive 54 

experiment design can be especially useful in the context of long and uncertain experiments such as 55 

artificial evolution experiments11. It is also useful to accelerate model-based characterization of biological 56 

systems by enabling real-time parameter inference and optimal experiment design12. 57 

In principle, commercial robotic equipment and/or custom hardware can be used to couple a bioreactor 58 

array to a sensitive, multi-sample (typically accepting 96-well plates as input) measurement device. 59 

However, this poses tremendous challenges regarding equipment sourcing, equipment cost and software 60 

integration. When a functional platform is established, upgrade and maintenance of the corresponding 61 

hardware and software is also highly challenging. Accordingly, very few examples have been reported to 62 

date. For instance, only two groups have demonstrated automated cytometry and reactive optogenetic 63 

control of bacteria13 or yeast6,7 cultures, with setups limited to either a single continuous culture or 64 

multiple batch-only cultures. One group has also demonstrated automated microscopy and reactive 65 

optogenetic control of a single yeast continuous culture14. 66 

Here, we present ReacSight, a generic and flexible strategy to enhance bioreactor arrays for automated 67 

measurements and reactive experiment control. We first use ReacSight to assemble a platform enabling 68 

cytometry-based characterization and reactive optogenetic control of parallel yeast continuous cultures. 69 

Importantly, we built two versions of the platform, using either a custom-made bioreactor array or the 70 

recent low-cost, open-hardware, optogenetic-ready commercially available Chi.Bio bioreactors4. We then 71 

demonstrate its usefulness on three case studies. First, we achieve parallel real-time control of gene 72 

expression with light in different bioreactors. Second, we explore the impact of nutrient scarcity on fitness 73 

and cellular stress using highly-controlled and informative competition assays. Third, we exploit nutrient 74 

scarcity and the reactive experiment control capabilities of the platform to achieve dynamic control over 75 

the composition of a two-strain consortium. To the best of our knowledge, this last application is the first 76 

of its kind.  77 
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Results 78 

Measurement automation, platform software integration and reactive experiment control with 79 

ReacSight 80 

The ReacSight strategy (Figure 1, Text S1.1) to enhance bioreactor arrays for automated measurements 81 

and reactive experiment control combines hardware and software elements in a flexible and standardized 82 

manner. A pipetting robot is used to establish, in a generic fashion, a physical link between any bioreactor 83 

array and any plate-based measurement device (Figure 1, left). Bioreactor culture samples are sent to the 84 

pipetting robot through pump-controlled sampling lines attached to the robot arm (sampling). A key 85 

advantage of using a pipetting robot is that diverse treatment steps can be automatically performed on 86 

culture samples before measurement (treatment). Samples are then transferred to the measurement 87 

device by the pipetting robot (loading). Naturally, this requires that the measurement device can be 88 

physically positioned such that when its loading tray is open, wells of the device input plate are accessible 89 

to the robot arm. Partial access to the device input plate is not problematic because the robot can be used 90 

to wash input plate wells between measurements, allowing re-use of the same wells over time (washing). 91 

Importantly, if reactive experiment control is not needed or if it is not based on measurements, the robot 92 

capabilities can also be used to treat and store culture samples for one-shot offline measurements at the 93 

end of an experiment, enabling automated measurements with flexible temporal resolution and scope. 94 

 95 

Figure 1. ReacSight: a strategy to enhance bioreactor arrays for automated measurements and reactive experiment control. On 96 
the hardware side, ReacSight leverages a pipetting robot (such as the low-cost, open-source Opentrons OT-2) to create a physical 97 
link between any multi-bioreactor setup (eVOLVER, Chi.Bio, custom…) and the input of any plate-based measurement device (plate 98 
reader, cytometer, high-throughput microscope, pH-meter…). If necessary, the pipetting robot can be used to perform a treatment 99 
on bioreactor samples (dilution, fixation, extraction, purification…) before loading into the measurement device. If reactive 100 
experiment control is not needed, treated samples can also be stored on the robot-deck for offline measurements (the OT-2 101 
temperature module can help the conservation of temperature-sensitive samples). On the software side, ReacSight enables full 102 
platform integration via a versatile instrument control architecture based on Python and the Python web application framework 103 
Flask. ReacSight software also provides a generic event system to enable reactive experiment control. Example code for a simple 104 
use case of reactive experiment control is shown. Experiment control can also inform remote users about the status of the 105 
experiment using Discord webhooks and generates an exhaustive log file. 106 

ReacSight also provide a solution to several software challenges that should be addressed to unlock 107 

automated measurements and reactive experiment control of multi-bioreactors (Figure 1, right). First, 108 

programmatic control of all instruments of the platform (bioreactors, pipetting robot, measurement 109 

device) is required. Second, a single computer should communicate with all instruments to orchestrate 110 
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the whole experiment. ReacSight combines the versatility and power of the python programming language 111 

with the genericity and scalability of the Flask web-application framework to address both challenges. 112 

Indeed, Python is ideally suited to easily build APIs to control various instruments: there exist well-113 

established, open-source libraries for the control of micro-controllers (such as arduinos), and even for the 114 

‘clicking’-based control of GUI-only software driving closed-source instruments lacking APIs (pyautogui). 115 

Importantly, the open-source, low-cost pipetting robot OT-2 (Opentrons) is shipped with a native Python 116 

API. Hamilton robots can also be controlled with a Python API15. Flask can then be used to expose all 117 

instrument APIs for simple access over the local network. The task of orchestrating the control of multiple 118 

instruments from a single computer is then essentially reduced to the simple task of sending HTTP 119 

requests, for example using the Python module requests. HTTP requests also enable user-friendly 120 

communication from the experiment to remote users using the community-level digital distribution 121 

platform Discord. This versatile instrument control architecture is a key component of ReacSight. Two 122 

other key components of ReacSight are 1) a generic object-oriented implementation of events (if this 123 

happens, do this) to facilitate reactive experiment control and 2) an exhaustive logging of all instrument 124 

operations into a single log file. ReacSight software as well as source files for hardware pieces are made 125 

openly available in the ReacSight Git repository. 126 

Reactive optogenetic control and single-cell resolved characterization of yeast continuous cultures 127 

Our first application of the ReacSight strategy is motivated by yeast synthetic biology applications. In this 128 

context, it is critical to 1) accurately control synthetic circuits and 2) measure their output in well-defined 129 

environmental conditions and with sufficient temporal resolution and scope. Optogenetics provides an 130 

ideal way to control synthetic circuits, and bioreactor-enabled continuous cultures are ideal to exert tight 131 

control over environmental conditions for long durations. To measure circuit output in single cells, 132 

cytometry is also ideal due to high sensitivity and throughput. We thus resorted to the ReacSight strategy 133 

to assemble a fully automated experimental platform enabling reactive optogenetic control and single-cell 134 

resolved characterization of yeast continuous cultures (Figure 2A), using a benchtop cytometer as a 135 

measurement device. 136 

Detailed information on the platform hardware and software is provided in Text S1.2, and we discuss here 137 

only key elements. Eight reactors are connected to the pipetting robot, meaning that each timepoint fills 138 

one row of a sampling plate. While three rows of the cytometer input plate are accessible by the robot, 139 

we use only one row, washed extensively by the robot to achieve less than 0.2% carry-over as validated 140 

using beads. We typically fit two tip boxes and two sampling plates (2 x 96 = 192 samples) on the robot 141 

deck, therefore enabling 24 timepoints for each of the 8 reactors without any human intervention. To 142 

enable reactive experiment control based on cytometry data, we developed and implemented algorithms 143 

to perform automated gating and spectral deconvolution between overlapping fluorophores (Figure 2B). 144 

We first validated the performance of the platform by carrying out long-term turbidostat cultures of yeast 145 

strains constitutively expressing various fluorescent proteins from chromosomally integrated 146 

transcriptional units (Figure 2C). Distributions of fluorophore levels were unimodal and stable over time, 147 

as expected from steady growth conditions with a constitutive promoter. Distributions of mNeonGreen 148 

and mScarlet-I exactly overlapped between the single- and 3-color strains, as expected from the 149 

assumptions that expressing one or three fluorescent proteins from the strong pTDH3 promoter has 150 

negligible impact on cell physiology and that the relative positioning of transcriptional units in the 3-color 151 

strain (mCerulean first, followed by mNeonGreen and mScarlet-I) has little impact on gene expression. 152 

Measured levels of mCerulean appear slightly higher (~15%) in the 3-color strain compared to the single-153 
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color strain. This could be caused by residual errors in the deconvolution, exacerbated by the low 154 

brightness of mCerulean compared to autofluorescence and to mNeonGreen. 155 

Finally, to validate the optogenetic capabilities of the platform, we built and characterized a light-inducible 156 

gene expression circuit based on the EL222 system16 (Figure 2D). As expected, applying different ON-OFF 157 

temporal patterns of blue light resulted in dynamic profiles of fluorophore levels covering a wide range, 158 

from near-zero levels (i.e., hardly distinguishable from auto-fluorescence) to levels exceeding those 159 

obtained with the strong constitutive promoter pTDH3. Cell-to-cell variability in expression levels at high 160 

induction is also low, with coefficient of variation (CV) values comparable to the pTDH3 promoter (0.22 vs 161 

0.20). 162 

 163 

 164 
Figure 2. ReacSight-based assembly of a fully automated platform enabling reactive optogenetic control and single-cell resolved 165 
characterization of yeast continuous cultures. (A) Platform overview. The Opentrons OT-2 pipetting robot is used to connect 166 
optogenetic-ready multi-bioreactors to a benchtop cytometer (Guava EasyCyte 14HT, Luminex). The robot is used to dilute fresh 167 
culture samples in the cytometer input plate and to wash it between timepoints. The ‘clicking’ python library pyautogui is used to 168 
create the cytometer instrument control API. Custom algorithms were developed and implemented in python to automatically gate 169 
and deconvolve cytometry data on the fly. Two versions of the platform were assembled, using either a custom bioreactor setup 170 
(left photos) or Chi.Bio reactors4 (right photo). (B) Description of the gating and deconvolution algorithm. As an example, 171 
deconvolution between the overlapping fluorophores mCerulean and mNeonGreen are shown. (C) Stability of single-cell gene 172 
expression distributions over many generations. Strains constitutively expressing either mCerulean, mNeonGreen or mScarlet-I 173 
alone or altogether (‘3-colors’ strain) from the transcriptional units driven by the pTDH3 promoter and integrated in the 174 
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chromosome were grown in turbidostat mode (OD setpoint = 0.5, upper plots) and cytometry was acquired hourly (vertical green 175 
lines). Distributions (smoothed via Gaussian kernel density estimation) of fluorophore levels (after gating, deconvolution, and 176 
normalization by the forward scatter, FSC) for all timepoints are plotted together with different color shades (bottom). RPU: relative 177 
promoter units (see Methods). (D) Characterization of a light-driven gene expression circuit based on the EL222 system16. Three 178 
different ON-OFF blue light temporal profiles were applied (bottom) and cytometry was acquired every 45 minutes. The median of 179 
gated, deconvolved, FSC-normalized data is shown (top). All bioreactor experiments presented in this figure were performed in 180 
parallel, the same day, with the custom bioreactor platform version. 181 

The first platform we assembled used a pre-existing, custom optogenetic-enabled bioreactor array 182 

(Supplementary Text S1.2.1). This setup has several advantages (reliability, wide range of working 183 

volumes) but cannot be replicated easily by other labs. Thanks to the modularity of the ReacSight 184 

architecture, we could quickly construct a second version of the platform with similar capabilities by 185 

exchanging this custom bioreactor array with an array of the recently described, open-hardware, 186 

optogenetic-ready, commercially available Chi.Bio4 bioreactors (Figure 2A, right photo, Supplementary 187 

Text S1.2.2). To validate the performance of this other version of the platform, we performed optogenetic 188 

induction experiments with the same strain as in Figure 2D and obtained excellent reactor-to-reactor 189 

reproducibility for various light induction profiles (Figure 6B in Supplementary Text S1). 190 

Real-time control of gene expression using light 191 

To showcase the reactive optogenetic control capabilities of the platform, we set out to dynamically adapt 192 

light stimulation so as to maintain fluorophore levels at different target setpoints. Such in-silico feedback 193 

for in-vivo regulation of gene expression is useful to dissect the functioning of endogenous circuits in the 194 

presence of complex cellular regulations and could facilitate the use of synthetic systems for 195 

biotechnological applications6,10,17. 196 

We first constructed and validated a simple mathematical model of light-induced gene expression (Figure 197 

3A). Joint fitting of the three model parameters to the characterization data of Figure 2D resulted in an 198 

excellent quantitative agreement. This is remarkable given the simplicity of the model assumptions: 199 

constant rate of mRNA production under light activation, constant translation rate per mRNA, and first-200 

order decay for mRNA (mainly degradation, half-life of 20 minutes) and protein (mostly dilution, half-life 201 

of 1.46 hours). Therefore, when experimental conditions are well-controlled and the data is properly 202 

processed, one can hope to quantitatively explain the behavior of biological systems with a small set of 203 

simple processes. We then incorporated the fitted model into a model-predictive control algorithm (Figure 204 

3B). Together with the ReacSight event system, this algorithm enabled accurate real-time control of 205 

fluorophore levels to different targets in different reactors in parallel (Figure 3C). 206 

Exploring the impact of nutrient scarcity on fitness and cellular stress 207 

Fluorescent proteins can be used as reporters to assess phenotypic traits of cells or as barcodes to label 208 

strains with specific genotypes18. Together with automated cytometry from bioreactor arrays, this 209 

capability unlocks a new class of experiments: multiplexed strain characterization and competition in 210 

dynamically controlled environments (Figure 4A). Indeed, some fluorescent proteins can be used for 211 

genotyping and others for phenotyping. Automated cytometry (including raw data analysis) will then 212 

provide quantitative information on both the competition dynamics between the different strains and cell 213 

state distribution dynamics for each strain. Depending on the goal of the experiment, this rich information 214 

can be fed back to experiment control to adapt environmental parameters for each reactor. 215 
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 216 
Figure 3. Closing the loop: real-time control of gene expression using light. (A) A simple ODE model of the light-driven gene 217 
expression circuit is fitted to the characterization data of Figure 2D. Fitted parameters are 𝛾𝑚 = 2.09 ℎ𝑟−1, 𝜎 = 0.64 𝑅𝑃𝑈. ℎ𝑟−1 218 
and 𝛾𝐹𝑃 = 0.475 ℎ𝑟−1. 𝑘𝑚 was arbitrarily set to equal 𝛾𝑚 to allow parameter identifiability from protein median levels only. (B) 219 
Description of real-time control of gene expression experiments. Every hour, cytometry acquisition is performed, and after gating, 220 
deconvolution and FSC-normalization the data is fed to a model-predictive control (MPC) algorithm. The algorithm uses the model 221 
to search for the best sequence of duty fractions for 10 duty cycles of period 30 minutes (i.e. a horizon of 5 hours) in order to track 222 
the target level.  (C) Real-time control results for four different target levels, performed in parallel in different bioreactors (custom 223 
setup). Left: median of single cells (controlled value). Right: single-cell distributions over time. Note that a linear scale is used on 224 
all plots. 225 

As a first proof of concept that such experiments can be carried out, we set out to explore the impact of 226 

nutrient scarcity on fitness and cellular stress (Figure 4B, top-left). Different species in microbial 227 

communities have different nutritional needs depending on their metabolic diversity or specialization, and 228 

their fitness therefore depends not only on external environmental factors but also on the community 229 

itself through nutrient consumption, metabolite release, and other inter-cellular couplings19,20. As opposed 230 

to competition assays in batch, continuous culture allows to control for such factors. For example, in 231 

turbidostat cultures, nutrient availability depends on both nutrient supply (i.e. nutrient levels in the input 232 

medium) and nutrient consumption by cells (which primarily depends on the OD setpoint). We used 233 

histidine auxotrophy as a model for nutrient scarcity: for his3 mutant cells, histidine is an essential 234 

nutrient. By competing his3 mutant cells with wild-type cells at different OD setpoints and different 235 

histidine concentrations in the feeding medium, we can measure how nutrient scarcity affects fitness 236 

(Figure 4B, top-right). Using a stress reporter in both strains also informs about the relationship between 237 

fitness and cellular stress in the context of nutrient scarcity. We focused on the UPR (Unfolded Protein 238 
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Response21) stress response to investigate whether nutrient stress can lead to other, a priori unrelated 239 

types of stress, which will be indicative of global couplings in cell physiology. 240 

 241 
Figure 4. Exploring and exploiting the relationship between fitness, nutrient scarcity and cellular stress. (A) Opening up a new 242 
class of experiments by combining co-cultures, automated cytometry for single-cell genotyping and phenotyping and reactive 243 
experiment control to adapt environmental conditions in real-time. (B) Top-left: the availability of essential nutrients (such as 244 
histidine for his3 mutant strains) depends on the environmental supply but also on cell density via nutrient consumption. Low 245 
nutrient availability will impede growth rate and might trigger cellular stress. Top-right: experiment design. Wild-type cells (marked 246 
with mCerulean constitutive expression) are co-cultured with his3 mutant cells. Both strains harbor a UPR stress reporter construct 247 
driving expression of mScarlet-I. Automated cytometry enables to assign single cells to their genotype and to monitor strain-specific 248 
UPR activation. The dynamics of the relative amount of the two strains allows inference of the growth rate difference between 249 
mutant and wild-type cells for each condition. Bottom-left: cell density dependence of the fitness deficit of mutant cells at two 250 
different media histidine concentration. The dashed line indicates the approximate dependence of wild-type growth rate on the 251 
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OD setpoint. Bottom-right: strain-specific UPR activation for each condition. (C) Left: principle for a two-strain consortium whose 252 
composition can be steered using control of OD. Right: implementation and demonstration. The secretion of a heterologous 253 
difficult-to-fold protein is used as a nutrient-independent slow growth phenotype. Dynamic control of the OD setpoint is performed 254 
using model-predictive control and the ReacSight event system, similarly to Figure 3B (see Methods). We note the presence of a 255 
slight steady-state error, that might originate from a slightly lower long-term growth defect of the secreting strain compared to 256 
the estimate based on shorter-term characterization data. 257 

At a histidine concentration of 4 µM, his3 mutant cells are strongly outcompeted by wild-type cells over 258 

the range of OD setpoints (0.1 – 0.8) we considered (Figure 4B, bottom-left). This is not the case anymore 259 

at a concentration of 20 µM.  At this concentration, the growth rate advantage of wild-type cells is close 260 

to zero below an OD setpoint of 0.6 (the remaining histidine is sufficient for his3 mutant cells to grow 261 

normally) and becomes larger than 0.2 hr-1 at the largest OD setpoint of 0.8 (the remaining histidine is too 262 

low and limits growth of his3 mutant cells). Therefore, for this level of nutrient supply, levels of nutrient 263 

consumption by cells have a strong impact on fitness of his3 mutant cells. This qualitative change between 264 

4 µM and 20 µM is highly consistent with the reported value of 17 µM for the Km constant of the single 265 

high-affinity transporter of histidine, HIP122. Also, because the growth rate difference between wild-type 266 

and mutant cells for a histidine concentration of 4 µM is close or even exceeds the typically observed 267 

growth rate of wild-type cells (between 0.3 and 0.45 hr-1 depending on the OD setpoint), we conclude that 268 

mutant cells are fully growth-arrested in these conditions. UPR data shows little difference between 269 

mutant and wild-type cells across all OD setpoints for a histidine concentration of 20 µM but a clear 270 

activation of the UPR response in mutant cells at a histidine concentration of 4 µM (Figure 4B, bottom-271 

right). Therefore, seemingly similar growth phenotypes (such as mutant cells at OD 0.8 for 4 and 20 µM) 272 

can correspond to different physiological states (as revealed by differences in UPR activation). 273 

Finally, to showcase reactive control of the environment informed by strain abundance data, we set out 274 

to dynamically control the ratio of two strains. Taking control over the composition and heterogeneity of 275 

microbial cultures is anticipated to enable more efficient bioprocessing strategies23. We reasoned that the 276 

OD of the culture could be used as a steering knob when one of the two strain is auxotroph for histidine. 277 

Indeed, the strong OD-dependence of the histidine biosynthesis mutant growth rate at a medium histidine 278 

concentration of 20 µM (Figure 4B, bottom left) means that switching the OD setpoint of turbidostat 279 

cultures can be used to dynamically control its growth rate. In addition, if such strain is co-cultured with a 280 

strain prototroph for histidine but growing slower in an OD-independent manner, bi-directional steering 281 

of the two strains ratio can be achieved (Figure 4C, left). We built such strain by leveraging burdensome 282 

heterologous protein secretion. We then constructed a simple model to predict the (steady-state) growth 283 

rate difference with the histidine auxotroph strain (see Methods). Using this model for model-predictive 284 

control and the ReacSight event system, we could maintain distinct ratios of the two strains in parallel 285 

bioreactors (Figure 4C, right) in a fully automated fashion. 286 

Discussion 287 

We report the development of ReacSight, a strategy to enhance multi-bioreactor setups with automated 288 

measurements and reactive experiment control. ReacSight addresses an unmet need by allowing 289 

researchers to combine the recent advances in low-cost, open-hardware instruments for continuous 290 

cultures of microbes (e.g. eVOLVER, Chi.Bio3,4) and multi-purpose, modular, programmable pipetting 291 

robots (e.g. Opentrons OT-2) with sensitive, but generally expensive, stand-alone instruments to build fully 292 

automated platforms that open up radically novel experimental capabilities. ReacSight is generic and easy 293 

to deploy, and should be broadly useful for the microbial systems biology and synthetic biology 294 

communities. While we deployed the ReacSight strategy for only one measurement device (a benchtop 295 
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cytometer), it should be possible to position two devices on each side of the pipetting robot to enable 296 

even more advanced workflows. 297 

As already noted by Wong and colleagues3, connecting a multi-bioreactor setup to a cytometer for 298 

automated measurements could enable single-cell resolved characterization of microbial cultures across 299 

time. Automated cytometry in the context of microbial systems and synthetic biology has in fact already 300 

been demonstrated years ago by a small number of labs6,13,24, but low throughput or reliance on expensive 301 

automation equipment likely prevented a wider adoption of this technology. Automated cytometry from 302 

continuous cultures becomes especially powerful in combination with recently developed optogenetic 303 

systems25,26, enabling targeted, rapid and cost-effective control over cellular processes13. We used 304 

ReacSight to connect two distinct bioreactor setups (our own, pre-existing custom setup and the recent 305 

Chi.Bio4 optogenetic-ready bioreactors) with a cytometer. This demonstrate the modularity of the 306 

ReacSight strategy, and the platform version using Chi.Bio bioreactors illustrates how other labs lacking 307 

pre-existing bioreactor setups could build such platform at a small time and financial cost (excluding the 308 

cost of the cytometer, which are expensive but already widespread in labs given their broad usefulness 309 

even in absence of automation). We demonstrated the key capabilities of such platform by performing, in 310 

a fully automated fashion and in different reactors in parallel, 1) light-driven real-time control of gene 311 

expression; 2) cell-state informing competition assays in tightly controlled environmental conditions; and 312 

3) dynamic control of the ratio between two strains. 313 

Still, we only touched the surface of the large space of potential applications offered by such platforms. 314 

Strain barcoding can be scaled up to 20 strains with 2 fluorophores and even to 100 strains with 3 315 

fluorophores as recently demonstrated using ribosomal frameshifting18. Such multiplexing capabilities can 316 

be especially useful to characterize the input-output response of various candidate circuits (or the 317 

dependence of circuit behavior across a library of strain backgrounds) in parallel (using different light 318 

inductions across reactors). Immuno-beads can be used for more diverse cytometry-based measurements 319 

(the robot enabling automated incubation and wash, for example using the Opentrons OT-2 magnetic 320 

module). Technologies such as surface display27,28 or GPCR signaling29 can also be used to engineer 321 

biosensor strains to measure even more dimensions of the cultures with a single cytometer and at no 322 

reagent costs. Aside of high-performance quantitative strain characterization, such platforms can be useful 323 

for biotechnological applications10. Automated cytometry informing on the composition of artificial 324 

microbial consortia together with dynamic control of culture conditions (as demonstrated here using 325 

histidine auxotrophy and OD) could strongly reduce the need to engineer robust coexistence 326 

mechanisms30, therefore enabling the use of a much larger diversity of consortia. 327 

In the future we hope that many ReacSight-based platforms will be assembled and their design shared by 328 

a broad community to drastically expand our experimental capabilities, in order to shed new light on 329 

fundamental questions in microbiology or to unlock the potential of synthetic biology in biotechnological 330 

applications.  331 

Methods 332 

Cloning and strain construction. All integrative plasmids are constructed using the modular cloning 333 

framework for yeast synthetic biology Yeast Tool Kit by Lee and colleagues31 and all strains originate from 334 

the common laboratory strain BY4741. Strain genotypes are described in Table 1 of Text S1.3, and maps 335 

of the corresponding integrative plasmids are available online. All strains used in this work express the 336 

light-inducible transcription factor EL222 from the URA3 locus (transcriptional unit: pTDH3 NLS-VP16-337 
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EL222 tSSA1, common parental strain yIB32).  Single-color constitutive expression strains (Figure 2) also 338 

harbor a pTDH3 FP tTDH1 transcriptional unit at the LEU2 locus where FP is mCerulean, mNeonGreen or 339 

mScarlet-I. Corresponding CDS have been codon-optimized for expression in S. cerevisiae. The three-color 340 

strain harbors the same three transcriptional units in tandem (order: mCerulean, mNeonGreen, mScarlet-341 

I) at the LEU2 locus. The autofluorescence strain harbors an empty cassette at the LEU2 locus to match 342 

auxotrophy markers between strains. For light-inducible gene expression (Figure 2 and 3), a pEL222 343 

mNeonGreen tTDH1 transcriptional unit (where pEL222 is composed of 5 copies of the EL222 binding site 344 

followed by a truncated CYC1 promoter, originally named 5xBS-CYC180pr16) is integrated at the LEU2 locus. 345 

For the histidine competition experiments (Figure 4B), the histidine mutant strain (yIB90, parental strain 346 

yIB32) expresses a pUPR mScarlet-I tENO1 transcriptional unit integrated at the LEU2 locus to report on 347 

the UPR activation. The pUPR promoter consists in 4 copies of a consensus UPR element32 followed by a 348 

truncated CYC1 promoter. The histidine wild-type strain was obtained from the mutant strain yIB90 by 349 

integrating two identical pTDH3 mCerulean tTDH1 transcriptional units in tandem at the HO locus with 350 

HIS3 selection, thereby restoring histidine prototrophy and enabling fluorescent barcoding. For the two-351 

strain consortium experiment (Figure 4C), the slow-growth histidine prototroph strain was obtained by 352 

integrating three identical pEL222 alpha-prepro scFv 4-4-20 tTDH1 (burdensome secretion of an anti-353 

fluorescein single chain antibody fragment33) transcriptional units in tandem at the HO locus (HIS3 354 

selection) into yIB90 and blue light was used to induce the slow growth phenotype. 355 

Cell culture conditions. All experiments were performed in 30 mL culture volume bioreactors (cf Text S1.2) 356 

at 30 degrees and in turbidostat mode (OD 0.5, typically corresponding to 107 cells/mL according to 357 

cytometry data) with synthetic complete medium (ForMedium LoFlo yeast nitrogen base CYN6510 and 358 

Formedium complete supplement mixture DCS0019) except for histidine competition experiment where 359 

histidine drop-out amino-acid mixture was used (Sigma Y1751) and complemented with desired levels of 360 

histidine (Sigma 53319). 361 

Cytometry acquisition and raw data analysis. Gain settings of our cytometer (Guava EasyCyte 14HT, 362 

Luminex) for all channels were set once and for all prior to the study such that yeast auto-fluorescence 363 

under our typical growth conditions is detectable but at the lower end of the instrument 5-decade range. 364 

We verified that cytometry data was reproducible week-to-week with those fixed settings. Single-color 365 

strains described above were used together with the autofluorescence control strain to obtain ‘spectral’ 366 

signatures of the three fluorophores mCerulean, mNeonGreen and mScarlet-I and autofluorescence levels 367 

for each channel. These signatures were also highly reproducible week-to-week (Figure 7A, Text S1.2). To 368 

convert raw cytometry data into fluorophore concentrations in relative promoter units (RPU34), we used a 369 

pipeline described in Text S2.2. In essence, it uses data from single-color strains with pTDH3-driven 370 

expression for normalization. This pipeline was implemented in python (mainly using NumPy35 functions) 371 

and is available in the ReacSight Git repository. 372 

Model-predictive control. For real-time control of gene expression using light (Figure 3), model-predictive 373 

control using the two-variables, three-parameters ODE model described in Figure 3A was used. For state 374 

estimation upon arrival of cytometry data, the FP estimate was set equal to the fluorescence measurement 375 

(median of gated, deconvolved data) and the mRNA estimate was simply an ‘open-loop’ estimate based 376 

on simulating the history of light induction. This first state estimate corresponds to the state of the system 377 

at the time of sampling. To account for the time interval (and the concomitant light induction profile) 378 

between the sampling time and the data arrival time (typically 10-15 minutes), the model was used to 379 

obtain the corresponding updated state estimate. Then, a multi-dimensional, bounded, gradient-based 380 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2020.12.27.424467doi: bioRxiv preprint 

https://gitlab.inria.fr/InBio/Public/reacsight
https://doi.org/10.1101/2020.12.27.424467
http://creativecommons.org/licenses/by/4.0/


search using SciPy36 was used to find the best set of next light duty cycles minimizing the model-predicted 381 

distance to the target value over an horizon of 5 hours (10 duty cycles). The corresponding code is available 382 

in the ReacSight Git repository. 383 

Histidine competition assays. Pre-cultures were performed in synthetic complete medium. Cells were 384 

washed in the same low histidine medium as the one used for turbidostat feeding of the competition 385 

culture and mixed with an approximate ratio mutant:WT of 5:1 (to ensure good statistics for long enough 386 

even when the mutant fitness is very low) before inoculation.  Cytometry was acquired automatically every 387 

2 hours. At steady-state, the ratio between two competitors in a co-culture evolves exponentially at a rate 388 

equals to their growth rate difference. Linearity of the ratio logarithm for at least 3 timepoints was 389 

therefore used to assess when steady-state is reached. A threshold of 1 mCerulean RPU was used to assign 390 

each cell to its genotype. Size gating was performed as described in Text 2.2 (parameters: size threshold = 391 

0.5 and doublet threshold = 0.5, less stringent than for experiments of Figure 2 and 3) to discard dead or 392 

dying cells. 393 

Dynamic control of the two-strain consortium. A simple sigmoidal model describing the steady-state 394 

growth rate difference between the two strains as a function of OD was fitted on previous characterization 395 

data corresponding to different OD setpoints. Every two hours, cytometry data was automatically 396 

acquired. To assign a genotype to each cytometry event, the combined GRN-B and ORG-G channels was 397 

used (the histidine auxotroph strain being GRN-B positive and ORG-G negative). Based on the resulting 398 

estimate of the two-strain ratio, the model was used to optimize a vector of future OD setpoints (changing 399 

every 2 hours for the next 10 hours) using SciPy36.  400 
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